Esame di Algebra 1 del 2 febbraio 2018

Esercizio 1. Siano A, B insiemi ed $f: A \rightarrow B$ un'applicazione.

- (a) Si dimostri che le seguenti due affermazioni sono equivalenti:
 - (i) f è iniettiva.
 - (ii) Per ogni sottoinsieme X di A si ha $f^{-1}(f(X)) = X$.
- (b) Si dimostri che le seguenti due affermazioni sono equivalenti:
 - (i) f è suriettiva.
 - (ii) Per ogni sottoinsieme Y di B si ha $f(f^{-1}(Y)) = Y$.

Esercizio 2. Sia G un grafo (o un multigrafo, a scelta del candidato). Si completino le seguenti due definizioni:

- (a) Un cammino euleriano in G è...
- (b) Un circuito euleriano in G è...

Sia ora $n \geq 3$ un numero intero fissato e sia G_n il grafo con n vertici $v_1, v_2, \ldots v_n$ in cui sono adiacenti i vertici v_i e v_{i+1} per ogni $i=1,2,\ldots,n-1$ e sono adiacenti i vertici v_1 e v_i per ogni $i=2,3,\ldots,n$ (quindi G_n è una "corona su n vertici" in cui c'è un vertice fissato v_1 che è adiacente a tutti gli altri vertici del grafo).

- (c) Quanti lati ha il grafo G_n ?
- (d) Il grafo G_n ha un cammino euleriano se e solo se n = ?
- (e) Il grafo G_n ha un circuito euleriano se e solo se n = ?

Esercizio 3. Siano G,H gruppi ed $f\colon G\to H$ un omomorfismo di gruppi. Si provi che:

- (a) Se N è sottogruppo normale di H, allora $f^{-1}(N)$ è un sottogruppo normale di G.
- (b) Se M è sottogruppo normale di G, allora non è necessariamente vero che f(M) sia un sottogruppo normale di H.

Esercizio 4. (a) Si completino le seguenti definizioni:

- 1. Un dominio euclideo è...
- 2. Sia R un anello commutativo con identità. Un suo ideale I si dice principale se. . .
- (b) Si dimostri che ogni ideale di un dominio euclideo R è principale.

Esercizio 5. (a) Siano M,N monoidi moltiplicativi e sia $\varphi\colon M\to N$ un omomorfismo di monoidi. Si dimostri che se $x\in M$ è un elemento invertibile, allora $f(x)\in N$ è un elemento invertibile.

- (b) Sia considerino il sottoanello $\mathbb{Z}[i] = \{a+ib \mid a,b \in \mathbb{Z}\}$ di \mathbb{C} (detto *l'anello degli interi di Gauss*) e l'applicazione $\nu \colon \mathbb{Z}[i] \to \mathbb{N}$ definita da $\nu(a+ib) = a^2 + b^2$ per ogni $a,b \in \mathbb{Z}$. (Il numero naturale $\nu(a+ib)$ è detto la *norma* di a+ib.) Si provi che ν è un omomorfismo del monoide ($\mathbb{Z}[i]$, ·) nel monoide (\mathbb{N} , ·).
- (c) Si determinino gli elementi invertibili dell'anello $\mathbb{Z}[\,i\,]$ degli interi di Gauss. Quanti sono?