Around p-adic cohomologies A relative theory of p -adic differential equations

Gilles Christol & Zoghman Mebkhout

Padova, september 20, 2022

 299

Thank you Bruno :

without your long birthday ...

this work would have progressed even slower ...

×

∍

 \leftarrow \Box

 299

活

 \bullet a *p*-adic theory of partial differential equations,

4 0 8

 299

э

- \bullet a *p*-adic theory of partial differential equations,
- a relative version of the de Rham cohomology for smooth schemes over a field of characteristic p (Arabia-Mebkhout).

- \bullet a *p*-adic theory of partial differential equations,
- a relative version of the de Rham cohomology for smooth schemes over a field of characteristic p (Arabia-Mebkhout).

 $relative = with coefficients depending on parameter(s)$

- \bullet a *p*-adic theory of partial differential equations,
- a relative version of the de Rham cohomology for smooth schemes over a field of characteristic p (Arabia-Mebkhout).

 $relative = with coefficients depending on parameter(s)$

Let K be a *p*-adic field (i.e. a complete extension of \mathbb{Q}_p) and let normalize the valuation on $|K|$ by $|p|=\dfrac{1}{2}$ $\frac{1}{p}$.

We will say algebra for K -algebra.

 299

A †-adic algebra $\,B^{\dagger}$ Į is an algebra for which there is a family $\big(B_\tau, \|.\|_\tau \big), \tau \geq 1 \Big\} \;$ of Banach algebras such that :

 299

A \dagger -adic algebra $\ B^\dagger$ is an algebra for which there is a family $\left\{\left(B_{\tau},\left\|\cdot\right\|_{\tau}\right), \tau\geq 1\right\}\;$ of Banach algebras such that :

1 $B_{\tau} \supset B_{\tau'}$ for $\tau < \tau'$, $B^{\dagger} = \bigcup_{\tau > 1} B_{\tau}$,

A \dagger -adic algebra $\ B^\dagger$ is an algebra for which there is a family $\left\{\left(B_{\tau},\left\|\cdot\right\|_{\tau}\right), \tau\geq 1\right\}\;$ of Banach algebras such that :

- **1** $B_{\tau} \supset B_{\tau'}$ for $\tau < \tau'$, $B^{\dagger} = \bigcup_{\tau > 1} B_{\tau}$,
- 2 for $b\in B_{\tau}$, $t\mapsto \|b\|_{t}$ is increasing and log-convex on $\,[1,\tau]$, and each B_{τ} is dense in B_1 for $\|\cdot\|_1$,

A \dagger -adic algebra $\ B^\dagger$ is an algebra for which there is a family $\left\{\left(B_{\tau},\left\|\cdot\right\|_{\tau}\right), \tau\geq 1\right\}\;$ of Banach algebras such that :

0
$$
B_{\tau} \supset B_{\tau'}
$$
 for $\tau < \tau'$, $B^{\dagger} = \bigcup_{\tau > 1} B_{\tau}$,

- 2 for $b\in B_{\tau}$, $t\mapsto \|b\|_{t}$ is increasing and log-convex on $\,[1,\tau]$, and each B_{τ} is dense in B_1 for $\|\cdot\|_1$,
- \bullet the "Gauss norm" $\|.\|_1$ is multiplicative.

A \dagger -adic algebra $\ B^\dagger$ is an algebra for which there is a family $\left\{\left(B_{\tau},\left\|\cdot\right\|_{\tau}\right), \tau\geq 1\right\}\;$ of Banach algebras such that :

$$
\bullet \ \ B_{\tau} \supset B_{\tau'} \ \ \text{for} \ \ \tau < \tau' \ , \quad B^{\dagger} = \bigcup_{\tau > 1} B_{\tau} \ ,
$$

- 2 for $b\in B_{\tau}$, $t\mapsto \|b\|_{t}$ is increasing and log-convex on $\,[1,\tau]$, and each B_{τ} is dense in B_1 for $\|\cdot\|_1$,
- \bullet the "Gauss norm" $\|.\|_1$ is multiplicative.

 B^\dagger is endowed with an $\mathcal{LF}\text{-topology}$ as inductive limit of the B_τ , it is also endowed with the the Gauss norm tolology. \dagger -adic morphisms = algebra morphisms continuous for both topologies.

A \dagger -adic algebra $\ B^\dagger$ is an algebra for which there is a family $\left\{\left(B_{\tau},\left\|\cdot\right\|_{\tau}\right), \tau\geq 1\right\}\;$ of Banach algebras such that :

$$
\bullet \ \ B_{\tau} \supset B_{\tau'} \ \ \text{for} \ \ \tau < \tau' \ , \quad B^{\dagger} = \bigcup_{\tau > 1} B_{\tau} \ ,
$$

- 2 for $b\in B_{\tau}$, $t\mapsto \|b\|_{t}$ is increasing and log-convex on $\,[1,\tau]$, and each B_{τ} is dense in B_1 for $\|\cdot\|_1$,
- \bullet the "Gauss norm" $\|.\|_1$ is multiplicative.

 B^\dagger is endowed with an $\mathcal{LF}\text{-topology}$ as inductive limit of the B_τ , it is also endowed with the the Gauss norm tolology. \dagger -adic morphisms = algebra morphisms continuous for both topologies.

Our aim is to study D.E. with "constants" lying in a †-adic algebra.

A \dagger -adic algebra $\ B^\dagger$ is an algebra for which there is a family $\left\{\left(B_{\tau},\left\|\cdot\right\|_{\tau}\right), \tau\geq 1\right\}\;$ of Banach algebras such that :

$$
\bullet \ \ B_{\tau} \supset B_{\tau'} \ \ \text{for} \ \ \tau < \tau' \ , \quad B^{\dagger} = \bigcup_{\tau > 1} B_{\tau} \ ,
$$

- 2 for $b\in B_{\tau}$, $t\mapsto \|b\|_{t}$ is increasing and log-convex on $\,[1,\tau]$, and each B_{τ} is dense in B_1 for $\|\cdot\|_1$,
- \bullet the "Gauss norm" $\|.\|_1$ is multiplicative.

 B^\dagger is endowed with an $\mathcal{LF}\text{-topology}$ as inductive limit of the B_τ , it is also endowed with the the Gauss norm tolology. \dagger -adic morphisms $=$ algebra morphisms continuous for both topologies.

Our aim is to study D.E. with "constants" lying in a †-adic algebra.

The condition 3 (multiplicativity of $\|.\|_1$) ensures that the completion of the field of quotients of B_1 is a p-adic field that will be denoted by E . Hence it makes available the powerfull theory of [D](#page-13-0).[E](#page-16-0)[.](#page-13-0) [ov](#page-14-0)[e](#page-15-0)[r](#page-0-0) E [.](#page-0-0) 2990

Notations : $y = (y_1, ..., y_m)$, $n = (n_1, ..., n_m)$, $|n| = n_1 + ... + n_m$,

4 0 8

 2990

Basic examples

Notations : $y = (y_1, ..., y_m)$, $n = (n_1, ..., n_m)$, $|n| = n_1 + \cdots + n_m$,

 $\bullet \quad K<\mathbf{y}>_{\tau} \stackrel{\mathrm{def}}{=} \bigg\{\sum_{\mathbf{n}\in\mathbb{N}^{m}} a_{\mathbf{n}} \, \mathbf{y}^{\mathbf{n}} \in K[[\mathbf{y}]]\, ; \, \, \lim_{|\mathbf{n}|\to\infty} |a_{\mathbf{n}}|\, \tau^{|\mathbf{n}|}=0 \bigg\}$ n∈N^m endowed with $\|a\|_{\tau} = \max_{\mathbf{n} \in \mathbb{N}^m} |a_{\mathbf{n}}|\tau^{|\mathbf{n}|}$ [for each τ it is a Tate algebra],

A E RA E RI PORTA DE LA PORTA EL PORTA

Notations : $y = (y_1, ..., y_m)$, $n = (n_1, ..., n_m)$, $|n| = n_1 + \cdots + n_m$,

- $\bullet \quad K<\mathbf{y}>_{\tau} \stackrel{\mathrm{def}}{=} \bigg\{\sum_{\mathbf{n}\in\mathbb{N}^{m}} a_{\mathbf{n}} \, \mathbf{y}^{\mathbf{n}} \in K[[\mathbf{y}]]\, ; \, \, \lim_{|\mathbf{n}|\to\infty} |a_{\mathbf{n}}|\, \tau^{|\mathbf{n}|}=0 \bigg\}$ n∈N^m endowed with $\|a\|_{\tau} = \max_{\mathbf{n} \in \mathbb{N}^m} |a_{\mathbf{n}}|\tau^{|\mathbf{n}|}$ [for each τ it is a Tate algebra],
- $K < y >^{\dagger} = \{$ Power series overconvergent in the unit polydisk $\}$ [it is sometime called the Dwork-Monsky-Washnitzer algebra],

Notations : $y = (y_1, ..., y_m)$, $n = (n_1, ..., n_m)$, $|n| = n_1 + \cdots + n_m$,

- $\bullet \quad K<\mathbf{y}>_{\tau} \stackrel{\mathrm{def}}{=} \bigg\{\sum_{\mathbf{n}\in\mathbb{N}^{m}} a_{\mathbf{n}} \, \mathbf{y}^{\mathbf{n}} \in K[[\mathbf{y}]]\, ; \, \, \lim_{|\mathbf{n}|\to\infty} |a_{\mathbf{n}}|\, \tau^{|\mathbf{n}|}=0 \bigg\}$ n∈N^m endowed with $\|a\|_{\tau} = \max_{\mathbf{n} \in \mathbb{N}^m} |a_{\mathbf{n}}|\tau^{|\mathbf{n}|}$ [for each τ it is a Tate algebra],
- $K < y >^{\dagger} = \{$ Power series overconvergent in the unit polydisk $\}$ [it is sometime called the Dwork-Monsky-Washnitzer algebra],
- $\bullet\quad E=\big\{ \textnormal{completion of } K(\mathbf{y}) \textnormal{ for } \Vert. \Vert_1 \big\}$ [field of analytic elements in the generic (unit) polydisk] .

Principle : quotient the basic example by an ideal $\,$ a $\,$ of $\,$ K $<$ y $>^{\dagger}$. Key point : any such ideal is actually closed !

General examples (after Z. Mebkhout & L. Narvaez)

Principle : quotient the basic example by an ideal $\,$ a $\,$ of $\,$ K $<$ y $>^{\dagger}$. Key point : any such ideal is actually closed !

• $B_{\tau} \stackrel{\text{def}}{=} K \langle y \rangle_{\tau} / \mathfrak{a} \cap K \langle y \rangle_{\tau} \qquad (\tau > 1)$ endowed with the quotient norm $\|\widetilde{b}\|_{\tau} \stackrel{\text{def}}{=} \inf_{a \in \mathfrak{a}} \|b + a\|_{\tau}$, $\big(\exists \mathfrak{a}^e \text{ ideal of } K<\mathbf{y}>_1 \text{ s.t. } B_1 \stackrel{\text{def}}{=} K<\mathbf{y}>_1/\mathfrak{a}^e K<\mathbf{y}>_1 \text{ with } \|.\|_1\text{-q.n.}\big).$

 200

General examples (after Z. Mebkhout & L. Narvaez)

Principle : quotient the basic example by an ideal $\,$ a $\,$ of $\,$ K $<$ y $>^{\dagger}$. Key point : any such ideal is actually closed !

• $B_{\tau} \stackrel{\text{def}}{=} K \langle y \rangle_{\tau} / \mathfrak{a} \cap K \langle y \rangle_{\tau} \qquad (\tau > 1)$ endowed with the quotient norm $\|\widetilde{b}\|_{\tau} \stackrel{\text{def}}{=} \inf_{a \in \mathfrak{a}} \|b + a\|_{\tau}$, $\big(\exists \mathfrak{a}^e \text{ ideal of } K<\mathbf{y}>_1 \text{ s.t. } B_1 \stackrel{\text{def}}{=} K<\mathbf{y}>_1/\mathfrak{a}^e K<\mathbf{y}>_1 \text{ with } \|.\|_1\text{-q.n.}\big).$ \bullet B[†] = K<y>[†] /a∩K<y>[†] satifies conditions 1 and 2 .

 200

Principle : quotient the basic example by an ideal $\,$ a $\,$ of $\,$ K $<$ y $>^{\dagger}$. Key point : any such ideal is actually closed !

• $B_{\tau} \stackrel{\text{def}}{=} K \langle y \rangle_{\tau} / \mathfrak{a} \cap K \langle y \rangle_{\tau} \qquad (\tau > 1)$ endowed with the quotient norm $\|\widetilde{b}\|_{\tau} \stackrel{\text{def}}{=} \inf_{a \in \mathfrak{a}} \|b + a\|_{\tau}$, $\big(\exists \mathfrak{a}^e \text{ ideal of } K<\mathbf{y}>_1 \text{ s.t. } B_1 \stackrel{\text{def}}{=} K<\mathbf{y}>_1/\mathfrak{a}^e K<\mathbf{y}>_1 \text{ with } \|.\|_1\text{-q.n.}\big).$ \bullet B[†] = K<y>[†] /a∩K<y>[†] satifies conditions 1 and 2 .

It will be a \dagger -adic algebra provided $\|\cdot\|_1$ is multiplicative, namely iff $\widetilde{B}_1 \stackrel{\text{def}}{=} \mathcal{O}_1/\mathfrak{m}\mathcal{O}_1$ is integral $\left(\mathcal{O}_1 \stackrel{\text{def}}{=} \{x \in B_1; ||x||_1 \leq 1\}$, $\mathfrak{m} \stackrel{\text{def}}{=} \{m \in K; |m| < 1\}$).

Principle : quotient the basic example by an ideal $\,$ a $\,$ of $\,$ K $<$ y $>^{\dagger}$. Key point : any such ideal is actually closed !

• $B_{\tau} \stackrel{\text{def}}{=} K \langle y \rangle_{\tau} / \mathfrak{a} \cap K \langle y \rangle_{\tau} \qquad (\tau > 1)$ endowed with the quotient norm $\|\widetilde{b}\|_{\tau} \stackrel{\text{def}}{=} \inf_{a \in \mathfrak{a}} \|b + a\|_{\tau}$, $\big(\exists \mathfrak{a}^e \text{ ideal of } K<\mathbf{y}>_1 \text{ s.t. } B_1 \stackrel{\text{def}}{=} K<\mathbf{y}>_1/\mathfrak{a}^e K<\mathbf{y}>_1 \text{ with } \|.\|_1\text{-q.n.}\big).$ \bullet B[†] = K<y>[†] /a∩K<y>[†] satifies conditions 1 and 2 .

It will be a \dagger -adic algebra provided $\|\cdot\|_1$ is multiplicative, namely iff $\widetilde{B}_1 \stackrel{\text{def}}{=} \mathcal{O}_1/\mathfrak{m}\mathcal{O}_1$ is integral $\left(\mathcal{O}_1 \stackrel{\text{def}}{=} \{x \in B_1; ||x||_1 \leq 1\}$, $\mathfrak{m} \stackrel{\text{def}}{=} \{m \in K; |m| < 1\}$).

Moreover both topologies on $\ B^\dagger$ are separated and do not depend on the "presentation" $\mathfrak{a} \to K \lt y >^{\dagger}$.

- 4 로) - 4 로) - 그리

 $B_1 = \left\{$ analytic elements in $\, \, \mathsf{C} \,$ (finite union of residue classes) $\, \right\}$, $B_\tau=\big\{$ analytic elements in $\,{\mathsf C}\,(\hbox{finite union of disks with radius }\,\frac{1}{\tau}\,)\,\big\}$.

 $B_1 = \left\{$ analytic elements in $\, \, \mathsf{C} \,$ (finite union of residue classes) $\, \right\}$, $B_\tau=\big\{$ analytic elements in $\,{\mathsf C}\,(\hbox{finite union of disks with radius }\,\frac{1}{\tau}\,)\,\big\}$.

They are special cases of "general examples" realized, for instance, with $m = 2 \, , \, b \in K$ $<$ y_1 $>$ $, \, \, \mathfrak{a} = (1 - b \, y_2) K$ $<$ y_1, y_2 $>$

つひひ

For
$$
I = (a, b) \subset [0, \infty]
$$
 and $(B, ||.||)$ a Banach algebra we set :
\n $A_B(I) \stackrel{\text{def}}{=} \left\{ \sum_{s \in \mathbb{Z}} a_s x^s \; ; \; a_s \in B \text{ et } (\forall \rho \in I) \lim_{s \to \pm \infty} ||a_s|| \rho^s = 0 \right\}.$

4 日下

× ×. 重

 299

For
$$
I = (a, b) \subset [0, \infty]
$$
 and $(B, ||.||)$ a Banach algebra we set :
\n $A_B(I) \stackrel{\text{def}}{=} \left\{ \sum_{s \in \mathbb{Z}} a_s x^s \; ; \; a_s \in B \text{ et } (\forall \rho \in I) \lim_{s \to \pm \infty} ||a_s|| \rho^s = 0 \right\}.$
\nIt is a French algebra for the two (equivalent) norm families :

It is a Frechet algebra for the two (equivalent) norm families :

• for
$$
\rho \in I
$$
 : $\||.||_{\rho} \stackrel{\text{def}}{=} \max_{s \in \mathbb{Z}} (\||a_s|| \rho^s)$,

• for
$$
J
$$
 closed $\subset I$: $\|.\|_J = \max_{\rho \in J} \|.\|_\rho$.

4 D F

 299

目

For
$$
I = (a, b) \subset [0, \infty]
$$
 and $(B, ||.||)$ a Banach algebra we set :
\n $A_B(I) \stackrel{\text{def}}{=} \left\{ \sum_{s \in \mathbb{Z}} a_s x^s \; ; \; a_s \in B \text{ et } (\forall \rho \in I) \lim_{s \to \pm \infty} ||a_s|| \rho^s = 0 \right\}.$

It is a Frechet algebra for the two (equivalent) norm families :

• for
$$
\rho \in I
$$
 : $\||.||_{\rho} \stackrel{\text{def}}{=} \max_{s \in \mathbb{Z}} (\||a_s|| \rho^s)$,

• for
$$
J
$$
 closed $\subset I$: $\|.\|_J = \max_{\rho \in J} \|.\|_{\rho}$.

As usually these norms can be extended to the matrices :

for $\,\,G\in\mathrm{Mat}\left(\mathcal{A}_B(I)\right)\,\stackrel{\mathrm{def}}{=}\,\left\{d\times d\text{-matrices with coeff.}\in\mathcal{A}_B(I)\right\}\,$ we set

$$
\|G\|_{\rho} \stackrel{\text{def}}{=} \max_{1 \leq i,j \leq d} \|G_{ij}\|_{\rho} , \qquad \|G\|_{J} \stackrel{\text{def}}{=} \max_{1 \leq i,j \leq d} \|G_{ij}\|_{J} .
$$

For
$$
I = (a, b) \subset [0, \infty]
$$
 and $(B, ||.||)$ a Banach algebra we set :
\n $A_B(I) \stackrel{\text{def}}{=} \left\{ \sum_{s \in \mathbb{Z}} a_s x^s \; ; \; a_s \in B \text{ et } (\forall \rho \in I) \lim_{s \to \pm \infty} ||a_s|| \rho^s = 0 \right\}.$

It is a Frechet algebra for the two (equivalent) norm families :

• for
$$
\rho \in I
$$
 : $\||.||_{\rho} \stackrel{\text{def}}{=} \max_{s \in \mathbb{Z}} (\||a_s|| \rho^s)$,

• for
$$
J
$$
 closed $\subset I$: $\|.\|_J = \max_{\rho \in J} \|.\|_{\rho}$.

As usually these norms can be extended to the matrices :

for $\,\,G\in\mathrm{Mat}\left(\mathcal{A}_B(I)\right)\,\stackrel{\mathrm{def}}{=}\,\left\{d\times d\text{-matrices with coeff.}\in\mathcal{A}_B(I)\right\}\,$ we set

$$
\|G\|_{\rho} \stackrel{\text{def}}{=} \max_{1 \leq i,j \leq d} \|G_{ij}\|_{\rho} , \qquad \|G\|_{J} \stackrel{\text{def}}{=} \max_{1 \leq i,j \leq d} \|G_{ij}\|_{J} .
$$

We will also denote by $\left({\rm Gl}\left({\cal A}_B(I)\right) \right.$ the group of invertible matrices.

For B^{\dagger} a \dagger -adic algebra we set :

$$
\mathcal{A}_{B>1}(I) \stackrel{\text{def}}{=} \left\{ \sum_{s \in \mathbb{Z}} a_s x^s \; ; \; (\exists \tau > 1) \quad a_s \in B_{\tau} \right\}
$$

and
$$
(\forall \rho \in I) (\exists \tau_{\rho} > 1) \quad \lim_{s \to \pm \infty} ||a_s||_{\tau_{\rho}} \rho^s = 0 \right\}
$$

-4 B X

4 0 8

 299

目

For B^{\dagger} a \dagger -adic algebra we set :

$$
\mathcal{A}_{B>1}(I) \stackrel{\text{def}}{=} \left\{ \sum_{\mathsf{s}\in\mathbb{Z}} a_{\mathsf{s}} \, x^{\mathsf{s}} \, : \, (\exists \tau > 1) \quad a_{\mathsf{s}} \in B_{\tau} \right\}
$$
\n
$$
\text{and } (\forall \rho \in I) \, (\exists \tau_{\rho} > 1) \quad \lim_{\mathsf{s}\to\pm\infty} \|a_{\mathsf{s}}\|_{\tau_{\rho}} \, \rho^{\mathsf{s}} = 0 \right\}
$$
\n
$$
= \bigcap_{J \text{ closed } \subset I} \bigcup_{\tau > 1} \mathcal{A}_{B_{\tau}}(J) \, .
$$

œ

4 0 8

 299

目

For B^{\dagger} a \dagger -adic algebra we set :

$$
\mathcal{A}_{B>1}(I) \stackrel{\text{def}}{=} \left\{ \sum_{s \in \mathbb{Z}} a_s x^s \; ; \; (\exists \tau > 1) \; a_s \in B_{\tau} \right\}
$$
\n
$$
\text{and } (\forall \rho \in I) (\exists \tau_{\rho} > 1) \; \lim_{s \to \pm \infty} \|a_s\|_{\tau_{\rho}} \rho^s = 0 \right\}
$$
\n
$$
= \bigcap_{J \text{ closed } \subset I} \bigcup_{\tau > 1} \mathcal{A}_{B_{\tau}}(J) .
$$

It is a $\,B^\dagger\!$ -algebra

 \leftarrow

For B^{\dagger} a \dagger -adic algebra we set :

$$
\mathcal{A}_{B>1}(I) \stackrel{\text{def}}{=} \left\{ \sum_{\mathsf{s}\in\mathbb{Z}} a_{\mathsf{s}} \, x^{\mathsf{s}} \, ; \, (\exists \tau > 1) \quad a_{\mathsf{s}} \in B_{\tau} \right\}
$$
\n
$$
\text{and } (\forall \rho \in I) \, (\exists \tau_{\rho} > 1) \quad \lim_{\mathsf{s}\to\pm\infty} \|a_{\mathsf{s}}\|_{\tau_{\rho}} \, \rho^{\mathsf{s}} = 0 \right\}
$$
\n
$$
= \bigcap_{J \text{ closed } \subset I} \bigcup_{\tau > 1} \mathcal{A}_{B_{\tau}}(J) \, .
$$

It is a B^{\dagger} -algebra endowed with a complete, but useless, topology.

For B^{\dagger} a \dagger -adic algebra we set :

$$
\mathcal{A}_{B>1}(I) \stackrel{\text{def}}{=} \left\{ \sum_{\mathsf{s}\in\mathbb{Z}} a_{\mathsf{s}} \, x^{\mathsf{s}} \, : \, (\exists \tau > 1) \quad a_{\mathsf{s}} \in B_{\tau} \right\}
$$
\n
$$
\text{and } \left(\forall \rho \in I \right) \left(\exists \tau_{\rho} > 1 \right) \quad \lim_{\mathsf{s}\to\pm\infty} \|a_{\mathsf{s}}\|_{\tau_{\rho}} \, \rho^{\mathsf{s}} = 0 \right\}
$$
\n
$$
= \bigcap_{J \text{ closed } \subset I} \bigcup_{\tau > 1} \mathcal{A}_{B_{\tau}}(J) \, .
$$

It is a B^{\dagger} -algebra endowed with a complete, but useless, topology.

Examples : let $B^{\dagger} = K < y >^{\dagger}$, $I = [0,1)$ and $|\pi| = p^{-1/(p-1)}$. * The function $\exp(\pi y x) = \sum_{n \in \mathbb{N}} \frac{\pi^n}{n!}$ $\frac{\pi^n}{n!} y^n x^n \in \mathcal{A}_{B>1}(I)$,

For B^{\dagger} a \dagger -adic algebra we set :

$$
\mathcal{A}_{B>1}(I) \stackrel{\text{def}}{=} \left\{ \sum_{s \in \mathbb{Z}} a_s x^s \; ; \; (\exists \tau > 1) \; a_s \in B_{\tau} \right\}
$$
\n
$$
\text{and } (\forall \rho \in I) (\exists \tau_{\rho} > 1) \; \lim_{s \to \pm \infty} \|a_s\|_{\tau_{\rho}} \rho^s = 0 \right\}
$$
\n
$$
= \bigcap_{J \text{ closed } \subset I} \bigcup_{\tau > 1} \mathcal{A}_{B_{\tau}}(J) .
$$

It is a B^{\dagger} -algebra endowed with a complete, but useless, topology.

Examples: let
$$
B^{\dagger} = K \langle y \rangle^{\dagger}
$$
, $I = [0, 1)$ and $|\pi| = p^{-1/(p-1)}$

- * The function $\exp(\pi y x) = \sum_{n \in \mathbb{N}} \frac{\pi^n}{n!}$ $\frac{\pi^n}{n!} y^n x^n \in \mathcal{A}_{B>1}(I)$,
- * The function \sum n∈N $y^{n^2} x^n \in \mathcal{A}_{B_1}(I)$ but $\notin \mathcal{A}_{B>1}(I)$.

.
Let $\,B^\dagger\,$ be a \dagger -adic algebra and $\,E\,$ the completion of the quotient field of $\,B_1$.

 \leftarrow \Box

 QQQ

Let $\,B^\dagger\,$ be a \dagger -adic algebra and $\,E\,$ the completion of the quotient field of $\,B_1$.

Theorem EB (from E to B_1) Let $H \in \mathrm{Gl}(\mathcal{A}_E(I))$ be s.t. $G \stackrel{\text{def}}{=} \frac{d}{dx}HH^{-1} \in \mathrm{Mat}(\mathcal{A}_{B_1}(I))$, then there exists $C \in Gl(E)$ s.t. $H C \in Gl(\mathcal{A}_{B_1}(I))$.

Let $\,B^\dagger\,$ be a \dagger -adic algebra and $\,E\,$ the completion of the quotient field of $\,B_1$.

Theorem EB (from E to B_1) Let $H \in \mathrm{Gl}(\mathcal{A}_E(I))$ be s.t. $G \stackrel{\text{def}}{=} \frac{d}{dx}HH^{-1} \in \mathrm{Mat}(\mathcal{A}_{B_1}(I))$, then there exists $C \in Gl(E)$ s.t. $H C \in Gl(\mathcal{A}_{B_1}(I))$.

Theorem BB (from B_1 to B^{\dagger}) Let $H \in \mathrm{Gl}\left(\mathcal{A}_{\mathcal{B}_1}(I)\right)$ be s.t. $G \stackrel{\text{def}}{=} \frac{d}{dx} H H^{-1} \in \mathrm{Mat}\left(\mathcal{A}_{\mathcal{B}^{>1}}(I)\right)$, then there exists $C \in \mathrm{Gl}(B_1)$ s.t. $H C \in \mathrm{Gl}(\mathcal{A}_{B>1}(I))$.

 QQQ

Let $\,B^\dagger\,$ be a \dagger -adic algebra and $\,E\,$ the completion of the quotient field of $\,B_1$.

Theorem EB (from E to B_1) Let $H \in \mathrm{Gl}(\mathcal{A}_E(I))$ be s.t. $G \stackrel{\text{def}}{=} \frac{d}{dx}HH^{-1} \in \mathrm{Mat}(\mathcal{A}_{B_1}(I))$, then there exists $C \in Gl(E)$ s.t. $H C \in Gl(\mathcal{A}_{B_1}(I))$.

Theorem BB (from B_1 to B^{\dagger}) Let $H \in \mathrm{Gl}\left(\mathcal{A}_{\mathcal{B}_1}(I)\right)$ be s.t. $G \stackrel{\text{def}}{=} \frac{d}{dx} H H^{-1} \in \mathrm{Mat}\left(\mathcal{A}_{\mathcal{B}^{>1}}(I)\right)$, then there exists $C \in \mathrm{Gl}(B_1)$ s.t. $H C \in \mathrm{Gl}(\mathcal{A}_{B>1}(I))$.

Putting the two theorems together gives

Theorem EB^{\dagger} (from E to B^{\dagger}) Let $H \in \mathrm{Gl}(\mathcal{A}_E(I))$ be s.t. $G \stackrel{\text{\it def}}{=} \frac{d}{dx}HH^{-1} \in \mathrm{Mat}(\mathcal{A}_{B>1}(I))$, then there exist $C \in \text{Gl}(E)$, s.t. $H C \in \text{Gl}(\mathcal{A}_{B>1}(I))$.

Theorem (structure of Robba modules over p-adic fields) Let $G \in \mathrm{Mat}\left(\mathcal{A}_{E}(I)\right)$ satisfying Robba condition $\left[\right. \left(\forall \rho \in I\right) \left.\right.\right. \mathrm{ray}_{G}(\rho) = \rho\left.\right]$ with exponent $\alpha=(\alpha_1,\ldots,\alpha_d)\in\mathbb{Z}_p^d/\mathfrak{E}$ satisfying DNL, $[\tilde{\alpha} = {\alpha_i} \in {\mathbb{Z}_p}/\mathbb{Z} \}^d$ and the Differences $\alpha_i - \alpha_j$ are Non Liouville numbers] Then there is a "change-of-basis matrix" $H \in Gl(A_E(I))$ (from G to $\frac{1}{x}M$) s.t. $\frac{d}{dx}H = G H - H \frac{1}{x}M$, where $M \in \mathrm{Mat}(\mathbb{Z}_p)$ is the "monodromy matrix" : $M = D + N$ with $D = \text{diag}\{\alpha_1, ..., \alpha_d\}$, N is nilpotent and $DN = ND$.

Theorem (structure of Robba modules over p-adic fields) Let $G \in \mathrm{Mat}\left(\mathcal{A}_{E}(I)\right)$ satisfying Robba condition $\left[\right. \left(\forall \rho \in I\right) \left.\right.\right. \mathrm{ray}_{G}(\rho) = \rho\left.\right]$ with exponent $\alpha=(\alpha_1,\ldots,\alpha_d)\in\mathbb{Z}_p^d/\mathfrak{E}$ satisfying DNL, $[\tilde{\alpha} = {\alpha_i} \in {\mathbb{Z}_p}/\mathbb{Z} \}^d$ and the Differences $\alpha_i - \alpha_j$ are Non Liouville numbers] Then there is a "change-of-basis matrix" $H \in Gl(A_E(I))$ (from G to $\frac{1}{x}M$) s.t. $\frac{d}{dx}H = G H - H \frac{1}{x}M$, where $M \in \mathrm{Mat}(\mathbb{Z}_p)$ is the "monodromy matrix" : $M = D + N$ with $D = \text{diag}\{\alpha_1, ..., \alpha_d\}$, N is nilpotent and $DN = ND$.

Theorem (structure of Robba modules over †-adic algebras) Let $G \in \operatorname{Mat} \big(\mathcal{A}_{\mathcal{B}^{>1}}(I) \big)$ satisfying Robba condition with DNL exponent. Then the change-of-basis matrix H can be taken in $Gl(A_{B>1}(I))$.

The theorem BB can be deduced from a seemingly weaker one.

 QQQ

The theorem BB can be deduced from a seemingly weaker one. Let $\stackrel{o}{J}$ denote the interior of J and let $\; J'\subsetneq J\;$ mean $\;J'\subset\stackrel{o}{J}$. Theorem WV : Let $J' \subsetneq J$ two closed subintervals of I. If $H = \sum_{s \in \mathbb{Z}} H_s \, x^s \in \text{Gl}\left(\mathcal{A}_{\mathcal{B}_1}(\mathcal{I})\right)$ satisfies both conditions WV 1. $G\ \stackrel{\mathrm{{\scriptscriptstyle def}}}{=}\ \frac{d}{d\mathsf{x}}H\,H^{-1}\in\mathrm{Mat}\left(\mathcal{A}_{\mathcal{B}_{\tau}}(\mathcal{J})\right)\quad\text{for some}\ \ \tau>1$,

The theorem BB can be deduced from a seemingly weaker one. Let $\stackrel{o}{J}$ denote the interior of J and let $\; J'\subsetneq J\;$ mean $\;J'\subset\stackrel{o}{J}$. Theorem WV : Let $J' \subsetneq J$ two closed subintervals of I. If $H = \sum_{s \in \mathbb{Z}} H_s \, x^s \in \text{Gl}\left(\mathcal{A}_{\mathcal{B}_1}(\mathcal{I})\right)$ satisfies both conditions WV 1. $G\ \stackrel{\mathrm{{\scriptscriptstyle def}}}{=}\ \frac{d}{d\mathsf{x}}H\,H^{-1}\in\mathrm{Mat}\left(\mathcal{A}_{\mathcal{B}_{\tau}}(\mathcal{J})\right)\quad\text{for some}\ \ \tau>1$, WV 2. $H_0 =$ Id and $||H -$ Id $||_1$, $\lt 1$,

The theorem BB can be deduced from a seemingly weaker one. Let $\stackrel{o}{J}$ denote the interior of J and let $\; J'\subsetneq J\;$ mean $\;J'\subset\stackrel{o}{J}$. Theorem WV : Let $J' \subsetneq J$ two closed subintervals of I. If $H = \sum_{s \in \mathbb{Z}} H_s \, x^s \in \text{Gl}\left(\mathcal{A}_{\mathcal{B}_1}(\mathcal{I})\right)$ satisfies both conditions WV 1. $G\ \stackrel{\mathrm{{\scriptscriptstyle def}}}{=}\ \frac{d}{d\mathsf{x}}H\,H^{-1}\in\mathrm{Mat}\left(\mathcal{A}_{\mathcal{B}_{\tau}}(\mathcal{J})\right)\quad\text{for some}\ \ \tau>1$, WV 2. $H_0 =$ Id and $||H -$ Id $||_1$, $\lt 1$, then there is τ' , $1 < \tau' \leq \tau$, s.t. $H \in \mathrm{Gl}(\mathcal{A}_{\mathcal{B}_{\tau'}}(J'))$.

The theorem BB can be deduced from a seemingly weaker one. Let $\stackrel{o}{J}$ denote the interior of J and let $\; J'\subsetneq J\;$ mean $\;J'\subset\stackrel{o}{J}$. Theorem WV : Let $J' \subsetneq J$ two closed subintervals of I. If $H = \sum_{s \in \mathbb{Z}} H_s \, x^s \in \text{Gl}\left(\mathcal{A}_{\mathcal{B}_1}(\mathcal{I})\right)$ satisfies both conditions WV 1. $G\ \stackrel{\mathrm{{\scriptscriptstyle def}}}{=}\ \frac{d}{d\mathsf{x}}H\,H^{-1}\in\mathrm{Mat}\left(\mathcal{A}_{\mathcal{B}_{\tau}}(\mathcal{J})\right)\quad\text{for some}\ \ \tau>1$, WV 2. $H_0 = \text{Id}$ and $||H - \text{Id}||_{1,1} < 1$, then there is τ' , $1 < \tau' \leq \tau$, s.t. $H \in \mathrm{Gl}(\mathcal{A}_{\mathcal{B}_{\tau'}}(J'))$.

Beyond the play on intervals related to the definition of $\,B^\dagger$, the theorem BB follows from theorem WV using the next lemma

The theorem BB can be deduced from a seemingly weaker one. Let $\stackrel{o}{J}$ denote the interior of J and let $\; J'\subsetneq J\;$ mean $\;J'\subset\stackrel{o}{J}$. Theorem WV : Let $J' \subsetneq J$ two closed subintervals of I. If $H = \sum_{s \in \mathbb{Z}} H_s \, x^s \in \text{Gl}\left(\mathcal{A}_{\mathcal{B}_1}(\mathcal{I})\right)$ satisfies both conditions WV 1. $G\ \stackrel{\mathrm{{\scriptscriptstyle def}}}{=}\ \frac{d}{d\mathsf{x}}H\,H^{-1}\in\mathrm{Mat}\left(\mathcal{A}_{\mathcal{B}_{\tau}}(\mathcal{J})\right)\quad\text{for some}\ \ \tau>1$, WV 2. $H_0 = \text{Id}$ and $||H - \text{Id}||_{1,1} < 1$, then there is τ' , $1 < \tau' \leq \tau$, s.t. $H \in \mathrm{Gl}(\mathcal{A}_{\mathcal{B}_{\tau'}}(J'))$.

Beyond the play on intervals related to the definition of $\,B^\dagger$, the theorem BB follows from theorem WV using the next lemma

Lemma : Let
$$
H \in Gl(\mathcal{A}_{B_1}(J))
$$
 and $\tau > 1$.
Then there is $D \in Gl(\mathcal{A}_{B_{\tau}}(J))$ s.t. $||DH - Id||_{1,J} < 1$.

The theorem BB can be deduced from a seemingly weaker one. Let $\stackrel{o}{J}$ denote the interior of J and let $\; J'\subsetneq J\;$ mean $\;J'\subset\stackrel{o}{J}$. Theorem WV : Let $J' \subsetneq J$ two closed subintervals of I. If $H = \sum_{s \in \mathbb{Z}} H_s \, x^s \in \text{Gl}\left(\mathcal{A}_{\mathcal{B}_1}(\mathcal{I})\right)$ satisfies both conditions WV 1. $G\ \stackrel{\mathrm{{\scriptscriptstyle def}}}{=}\ \frac{d}{d\mathsf{x}}H\,H^{-1}\in\mathrm{Mat}\left(\mathcal{A}_{\mathcal{B}_{\tau}}(\mathcal{J})\right)\quad\text{for some}\ \ \tau>1$, WV 2. $H_0 = \text{Id}$ and $||H - \text{Id}||_{1,1} < 1$, then there is τ' , $1 < \tau' \leq \tau$, s.t. $H \in \mathrm{Gl}(\mathcal{A}_{\mathcal{B}_{\tau'}}(J'))$.

Beyond the play on intervals related to the definition of $\,B^\dagger$, the theorem BB follows from theorem WV using the next lemma

Lemma : Let $H \in \mathrm{Gl}\left(\mathcal{A}_{\mathcal{B}_1}(\mathcal{J})\right)$ and $\tau > 1$. Then there is $D \in Gl (A_{B_{\tau}}(J))$ s.t. $||D H - Id||_{1,J} < 1$.

which itself is a consequence of the density of B_{τ} in $B₁$.

医尿管 医尿道下的 医心

By WV1, $H \in \mathrm{Gl}(\mathcal{A}_{B_1}(J))$ and $G \stackrel{\text{def}}{=} \frac{d}{dx}HH^{-1} \in \mathrm{Mat}(\mathcal{A}_{B_\tau}(J))$.

By WV1, $H \in \mathrm{Gl}(\mathcal{A}_{B_1}(J))$ and $G \stackrel{\text{def}}{=} \frac{d}{dx}HH^{-1} \in \mathrm{Mat}(\mathcal{A}_{B_\tau}(J))$.

Set $G_{\leq 0>} = \text{Id}$, $G_{\leq n+1>} = \frac{d}{dx} G_{\leq n>} + G_{\leq n>} G$,

By WV1, $H \in \mathrm{Gl}(\mathcal{A}_{B_1}(J))$ and $G \stackrel{\text{def}}{=} \frac{d}{dx}HH^{-1} \in \mathrm{Mat}(\mathcal{A}_{B_\tau}(J))$. Set $G_{\leq 0>} = \text{Id}$, $G_{\leq n+1>} = \frac{d}{dx} G_{\leq n>} + G_{\leq n>} G$, and let $\text{ray}_{\mathcal{G}}(t,\rho) \stackrel{\text{def}}{=} \min \big\{\rho \, ; \, \liminf_{n \to \infty} \big\}$ \blacksquare 1 $\frac{1}{n!} G_{\lt n>}$ −1/n $\left\{ \begin{array}{ll} t, \rho \end{array} \right\} \qquad \text{for} \ \ t \in [1, \tau], \ \rho \in J \ .$

By WV1, $H \in \mathrm{Gl}(\mathcal{A}_{B_1}(J))$ and $G \stackrel{\text{def}}{=} \frac{d}{dx}HH^{-1} \in \mathrm{Mat}(\mathcal{A}_{B_\tau}(J))$. Set $G_{\leq 0>} = \text{Id}$, $G_{\leq n+1>} = \frac{d}{dx} G_{\leq n>} + G_{\leq n>} G$, and let $\text{ray}_{\mathcal{G}}(t,\rho) \stackrel{\text{def}}{=} \min \big\{\rho \, ; \, \liminf_{n \to \infty} \big\}$ \blacksquare 1 $\frac{1}{n!} G_{\lt n>}$ −1/n $\left\{ \begin{array}{ll} t, \rho \end{array} \right\} \qquad \text{for} \ \ t \in [1, \tau], \ \rho \in J \ .$

By construction $G_{\langle n \rangle} \in \text{Mat} \left(\mathcal{A}_{\mathcal{B}_{\tau}}(J) \right)$

By WV1, $H \in \mathrm{Gl}(\mathcal{A}_{B_1}(J))$ and $G \stackrel{\text{def}}{=} \frac{d}{dx}HH^{-1} \in \mathrm{Mat}(\mathcal{A}_{B_\tau}(J))$. Set $G_{\leq 0>} = \text{Id}$, $G_{\leq n+1>} = \frac{d}{dx} G_{\leq n>} + G_{\leq n>} G$, and let $\text{ray}_{\mathcal{G}}(t,\rho) \stackrel{\text{def}}{=} \min \big\{\rho \, ; \, \liminf_{n \to \infty} \big\}$ \blacksquare 1 $\frac{1}{n!} G_{\lt n>}$ −1/n $\left\{ \begin{array}{ll} t, \rho \end{array} \right\} \qquad \text{for} \ \ t \in [1, \tau], \ \rho \in J \ .$ By construction $\mathsf{G}_{< n >}\in \mathrm{Mat}\left(\mathcal{A}_{\mathcal{B}_{\tau}}(\mathsf{J})\right)$ and a convexity argument proves that the function $\text{ray}_{{\bm G}}(t,\rho)$ is continuous on $\left[1,\tau\right)\times\stackrel{o}{J}$.

By WV1, $H \in \mathrm{Gl}(\mathcal{A}_{B_1}(J))$ and $G \stackrel{\text{def}}{=} \frac{d}{dx}HH^{-1} \in \mathrm{Mat}(\mathcal{A}_{B_\tau}(J))$. Set $G_{\leq 0>} = \text{Id}$, $G_{\leq n+1>} = \frac{d}{dx} G_{\leq n>} + G_{\leq n>} G$, and let $\text{ray}_{\mathcal{G}}(t,\rho) \stackrel{\text{def}}{=} \min \big\{\rho \, ; \, \liminf_{n \to \infty} \big\}$ \blacksquare 1 $\frac{1}{n!} G_{\lt n>}$ −1/n $\left\{ \begin{array}{ll} t, \rho \end{array} \right\} \qquad \text{for} \ \ t \in [1, \tau], \ \rho \in J \ .$ By construction $\mathsf{G}_{< n >}\in \mathrm{Mat}\left(\mathcal{A}_{\mathcal{B}_{\tau}}(\mathsf{J})\right)$ and a convexity argument proves that the function $\text{ray}_{{\bm G}}(t,\rho)$ is continuous on $\left[1,\tau\right)\times\stackrel{o}{J}$. Moreover $G_{\leq n>} = \frac{d^n}{dx^n} H H^{-1}$, whence $\text{ray}_G(1, \rho) = \rho$ for $\rho \in J$.

By WV1, $H \in \mathrm{Gl}(\mathcal{A}_{B_1}(J))$ and $G \stackrel{\text{def}}{=} \frac{d}{dx}HH^{-1} \in \mathrm{Mat}(\mathcal{A}_{B_\tau}(J))$. Set $G_{\leq 0>} = \text{Id}$, $G_{\leq n+1>} = \frac{d}{dx} G_{\leq n>} + G_{\leq n>} G$, and let $\text{ray}_{\mathcal{G}}(t,\rho) \stackrel{\text{def}}{=} \min \big\{\rho \, ; \, \liminf_{n \to \infty} \big\}$ \blacksquare 1 $\frac{1}{n!} G_{\lt n>}$ −1/n $\left\{ \begin{array}{ll} t, \rho \end{array} \right\} \qquad \text{for} \ \ t \in [1, \tau], \ \rho \in J \ .$

By construction $\mathsf{G}_{< n >}\in \mathrm{Mat}\left(\mathcal{A}_{\mathcal{B}_{\tau}}(\mathsf{J})\right)$ and a convexity argument proves that the function $\text{ray}_{{\bm G}}(t,\rho)$ is continuous on $\left[1,\tau\right)\times\stackrel{o}{J}$. Moreover $G_{\leq n>} = \frac{d^n}{dx^n} H H^{-1}$, whence $\text{ray}_G(1, \rho) = \rho$ for $\rho \in J$. The theorem WV asserts that $\text{ray}_G(t, \rho) = \rho$ on $[1, \tau'] \times J'$.

By WV1, $H \in \mathrm{Gl}(\mathcal{A}_{B_1}(J))$ and $G \stackrel{\text{def}}{=} \frac{d}{dx}HH^{-1} \in \mathrm{Mat}(\mathcal{A}_{B_\tau}(J))$. Set $G_{\leq 0>} = \text{Id}$, $G_{\leq n+1>} = \frac{d}{dx} G_{\leq n>} + G_{\leq n>} G$, and let $\text{ray}_{\mathcal{G}}(t,\rho) \stackrel{\text{def}}{=} \min \big\{\rho \, ; \, \liminf_{n \to \infty} \big\}$ \blacksquare 1 $\frac{1}{n!} G_{\lt n>}$ −1/n $\left\{ \begin{array}{ll} t, \rho \end{array} \right\} \qquad \text{for} \ \ t \in [1, \tau], \ \rho \in J \ .$ By construction $\mathsf{G}_{< n >}\in \mathrm{Mat}\left(\mathcal{A}_{\mathcal{B}_{\tau}}(\mathsf{J})\right)$ and a convexity argument

proves that the function $\text{ray}_{{\bm G}}(t,\rho)$ is continuous on $\left[1,\tau\right)\times\stackrel{o}{J}$.

Moreover $G_{\leq n>} = \frac{d^n}{dx^n} H H^{-1}$, whence $\text{ray}_G(1, \rho) = \rho$ for $\rho \in J$.

and the theorem BB asserts this is true on some open set edged with I.

By WV2 , $H = \sum_{s \in \mathbb{Z}} H_s x^s$ with $H_0 = \mathrm{Id}$, $\|H - \mathrm{Id}\,\|_{1,J} < 1$. Then, $H^{(\ell)} \stackrel{\text{def}}{=} \sum_{s \in \mathbb{Z}} H_{p^\ell s} \, x^{p^\ell s} \, \in \text{Gl}\left(\mathcal{A}_{\mathcal{B}_1}(\mathcal{J})\right)$ for $\ell \geq 1$.

A A B A B A B A A A CA

By WV2 , $H = \sum_{s \in \mathbb{Z}} H_s x^s$ with $H_0 = \mathrm{Id}$, $\|H - \mathrm{Id}\,\|_{1,J} < 1$. Then, $H^{(\ell)} \stackrel{\text{def}}{=} \sum_{s \in \mathbb{Z}} H_{p^\ell s} \, x^{p^\ell s} \, \in \text{Gl}\left(\mathcal{A}_{\mathcal{B}_1}(\mathcal{J})\right)$ for $\ell \geq 1$. So that $R_G^{(\ell)}$ $\mathcal{A}_G^{(\ell)} \ \stackrel{\text{\tiny def}}{=} \ \mathcal{H}^{(\ell)} \ \mathcal{H}^{-1} {\in \mathrm{Gl}}\left(\mathcal{A}_{\mathcal{B}_1}(J)\right) \ \ \text{and} \ \ \|\mathcal{R}_G^{(\ell)}-\operatorname{Id}\|_{1,J} < 1 \;.$

A E RA E RI PORTA DE RA CA E

By WV2 , $H = \sum_{s \in \mathbb{Z}} H_s x^s$ with $H_0 = \mathrm{Id}$, $\|H - \mathrm{Id}\,\|_{1,J} < 1$. Then, $H^{(\ell)} \stackrel{\text{def}}{=} \sum_{s \in \mathbb{Z}} H_{p^\ell s} \, x^{p^\ell s} \, \in \text{Gl}\left(\mathcal{A}_{\mathcal{B}_1}(\mathcal{J})\right)$ for $\ell \geq 1$. So that $R_G^{(\ell)}$ $\mathcal{A}_G^{(\ell)} \ \stackrel{\text{\tiny def}}{=} \ \mathcal{H}^{(\ell)} \ \mathcal{H}^{-1} {\in \mathrm{Gl}}\left(\mathcal{A}_{\mathcal{B}_1}(J)\right) \ \ \text{and} \ \ \|\mathcal{R}_G^{(\ell)}-\operatorname{Id}\|_{1,J} < 1 \;.$ However, using Taylor's formula between x and ζx , one gets

$$
R_G^{(\ell)} = p^{-\ell} \sum_{\zeta^{p^{\ell}}=1} \sum_{n \in \mathbb{N}} (\zeta - 1)^n \frac{1}{n!} x^n G_{\langle n \rangle}.
$$

 E^* A^* E^* B^* C^* D^*

By WV2 , $H = \sum_{s \in \mathbb{Z}} H_s x^s$ with $H_0 = \mathrm{Id}$, $\|H - \mathrm{Id}\,\|_{1,J} < 1$. Then, $H^{(\ell)} \stackrel{\text{def}}{=} \sum_{s \in \mathbb{Z}} H_{p^\ell s} \, x^{p^\ell s} \, \in \text{Gl}\left(\mathcal{A}_{\mathcal{B}_1}(\mathcal{J})\right)$ for $\ell \geq 1$. So that $R_G^{(\ell)}$ $\mathcal{A}_G^{(\ell)} \ \stackrel{\text{\tiny def}}{=} \ \mathcal{H}^{(\ell)} \ \mathcal{H}^{-1} {\in \mathrm{Gl}}\left(\mathcal{A}_{\mathcal{B}_1}(J)\right) \ \ \text{and} \ \ \|\mathcal{R}_G^{(\ell)}-\operatorname{Id}\|_{1,J} < 1 \;.$ However, using Taylor's formula between x and ζx , one gets

$$
R_G^{(\ell)} = p^{-\ell} \sum_{\zeta^{p^{\ell}}=1} \sum_{n \in \mathbb{N}} (\zeta - 1)^n \frac{1}{n!} x^n G_{\zeta n \rangle}.
$$

As $|\zeta - 1| < 1$ and ray_G is continuous, there exists $\tau_{\ell} > 1$ s.t. $R_G^{(\ell)} \in \mathrm{Gl}\left(\mathcal{A}_{\mathcal{B}_{\tau_{\ell}}}(J)\right)$.

 $E \rightarrow 4E + E \rightarrow 790$

By WV2 , $H = \sum_{s \in \mathbb{Z}} H_s x^s$ with $H_0 = \mathrm{Id}$, $\|H - \mathrm{Id}\,\|_{1,J} < 1$. Then, $H^{(\ell)} \stackrel{\text{def}}{=} \sum_{s \in \mathbb{Z}} H_{p^\ell s} \, x^{p^\ell s} \, \in \text{Gl}\left(\mathcal{A}_{\mathcal{B}_1}(\mathcal{J})\right)$ for $\ell \geq 1$. So that $R_G^{(\ell)}$ $\mathcal{A}_G^{(\ell)} \ \stackrel{\text{\tiny def}}{=} \ \mathcal{H}^{(\ell)} \ \mathcal{H}^{-1} {\in \mathrm{Gl}}\left(\mathcal{A}_{\mathcal{B}_1}(J)\right) \ \ \text{and} \ \ \|\mathcal{R}_G^{(\ell)}-\operatorname{Id}\|_{1,J} < 1 \;.$ However, using Taylor's formula between x and ζx , one gets

$$
R_G^{(\ell)} = p^{-\ell} \sum_{\zeta^{p^{\ell}}=1} \sum_{n \in \mathbb{N}} (\zeta - 1)^n \frac{1}{n!} x^n G_{\zeta n \rangle}.
$$

As $|\zeta - 1| < 1$ and ray_G is continuous, there exists $\tau_\ell > 1$ s.t. $R_G^{(\ell)} \in \mathrm{Gl}\left(\mathcal{A}_{\mathcal{B}_{\tau_{\ell}}}(J)\right)$. Idea : $H = R_G^{(\ell)}$ G \overline{H}^{-1} H $^{(\ell)}$ hence $H = \lim R_G^{(\ell)}$ G $^{-1}$ in $\text{Gl}\left(\mathcal{A}_{\mathcal{B}_1}(\mathcal{J})\right)$.

 $E \rightarrow 4E + E \rightarrow 790$

By WV2 , $H = \sum_{s \in \mathbb{Z}} H_s x^s$ with $H_0 = \mathrm{Id}$, $\|H - \mathrm{Id}\,\|_{1,J} < 1$. Then, $H^{(\ell)} \stackrel{\text{def}}{=} \sum_{s \in \mathbb{Z}} H_{p^\ell s} \, x^{p^\ell s} \, \in \text{Gl}\left(\mathcal{A}_{\mathcal{B}_1}(\mathcal{J})\right)$ for $\ell \geq 1$. So that $R_G^{(\ell)}$ $\mathcal{A}_G^{(\ell)} \ \stackrel{\text{\tiny def}}{=} \ \mathcal{H}^{(\ell)} \ \mathcal{H}^{-1} {\in \mathrm{Gl}}\left(\mathcal{A}_{\mathcal{B}_1}(J)\right) \ \ \text{and} \ \ \|\mathcal{R}_G^{(\ell)}-\operatorname{Id}\|_{1,J} < 1 \;.$ However, using Taylor's formula between x and ζx , one gets

$$
R_G^{(\ell)} = p^{-\ell} \sum_{\zeta^{p^{\ell}}=1} \sum_{n \in \mathbb{N}} (\zeta - 1)^n \frac{1}{n!} x^n G_{\langle n \rangle}.
$$

As $|\zeta - 1| < 1$ and ray_G is continuous, there exists $\tau_\ell > 1$ s.t. $R_G^{(\ell)} \in \mathrm{Gl}\left(\mathcal{A}_{\mathcal{B}_{\tau_{\ell}}}(J)\right)$. Idea : $H = R_G^{(\ell)}$ G \overline{H}^{-1} H $^{(\ell)}$ hence $H = \lim R_G^{(\ell)}$ G $^{-1}$ in $\text{Gl}\left(\mathcal{A}_{\mathcal{B}_1}(\mathcal{J})\right)$. Proving convergence in $\mathrm{Gl}\left(\mathcal{A}_{\mathcal{B}_{\tau'}}(J')\right)$ will prove the theorem WV.

KA E KA E KA E KA QOO

By WV2 , $H = \sum_{s \in \mathbb{Z}} H_s x^s$ with $H_0 = \mathrm{Id}$, $\|H - \mathrm{Id}\,\|_{1,J} < 1$. Then, $H^{(\ell)} \stackrel{\text{def}}{=} \sum_{s \in \mathbb{Z}} H_{p^\ell s} \, x^{p^\ell s} \, \in \text{Gl}\left(\mathcal{A}_{\mathcal{B}_1}(\mathcal{J})\right)$ for $\ell \geq 1$. So that $R_G^{(\ell)}$ $\mathcal{A}_G^{(\ell)} \ \stackrel{\text{\tiny def}}{=} \ \mathcal{H}^{(\ell)} \ \mathcal{H}^{-1} {\in \mathrm{Gl}}\left(\mathcal{A}_{\mathcal{B}_1}(J)\right) \ \ \text{and} \ \ \|\mathcal{R}_G^{(\ell)}-\operatorname{Id}\|_{1,J} < 1 \;.$ However, using Taylor's formula between x and ζx , one gets

$$
R_G^{(\ell)} = p^{-\ell} \sum_{\zeta^{p^{\ell}}=1} \sum_{n \in \mathbb{N}} (\zeta - 1)^n \frac{1}{n!} x^n G_{\zeta n \rangle}.
$$

As $|\zeta - 1| < 1$ and ray_G is continuous, there exists $\tau_\ell > 1$ s.t. $R_G^{(\ell)} \in \mathrm{Gl}\left(\mathcal{A}_{\mathcal{B}_{\tau_{\ell}}}(J)\right)$. Idea : $H = R_G^{(\ell)}$ G \overline{H}^{-1} H $^{(\ell)}$ hence $H = \lim R_G^{(\ell)}$ G $^{-1}$ in $\text{Gl}\left(\mathcal{A}_{\mathcal{B}_1}(\mathcal{J})\right)$. Proving convergence in $\mathrm{Gl}\left(\mathcal{A}_{\mathcal{B}_{\tau'}}(J')\right)$ will prove the theorem WV. Unfortunately $\lim\limits_{\ell \to \infty} \tau_\ell = 1$ and we have $...$ yet to work.

 $E + 4E + E = 990$

Let's define $G^{(\ell)}$ by $\rho^\ell x^{p^\ell} G^{(\ell)}(x^{p^\ell}) \stackrel{\text{def}}{=} x \frac{d}{dx} H^{(\ell)} H^{(\ell)^{-1}}$.

4 D.K.

K個→ K目→ K目→ (目) のQで

Let's define $G^{(\ell)}$ by $\rho^\ell x^{p^\ell} G^{(\ell)}(x^{p^\ell}) \stackrel{\text{def}}{=} x \frac{d}{dx} H^{(\ell)} H^{(\ell)^{-1}}$. Then $\,\,G^{(\ell)} \in \mathrm{Mat}\left(\mathcal{A}_{\mathcal{B}_{1}}\!\left(J^{p^{\ell}}\right)\right) \,\,$ and $\qquad \, R^{(\ell+1)}_{G} = R^{(1)}_{G^{(\ell)}}\,$ $\frac{1}{G^{(\ell)}}(x^{p^{\ell}}) R_G^{(\ell)}$)(c)
G

Let's define $G^{(\ell)}$ by $\rho^\ell x^{p^\ell} G^{(\ell)}(x^{p^\ell}) \stackrel{\text{def}}{=} x \frac{d}{dx} H^{(\ell)} H^{(\ell)^{-1}}$. Then $\,\,G^{(\ell)} \in \mathrm{Mat}\left(\mathcal{A}_{\mathcal{B}_{1}}\!\left(J^{p^{\ell}}\right)\right) \,\,$ and $\qquad \, R^{(\ell+1)}_{G} = R^{(1)}_{G^{(\ell)}}\,$ $\frac{1}{G^{(\ell)}}(x^{p^{\ell}}) R_G^{(\ell)}$)(c)
G Lemma RG: If $\tau_\ell \leq \tau$, $R_G^{(\ell)} \in \mathrm{Gl}\left(\mathcal{A}_{\mathcal{B}_{\tau_\ell}}(J)\right) \Rightarrow \mathcal{G}^{(\ell)} \in \mathrm{Mat}\left(\mathcal{A}_{\mathcal{B}_{\tau_\ell}}(J^{p^\ell})\right)$.

 \rightarrow \equiv \rightarrow \rightarrow \rightarrow \sim \sim

Let's define $G^{(\ell)}$ by $\rho^\ell x^{p^\ell} G^{(\ell)}(x^{p^\ell}) \stackrel{\text{def}}{=} x \frac{d}{dx} H^{(\ell)} H^{(\ell)^{-1}}$. Then $\,\,G^{(\ell)} \in \mathrm{Mat}\left(\mathcal{A}_{\mathcal{B}_{1}}\!\left(J^{p^{\ell}}\right)\right) \,\,$ and $\qquad \, R^{(\ell+1)}_{G} = R^{(1)}_{G^{(\ell)}}\,$ $\frac{1}{G^{(\ell)}}(x^{p^{\ell}}) R_G^{(\ell)}$)(c)
G Lemma RG: If $\tau_\ell \leq \tau$, $R_G^{(\ell)} \in \mathrm{Gl}\left(\mathcal{A}_{\mathcal{B}_{\tau_\ell}}(J)\right) \Rightarrow \mathcal{G}^{(\ell)} \in \mathrm{Mat}\left(\mathcal{A}_{\mathcal{B}_{\tau_\ell}}(J^{p^\ell})\right)$. $\mathsf{Proof}: \quad p^\ell x^{p^\ell} \; G^{(\ell)}(x^{p^\ell}) = x \left(\frac{d}{dx} R_G^{(\ell)} + R_G^{(\ell)} \; G \right) \, R_G^{(\ell)}$ G −1 .

 E^* A^* E^* B^* B^* A^* C^*

Let's define $G^{(\ell)}$ by $\rho^\ell x^{p^\ell} G^{(\ell)}(x^{p^\ell}) \stackrel{\text{def}}{=} x \frac{d}{dx} H^{(\ell)} H^{(\ell)^{-1}}$. Then $\,\,G^{(\ell)} \in \mathrm{Mat}\left(\mathcal{A}_{\mathcal{B}_{1}}\!\left(J^{p^{\ell}}\right)\right) \,\,$ and $\qquad \, R^{(\ell+1)}_{G} = R^{(1)}_{G^{(\ell)}}\,$ $\frac{1}{G^{(\ell)}}(x^{p^{\ell}}) R_G^{(\ell)}$)(c)
G Lemma RG: If $\tau_\ell \leq \tau$, $R_G^{(\ell)} \in \mathrm{Gl}\left(\mathcal{A}_{\mathcal{B}_{\tau_\ell}}(J)\right) \Rightarrow \mathcal{G}^{(\ell)} \in \mathrm{Mat}\left(\mathcal{A}_{\mathcal{B}_{\tau_\ell}}(J^{p^\ell})\right)$. $\mathsf{Proof}: \quad p^\ell x^{p^\ell} \; G^{(\ell)}(x^{p^\ell}) = x \left(\frac{d}{dx} R_G^{(\ell)} + R_G^{(\ell)} \; G \right) \, R_G^{(\ell)}$ G −1 . Lemma GR : If $R_G^{(\ell)} \in \mathrm{Gl}\left(\mathcal{A}_{B_{\tau_{\ell}}}(J)\right)$ and $\left\| \times G^{(\ell)} \right\|_{\tau_{\ell},J^{p^{\ell}}} < 1$ then $R^{(\ell+1)}_G \in \mathrm{Gl}\left(\mathcal{A}_{\mathcal{B}_{\tau_\ell}}(J)\right)$ and $\left\| \times G^{(\ell+1)} \right\|_{\tau_\ell, J^{p^{\ell+1}}} < p$.

KERKER E MAG

Let's define $G^{(\ell)}$ by $\rho^\ell x^{p^\ell} G^{(\ell)}(x^{p^\ell}) \stackrel{\text{def}}{=} x \frac{d}{dx} H^{(\ell)} H^{(\ell)^{-1}}$. Then $\,\,G^{(\ell)} \in \mathrm{Mat}\left(\mathcal{A}_{\mathcal{B}_{1}}\!\left(J^{p^{\ell}}\right)\right) \,\,$ and $\qquad \, R^{(\ell+1)}_{G} = R^{(1)}_{G^{(\ell)}}\,$ $\frac{1}{G^{(\ell)}}(x^{p^{\ell}}) R_G^{(\ell)}$)(c)
G Lemma RG: If $\tau_\ell \leq \tau$, $R_G^{(\ell)} \in \mathrm{Gl}\left(\mathcal{A}_{\mathcal{B}_{\tau_\ell}}(J)\right) \Rightarrow \mathcal{G}^{(\ell)} \in \mathrm{Mat}\left(\mathcal{A}_{\mathcal{B}_{\tau_\ell}}(J^{p^\ell})\right)$. $\mathsf{Proof}: \quad p^\ell x^{p^\ell} \; G^{(\ell)}(x^{p^\ell}) = x \left(\frac{d}{dx} R_G^{(\ell)} + R_G^{(\ell)} \; G \right) \, R_G^{(\ell)}$ G −1 . Lemma GR : If $R_G^{(\ell)} \in \mathrm{Gl}\left(\mathcal{A}_{B_{\tau_{\ell}}}(J)\right)$ and $\left\| \times G^{(\ell)} \right\|_{\tau_{\ell},J^{p^{\ell}}} < 1$ then $R^{(\ell+1)}_G \in \mathrm{Gl}\left(\mathcal{A}_{\mathcal{B}_{\tau_\ell}}(J)\right)$ and $\left\| \times G^{(\ell+1)} \right\|_{\tau_\ell, J^{p^{\ell+1}}} < p$. Proof: Noticing that $\Big|$ $\sum_{\zeta^{p}=1}$ $(\zeta-1)^n$ $\left|\frac{(n-1)^n}{n!}\right|$ $<$ 1 for $n \ge 1$, we get : ${\color{black} R_{G^{(\ell)}}^{(1)} = \sum_{n \in \mathbb{N}} \ \sum_{\zeta^p = 1}}$ $(\zeta-1)^n$ $\frac{(-1)^n}{n!}$ xⁿ $G_{\langle n \rangle}^{(\ell)} \in \text{Gl}\left(A_{B_{\tau_{\ell}}}(J^{p^{\ell}})\right)$, $p\, \,$ x $^p\,$ $G^{(\ell+1)}(x^p) = \chi\left(\frac{d}{d\chi} R^{(1)}_{G^{(\ell)}}+R^{(1)}_{G^{(\ell)}}\, \, G^{(\ell)}\right)\, R^{(1)}_{G^{(\ell)}}$ $G^{(\ell)}$ −1 .

桐 ▶ ◀ ≣ ▶ ◀ ≣ ▶ │ ≡ │ ◆ ⊙ Q ⊙

Let's define $G^{(\ell)}$ by $\rho^\ell x^{p^\ell} G^{(\ell)}(x^{p^\ell}) \stackrel{\text{def}}{=} x \frac{d}{dx} H^{(\ell)} H^{(\ell)^{-1}}$. Then $\,\,G^{(\ell)} \in \mathrm{Mat}\left(\mathcal{A}_{\mathcal{B}_{1}}\!\left(J^{p^{\ell}}\right)\right) \,\,$ and $\qquad \, R^{(\ell+1)}_{G} = R^{(1)}_{G^{(\ell)}}\,$ $\frac{1}{G^{(\ell)}}(x^{p^{\ell}}) R_G^{(\ell)}$)(c)
G Lemma RG: If $\tau_\ell \leq \tau$, $R_G^{(\ell)} \in \mathrm{Gl}\left(\mathcal{A}_{\mathcal{B}_{\tau_\ell}}(J)\right) \Rightarrow \mathcal{G}^{(\ell)} \in \mathrm{Mat}\left(\mathcal{A}_{\mathcal{B}_{\tau_\ell}}(J^{p^\ell})\right)$. $\mathsf{Proof}: \quad p^\ell x^{p^\ell} \; G^{(\ell)}(x^{p^\ell}) = x \left(\frac{d}{dx} R_G^{(\ell)} + R_G^{(\ell)} \; G \right) \, R_G^{(\ell)}$ G −1 . Lemma GR : If $R_G^{(\ell)} \in \mathrm{Gl}\left(\mathcal{A}_{B_{\tau_{\ell}}}(J)\right)$ and $\left\| \times G^{(\ell)} \right\|_{\tau_{\ell},J^{p^{\ell}}} < 1$ then $R^{(\ell+1)}_G \in \mathrm{Gl}\left(\mathcal{A}_{\mathcal{B}_{\tau_\ell}}(J)\right)$ and $\left\| \times G^{(\ell+1)} \right\|_{\tau_\ell, J^{p^{\ell+1}}} < p$. Proof: Noticing that $\Big|$ $\sum_{\zeta^{p}=1}$ $(\zeta-1)^n$ $\left|\frac{(n-1)^n}{n!}\right|$ $<$ 1 for $n \ge 1$, we get : ${\color{black} R_{G^{(\ell)}}^{(1)} = \sum_{n \in \mathbb{N}} \ \sum_{\zeta^p = 1}}$ $(\zeta-1)^n$ $\frac{(-1)^n}{n!}$ xⁿ $G_{\langle n \rangle}^{(\ell)} \in \text{Gl}\left(A_{B_{\tau_{\ell}}}(J^{p^{\ell}})\right)$, $p\, \,$ x $^p\,$ $G^{(\ell+1)}(x^p) = \chi\left(\frac{d}{d\chi} R^{(1)}_{G^{(\ell)}}+R^{(1)}_{G^{(\ell)}}\, \, G^{(\ell)}\right)\, R^{(1)}_{G^{(\ell)}}$ $G^{(\ell)}$ −1 .

It remains to kill the "p" that appears at each step ℓ .

 \equiv \rightarrow \equiv \land \land

Proof of WV : killing p in nonresidue terms of $G^{(\ell)}$

Principle : reducing the interval J. Let's write $\;x^{p^\ell}\,G^{(\ell)}(x^{p^\ell})=\sum\,G^{(\ell)}_s\,x^{sp^\ell}$, $J=[p^a,p^b]\,,\;J'=[p^{a'},p^{b'}]\;$ and let's choose $\,\ell_0\,$ big enough to have $\,\sum_{\ell\geq\ell_0}\rho^{-\ell}\leq\,\min\{b-b'\,;\,\,a'-a\}\,$.
Principle : reducing the interval J. Let's write $\;x^{p^\ell}\,G^{(\ell)}(x^{p^\ell})=\sum\,G^{(\ell)}_s\,x^{sp^\ell}$, $J=[p^a,p^b]\,,\;J'=[p^{a'},p^{b'}]\;$ and let's choose $\,\ell_0\,$ big enough to have $\,\sum_{\ell\geq\ell_0}\rho^{-\ell}\leq\,\min\{b-b'\,;\,\,a'-a\}\,$. For $s\neq 0$, $\|G_s^{(\ell)}x^{sp^\ell}\|_{\tau,J}$ is max. at *a* or *b* and decreases at least as $\rho^{p^\ell}.$

Principle : reducing the interval J. Let's write $\;x^{p^\ell}\,G^{(\ell)}(x^{p^\ell})=\sum\,G^{(\ell)}_s\,x^{sp^\ell}$, $J=[p^a,p^b]\,,\;J'=[p^{a'},p^{b'}]\;$ and let's choose $\,\ell_0\,$ big enough to have $\,\sum_{\ell\geq\ell_0}\rho^{-\ell}\leq\,\min\{b-b'\,;\,\,a'-a\}\,$. For $s\neq 0$, $\|G_s^{(\ell)}x^{sp^\ell}\|_{\tau,J}$ is max. at *a* or *b* and decreases at least as $\rho^{p^\ell}.$ For $\ell > \ell_0$ one obtains the following (logarithmic) picture :

a
$$
a'
$$
 $J_{\ell_0} = J$ b' b $\log_p \rho$

 200

Principle : reducing the interval J. Let's write $\;x^{p^\ell}\,G^{(\ell)}(x^{p^\ell})=\sum\,G^{(\ell)}_s\,x^{sp^\ell}$, $J=[p^a,p^b]\,,\;J'=[p^{a'},p^{b'}]\;$ and let's choose $\,\ell_0\,$ big enough to have $\,\sum_{\ell\geq\ell_0}\rho^{-\ell}\leq\,\min\{b-b'\,;\,\,a'-a\}\,$. For $s\neq 0$, $\|G_s^{(\ell)}x^{sp^\ell}\|_{\tau,J}$ is max. at *a* or *b* and decreases at least as $\rho^{p^\ell}.$ For $\ell > \ell_0$ one obtains the following (logarithmic) picture :

Principle : reducing the interval J. Let's write $\;x^{p^\ell}\,G^{(\ell)}(x^{p^\ell})=\sum\,G^{(\ell)}_s\,x^{sp^\ell}$, $J=[p^a,p^b]\,,\;J'=[p^{a'},p^{b'}]\;$ and let's choose $\,\ell_0\,$ big enough to have $\,\sum_{\ell\geq\ell_0}\rho^{-\ell}\leq\,\min\{b-b'\,;\,\,a'-a\}\,$. For $s\neq 0$, $\|G_s^{(\ell)}x^{sp^\ell}\|_{\tau,J}$ is max. at *a* or *b* and decreases at least as $\rho^{p^\ell}.$ For $\ell > \ell_0$ one obtains the following (logarithmic) picture :

Principle : reducing the interval J. Let's write $\;x^{p^\ell}\,G^{(\ell)}(x^{p^\ell})=\sum\,G^{(\ell)}_s\,x^{sp^\ell}$, $J=[p^a,p^b]\,,\;J'=[p^{a'},p^{b'}]\;$ and let's choose $\,\ell_0\,$ big enough to have $\,\sum_{\ell\geq\ell_0}\rho^{-\ell}\leq\,\min\{b-b'\,;\,\,a'-a\}\,$. For $s\neq 0$, $\|G_s^{(\ell)}x^{sp^\ell}\|_{\tau,J}$ is max. at *a* or *b* and decreases at least as $\rho^{p^\ell}.$ For $\ell > \ell_0$ one obtains the following (logarithmic) picture :

Principle : reducing the interval J. Let's write $\;x^{p^\ell}\,G^{(\ell)}(x^{p^\ell})=\sum\,G^{(\ell)}_s\,x^{sp^\ell}$, $J=[p^a,p^b]\,,\;J'=[p^{a'},p^{b'}]\;$ and let's choose $\,\ell_0\,$ big enough to have $\,\sum_{\ell\geq\ell_0}\rho^{-\ell}\leq\,\min\{b-b'\,;\,\,a'-a\}\,$. For $s\neq 0$, $\|G_s^{(\ell)}x^{sp^\ell}\|_{\tau,J}$ is max. at *a* or *b* and decreases at least as $\rho^{p^\ell}.$ For $\ell > \ell_0$ one obtains the following (logarithmic) picture :

Principle : decreasing τ ,

4 0 8

 2990

造

Principle : decreasing τ , Tools : use smallness of $\|G_0^{(\ell)}\|$ $\binom{1}{0}$ ||1

 \leftarrow \Box

 QQ

画

Principle : decreasing τ ,

Tools : use smallness of $\|G_0^{(\ell)}\|$ $\mathcal{C}^{(\ell)}_0 \|_1$ and log-convexity of $t \mapsto \| \mathcal{G}^{(\ell)}_0 \|_1$ $\begin{vmatrix} 1 & t \\ 0 & 0 \end{vmatrix}$ t .

Principle : decreasing τ ,

Tools : use smallness of $\|G_0^{(\ell)}\|$ $\mathcal{C}^{(\ell)}_0 \|_1$ and log-convexity of $t \mapsto \| \mathcal{G}^{(\ell)}_0 \|_1$ $\begin{vmatrix} 1 & t \\ 0 & 0 \end{vmatrix}$ t .

Graph of $t \mapsto \| G_0^{(\ell)} \|$ $\| \boldsymbol{v}^{(\ell)} \|_t$ in logarithmic coordinates

 QQ

Principle : decreasing τ ,

Tools : use smallness of $\|G_0^{(\ell)}\|$ $\mathcal{C}^{(\ell)}_0 \|_1$ and log-convexity of $t \mapsto \| \mathcal{G}^{(\ell)}_0 \|_1$ $\begin{vmatrix} 1 & t \\ 0 & 0 \end{vmatrix}$ t .

Principle : decreasing τ ,

Tools : use smallness of $\|G_0^{(\ell)}\|$ $\mathcal{C}^{(\ell)}_0 \|_1$ and log-convexity of $t \mapsto \| \mathcal{G}^{(\ell)}_0 \|_1$ $\begin{vmatrix} 1 & t \\ 0 & 0 \end{vmatrix}$ t .

Thank you for your attention

 \leftarrow

 299

Þ