Around *p*-adic cohomologies A relative theory of *p*-adic differential equations

Gilles Christol & Zoghman Mebkhout

Padova, september 20, 2022

Christol-Mebkhout

Relative p-adic D.E.

Padova, september 20, 2022 1 / 17

Thank you Bruno :

without your long birthday ...

this work would have progressed even slower ...

Christol-Mebkhout

Relative p-adic D.E.

Padova, september 20, 2022 2 / 17

æ

• a *p*-adic theory of partial differential equations,

- a *p*-adic theory of partial differential equations,
- a relative version of the de Rham cohomology for smooth schemes over a field of characteristic *p* (Arabia-Mebkhout).

- a *p*-adic theory of partial differential equations,
- a relative version of the de Rham cohomology for smooth schemes over a field of characteristic *p* (Arabia-Mebkhout).

relative = with coefficients depending on parameter(s)

- a *p*-adic theory of partial differential equations,
- a relative version of the de Rham cohomology for smooth schemes over a field of characteristic *p* (Arabia-Mebkhout).

relative = with coefficients depending on parameter(s)

Let K be a p-adic field (i.e. a complete extension of \mathbb{Q}_p) and let normalize the valuation on K by $|p| = \frac{1}{p}$.

We will say algebra for K-algebra.

A †-adic algebra B^{\dagger} is an algebra for which there is a family $\left\{ (B_{\tau}, \|.\|_{\tau}), \tau \geq 1 \right\}$ of Banach algebras such that :

A †-adic algebra B^{\dagger} is an algebra for which there is a family $\left\{ (B_{\tau}, \|.\|_{\tau}), \tau \geq 1 \right\}$ of Banach algebras such that :

() $B_{ au} \supset B_{ au'}$ for au < au' , $B^{\dagger} = igcup_{ au > 1} B_{ au}$,

A †-adic algebra B^{\dagger} is an algebra for which there is a family $\left\{ (B_{\tau}, \|.\|_{\tau}), \tau \geq 1 \right\}$ of Banach algebras such that :

- $\ \, {\bf I} \ \, {\cal B}_{\tau} \supset {\cal B}_{\tau'} \ \, {\rm for} \ \, \tau < \tau' \ \, , \ \ \, {\cal B}^\dagger = \bigcup_{\tau > 1} {\cal B}_\tau \ \, ,$

A †-adic algebra B^{\dagger} is an algebra for which there is a family $\left\{ (B_{\tau}, \|.\|_{\tau}), \tau \geq 1 \right\}$ of Banach algebras such that :

$$\ \, {\pmb S}_\tau \supset {\pmb B}_{\tau'} \ \, {\rm for} \ \, \tau < \tau' \ \, , \ \ \, {\pmb B}^\dagger = \bigcup_{\tau > 1} {\pmb B}_\tau \ \, ,$$

- the "Gauss norm" $\|.\|_1$ is multiplicative.

A †-adic algebra B^{\dagger} is an algebra for which there is a family $\left\{ (B_{\tau}, \|.\|_{\tau}), \tau \geq 1 \right\}$ of Banach algebras such that :

$${f 0}~~B_{ au} \supset B_{ au'}$$
 for $au < au'$, $B^{\dagger} = igcup_{ au > 1} B_{ au}$,

- **(a)** the "Gauss norm" $\|.\|_1$ is multiplicative.

 B^{\dagger} is endowed with an \mathcal{LF} -topology as inductive limit of the B_{τ} , it is also endowed with the the Gauss norm tolology. †-adic morphisms = algebra morphisms continuous for both topologies.

A †-adic algebra B^{\dagger} is an algebra for which there is a family $\left\{ \begin{pmatrix} B_{\tau}, \|.\|_{\tau} \end{pmatrix}, \tau \geq 1 \right\}$ of Banach algebras such that :

$${f 0}~~B_{ au} \supset B_{ au'}$$
 for $au < au'$, $B^{\dagger} = igcup_{ au > 1} B_{ au}$,

- **(a)** the "Gauss norm" $\|.\|_1$ is multiplicative.

 B^{\dagger} is endowed with an \mathcal{LF} -topology as inductive limit of the B_{τ} , it is also endowed with the the Gauss norm tolology. †-adic morphisms = algebra morphisms continuous for both topologies.

Our aim is to study D.E. with "constants" lying in a †-adic algebra.

A †-adic algebra B^{\dagger} is an algebra for which there is a family $\left\{ (B_{\tau}, \|.\|_{\tau}), \tau \geq 1 \right\}$ of Banach algebras such that :

$${f 0}~~B_{ au} \supset B_{ au'}$$
 for $au < au'$, $B^{\dagger} = igcup_{ au > 1} B_{ au}$,

(a) the "Gauss norm" $\|.\|_1$ is multiplicative.

 B^{\dagger} is endowed with an \mathcal{LF} -topology as inductive limit of the B_{τ} , it is also endowed with the the Gauss norm tolology. †-adic morphisms = algebra morphisms continuous for both topologies.

Our aim is to study D.E. with "constants" lying in a *†*-adic algebra.

The condition 3 (multiplicativity of $\|.\|_1$) ensures that the completion of the field of quotients of B_1 is a *p*-adic field that will be denoted by *E*. Hence it makes available the powerfull theory of D.E. over *E*.

Christol-Mebkhout

Notations : $\mathbf{y} = (y_1, ..., y_m)$, $\mathbf{n} = (n_1, ..., n_m)$, $|n| = n_1 + \dots + n_m$,

3

Basic examples

Notations : $\mathbf{y} = (y_1,...,y_m)$, $\mathbf{n} = (n_1,...,n_m)$, $|n| = n_1 + \cdots + n_m$,

• $\mathcal{K} < \mathbf{y} >_{\tau} \stackrel{\text{def}}{=} \left\{ \sum_{\mathbf{n} \in \mathbb{N}^m} a_{\mathbf{n}} \, \mathbf{y}^{\mathbf{n}} \in \mathcal{K}[[\mathbf{y}]]; \lim_{|\mathbf{n}| \to \infty} |a_{\mathbf{n}}| \, \tau^{|\mathbf{n}|} = 0 \right\}$ endowed with $||a||_{\tau} = \max_{\mathbf{n} \in \mathbb{N}^m} |a_{\mathbf{n}}| \, \tau^{|\mathbf{n}|}$ [for each τ it is a Tate algebra],

Basic examples

Notations : $\mathbf{y} = (y_1, ..., y_m)$, $\mathbf{n} = (n_1, ..., n_m)$, $|n| = n_1 + \dots + n_m$,

- $\mathcal{K} < \mathbf{y} >_{\tau} \stackrel{\text{def}}{=} \left\{ \sum_{\mathbf{n} \in \mathbb{N}^m} a_{\mathbf{n}} \, \mathbf{y}^{\mathbf{n}} \in \mathcal{K}[[\mathbf{y}]]; \lim_{|\mathbf{n}| \to \infty} |a_{\mathbf{n}}| \, \tau^{|\mathbf{n}|} = 0 \right\}$ endowed with $||a||_{\tau} = \max_{\mathbf{n} \in \mathbb{N}^m} |a_{\mathbf{n}}| \, \tau^{|\mathbf{n}|}$ [for each τ it is a Tate algebra],
- K<y>[†] = {Power series overconvergent in the unit polydisk} [it is sometime called the Dwork-Monsky-Washnitzer algebra],

Notations : $\mathbf{y} = (y_1,...,y_m)$, $\mathbf{n} = (n_1,...,n_m)$, $|n| = n_1 + \cdots + n_m$,

- $\mathcal{K} < \mathbf{y} >_{\tau} \stackrel{\text{def}}{=} \left\{ \sum_{\mathbf{n} \in \mathbb{N}^m} a_{\mathbf{n}} \mathbf{y}^{\mathbf{n}} \in \mathcal{K}[[\mathbf{y}]]; \lim_{|\mathbf{n}| \to \infty} |a_{\mathbf{n}}| \tau^{|\mathbf{n}|} = 0 \right\}$ endowed with $||a||_{\tau} = \max_{\mathbf{n} \in \mathbb{N}^m} |a_{\mathbf{n}}| \tau^{|\mathbf{n}|}$ [for each τ it is a Tate algebra],
- K<y>[†] = {Power series overconvergent in the unit polydisk} [it is sometime called the Dwork-Monsky-Washnitzer algebra],
- E = {completion of K(y) for ||.||₁}
 [field of analytic elements in the generic (unit) polydisk].

General examples (after Z. Mebkhout & L. Narvaez)

Principle : quotient the basic example by an ideal \mathfrak{a} of $K < \mathbf{y} >^{\dagger}$. Key point : any such ideal is actually closed !

• $B_{\tau} \stackrel{\text{def}}{=} K \langle \mathbf{y} \rangle_{\tau} / \mathfrak{a} \cap K \langle \mathbf{y} \rangle_{\tau}$ $(\tau > 1)$ endowed with the quotient norm $\|\widetilde{b}\|_{\tau} \stackrel{\text{def}}{=} \inf_{a \in \mathfrak{a}} \|b + a\|_{\tau}$, $(\exists \mathfrak{a}^{e} \text{ ideal of } K \langle \mathbf{y} \rangle_{1} \text{ s.t. } B_{1} \stackrel{\text{def}}{=} K \langle \mathbf{y} \rangle_{1} / \mathfrak{a}^{e} K \langle \mathbf{y} \rangle_{1}$ with $\|.\|_{1}$ -q.n.).

• $B_{\tau} \stackrel{\text{def}}{=} K \langle \mathbf{y} \rangle_{\tau} / \mathfrak{a} \cap K \langle \mathbf{y} \rangle_{\tau}$ $(\tau > 1)$ endowed with the quotient norm $\|\widetilde{b}\|_{\tau} \stackrel{\text{def}}{=} \inf_{a \in \mathfrak{a}} \|b + a\|_{\tau}$, $(\exists \mathfrak{a}^e \text{ ideal of } K \langle \mathbf{y} \rangle_1 \text{ s.t. } B_1 \stackrel{\text{def}}{=} K \langle \mathbf{y} \rangle_1 / \mathfrak{a}^e K \langle \mathbf{y} \rangle_1 \text{ with } \|.\|_1 - q.n.).$ • $B^{\dagger} = K \langle \mathbf{y} \rangle^{\dagger} / \mathfrak{a} \cap K \langle \mathbf{y} \rangle^{\dagger} \text{ satifies conditions 1 and 2 }.$

B_τ ^{def} = K < y>_τ / a ∩ K < y>_τ (τ > 1) endowed with the quotient norm || b̃||_τ ^{def} = inf_{a∈a} || b + a ||_τ, (∃a^e ideal of K < y>₁ s.t. B₁ ^{def} = K < y>₁ / a^e K < y>₁ with ||.||₁-q.n.).
B[†] = K < y>[†] / a ∩ K < y>[†] satifies conditions 1 and 2.

It will be a \dagger -adic algebra provided $\|.\|_1$ is multiplicative, namely iff $\widetilde{B}_1 \stackrel{\text{def}}{=} \mathcal{O}_1/\mathfrak{m}\mathcal{O}_1$ is integral $(\mathcal{O}_1 \stackrel{\text{def}}{=} \{x \in B_1; \|x\|_1 \leq 1\}, \mathfrak{m} \stackrel{\text{def}}{=} \{m \in K; |m| < 1\}).$

• $B_{\tau} \stackrel{\text{def}}{=} K \langle \mathbf{y} \rangle_{\tau} / \mathfrak{a} \cap K \langle \mathbf{y} \rangle_{\tau}$ $(\tau > 1)$ endowed with the quotient norm $\|\widetilde{b}\|_{\tau} \stackrel{\text{def}}{=} \inf_{a \in \mathfrak{a}} \|b + a\|_{\tau}$, $(\exists \mathfrak{a}^{e} \text{ ideal of } K \langle \mathbf{y} \rangle_{1} \text{ s.t. } B_{1} \stackrel{\text{def}}{=} K \langle \mathbf{y} \rangle_{1} / \mathfrak{a}^{e} K \langle \mathbf{y} \rangle_{1} \text{ with } \|.\|_{1} \text{-q.n.}).$ • $B^{\dagger} = K \langle \mathbf{y} \rangle^{\dagger} / \mathfrak{a} \cap K \langle \mathbf{y} \rangle^{\dagger} \text{ satifies conditions } 1 \text{ and } 2.$

It will be a \dagger -adic algebra provided $\|.\|_1$ is multiplicative, namely iff $\widetilde{B}_1 \stackrel{\text{def}}{=} \mathcal{O}_1/\mathfrak{m}\mathcal{O}_1$ is integral $(\mathcal{O}_1 \stackrel{\text{def}}{=} \{x \in B_1; \|x\|_1 \leq 1\}, \mathfrak{m} \stackrel{\text{def}}{=} \{m \in K; |m| < 1\}).$

Moreover both topologies on $B^\dagger\,$ are separated and do not depend on the "presentation" $\,\mathfrak{a}\to K\!<\!y\!>^\dagger$.

 $\begin{array}{l} B_1 = \left\{ \begin{array}{l} \text{analytic elements in } \mathbb{C} \left(\text{finite union of residue classes} \right) \right\} \text{,} \\ B_\tau = \left\{ \begin{array}{l} \text{analytic elements in } \mathbb{C} \left(\text{finite union of disks with radius } \frac{1}{\tau} \right) \right\} \text{.} \end{array} \right. \end{array}$

 $\begin{array}{l} B_1 = \left\{ \begin{array}{l} \text{analytic elements in } \mathbb{C}\left(\text{finite union of residue classes}\right) \right\} \text{,} \\ B_\tau = \left\{ \begin{array}{l} \text{analytic elements in } \mathbb{C}\left(\text{finite union of disks with radius } \frac{1}{\tau} \right) \right\} \text{.} \end{array} \right. \end{array}$

They are special cases of "general examples" realized, for instance, with $m = 2, \ b \in K < y_1 >, \ \mathfrak{a} = (1 - b y_2) K < y_1, y_2 >$

For $I = (a, b) \subset [0, \infty]$ and $(B, \|.\|)$ a Banach algebra we set : $\mathcal{A}_B(I) \stackrel{\text{def}}{=} \left\{ \sum_{s \in \mathbb{Z}} a_s x^s ; a_s \in B \text{ et } (\forall \rho \in I) \lim_{s \to \pm \infty} \|a_s\| \rho^s = 0 \right\}.$

For
$$I = (a, b) \subset [0, \infty]$$
 and $(B, \|.\|)$ a Banach algebra we set :

$$\mathcal{A}_B(I) \stackrel{\text{def}}{=} \left\{ \sum_{s \in \mathbb{Z}} a_s x^s ; a_s \in B \text{ et } (\forall \rho \in I) \lim_{s \to \pm \infty} \|a_s\| \rho^s = 0 \right\}.$$
It is a Frechet algebra for the two (equivalent) norm families :

It is a Frechet algebra for the two (equivalent) norm families :

• for
$$\rho \in I$$
 : $\|.\|_{\rho} \stackrel{\text{def}}{=} \max_{s \in \mathbb{Z}} \left(\|a_s\| \rho^s \right) ,$

• for
$$J$$
 closed $\subset I$: $\|.\|_J = \max_{\rho \in J} \|.\|_{\rho}$.

3

For
$$I = (a, b) \subset [0, \infty]$$
 and $(B, \|.\|)$ a Banach algebra we set :

$$\mathcal{A}_B(I) \stackrel{\text{def}}{=} \left\{ \sum_{s \in \mathbb{Z}} a_s x^s ; a_s \in B \text{ et } (\forall \rho \in I) \lim_{s \to \pm \infty} \|a_s\| \rho^s = 0 \right\}.$$

It is a Frechet algebra for the two (equivalent) norm families :

• for
$$\rho \in I$$
 : $\|.\|_{\rho} \stackrel{\text{def}}{=} \max_{s \in \mathbb{Z}} \left(\|a_s\| \rho^s \right) ,$

• for
$$J$$
 closed $\subset I$: $\|.\|_J = \max_{\rho \in J} \|.\|_{\rho}$.

As usually these norms can be extended to the matrices :

for $G \in \operatorname{Mat}(\mathcal{A}_B(I)) \stackrel{\text{def}}{=} \left\{ d \times d \text{-matrices with coeff.} \in \mathcal{A}_B(I) \right\}$ we set

$$\|G\|_{\rho} \stackrel{\text{def}}{=} \max_{1 \leq i,j \leq d} \|G_{ij}\|_{\rho} \quad , \qquad \|G\|_{J} \stackrel{\text{def}}{=} \max_{1 \leq i,j \leq d} \|G_{ij}\|_{J} \; .$$

For
$$I = (a, b) \subset [0, \infty]$$
 and $(B, \|.\|)$ a Banach algebra we set :

$$\mathcal{A}_B(I) \stackrel{\text{def}}{=} \left\{ \sum_{s \in \mathbb{Z}} a_s x^s ; a_s \in B \text{ et } (\forall \rho \in I) \lim_{s \to \pm \infty} \|a_s\| \rho^s = 0 \right\}.$$

It is a Frechet algebra for the two (equivalent) norm families :

• for
$$\rho \in I$$
 : $\|.\|_{\rho} \stackrel{\text{def}}{=} \max_{s \in \mathbb{Z}} \left(\|\boldsymbol{a}_s\| \rho^s \right) ,$

• for
$$J$$
 closed $\subset I$: $\|.\|_J = \max_{\rho \in J} \|.\|_{\rho}$.

As usually these norms can be extended to the matrices :

for $G \in \operatorname{Mat} \left(\mathcal{A}_B(I) \right) \stackrel{\text{def}}{=} \left\{ d \times d \text{-matrices with coeff.} \in \mathcal{A}_B(I) \right\}$ we set

$$\|G\|_{\rho} \stackrel{\text{def}}{=} \max_{1 \leq i,j \leq d} \|G_{ij}\|_{\rho} \quad , \qquad \|G\|_{J} \stackrel{\text{def}}{=} \max_{1 \leq i,j \leq d} \|G_{ij}\|_{J} \; .$$

We will also denote by $\operatorname{Gl}(\mathcal{A}_B(I))$ the group of invertible matrices.

For B^{\dagger} a \dagger -adic algebra we set :

$$\begin{aligned} \mathcal{A}_{B^{>1}}(I) \ \stackrel{\text{def}}{=} \ \Big\{ \sum_{s \in \mathbb{Z}} a_s \, x^s \ ; \quad (\exists \tau > 1) \quad a_s \in B_\tau \\ & \text{and} \ (\forall \rho \in I) \ (\exists \tau_\rho > 1) \quad \lim_{s \to \pm \infty} \|a_s\|_{\tau_\rho} \, \rho^s = 0 \Big\} \end{aligned}$$

3

For B^{\dagger} a \dagger -adic algebra we set :

$$\begin{aligned} \mathcal{A}_{B>1}(I) &\stackrel{\text{def}}{=} \left\{ \sum_{s \in \mathbb{Z}} a_s \, x^s \; ; \quad (\exists \tau > 1) \quad a_s \in B_\tau \\ & \text{and} \; (\forall \rho \in I) \; (\exists \tau_\rho > 1) \quad \lim_{s \to \pm \infty} \|a_s\|_{\tau_\rho} \, \rho^s = 0 \right\} \\ &= \bigcap_{J \; \text{closed} \; \subset I} \quad \bigcup_{\tau > 1} \mathcal{A}_{B_\tau}(J) \; . \end{aligned}$$

3

For B^{\dagger} a \dagger -adic algebra we set :

$$\begin{aligned} \mathcal{A}_{B>1}(I) &\stackrel{\text{def}}{=} \left\{ \sum_{s \in \mathbb{Z}} a_s \, x^s \; ; \quad (\exists \tau > 1) \quad a_s \in B_\tau \\ & \text{and} \; (\forall \rho \in I) \; (\exists \tau_\rho > 1) \quad \lim_{s \to \pm \infty} \|a_s\|_{\tau_\rho} \, \rho^s = 0 \right\} \\ &= \bigcap_{J \; \text{closed} \; \subset I} \quad \bigcup_{\tau > 1} \mathcal{A}_{B_\tau}(J) \; . \end{aligned}$$

It is a B^{\dagger} -algebra

For B^{\dagger} a \dagger -adic algebra we set :

$$\begin{aligned} \mathcal{A}_{B^{>1}}(I) &\stackrel{\text{def}}{=} \left\{ \sum_{s \in \mathbb{Z}} a_s \, x^s \; ; \quad (\exists \tau > 1) \quad a_s \in B_\tau \\ & \text{and} \; (\forall \rho \in I) \; (\exists \tau_\rho > 1) \quad \lim_{s \to \pm \infty} \|a_s\|_{\tau_\rho} \, \rho^s = 0 \right\} \\ &= \bigcap_{J \text{ closed } \subset I} \quad \bigcup_{\tau > 1} \mathcal{A}_{B_\tau}(J) \; . \end{aligned}$$

It is a B^{\dagger} -algebra endowed with a complete, but useless, topology.

For B^{\dagger} a \dagger -adic algebra we set :

$$\mathcal{A}_{B>1}(I) \stackrel{\text{def}}{=} \left\{ \sum_{s \in \mathbb{Z}} a_s \, x^s \; ; \quad (\exists \tau > 1) \quad a_s \in B_\tau \\ \text{and} \; (\forall \rho \in I) \; (\exists \tau_\rho > 1) \quad \lim_{s \to \pm \infty} \|a_s\|_{\tau_\rho} \, \rho^s = 0 \right\} \\ = \bigcap_{J \text{ closed } \subset I} \quad \bigcup_{\tau > 1} \mathcal{A}_{B_\tau}(J) \; .$$

It is a B^{\dagger} -algebra endowed with a complete, but useless, topology.

Examples : let $B^{\dagger} = K < y >^{\dagger}$, I = [0, 1) and $|\pi| = p^{-1/(p-1)}$.

* The function $\exp(\pi y x) = \sum_{n \in \mathbb{N}} \frac{\pi^n}{n!} y^n x^n \in \mathcal{A}_{B^{>1}}(I)$,

For B^{\dagger} a \dagger -adic algebra we set :

$$\mathcal{A}_{B>1}(I) \stackrel{\text{def}}{=} \left\{ \sum_{s \in \mathbb{Z}} a_s \, x^s \; ; \quad (\exists \tau > 1) \quad a_s \in B_\tau \\ \text{and} \; (\forall \rho \in I) \; (\exists \tau_\rho > 1) \quad \lim_{s \to \pm \infty} \|a_s\|_{\tau_\rho} \, \rho^s = 0 \right\} \\ = \bigcap_{J \text{ closed } \subset I} \quad \bigcup_{\tau > 1} \mathcal{A}_{B_\tau}(J) \; .$$

It is a B^{\dagger} -algebra endowed with a complete, but useless, topology.

Examples : let $B^{\dagger}={\it K}{<}y{>}^{\dagger}$, I=[0,1) and $|\pi|=p^{-1/(p-1)}$.

- * The function $\exp(\pi y x) = \sum_{n \in \mathbb{N}} \frac{\pi^n}{n!} y^n x^n \in \mathcal{A}_{B^{>1}}(I)$,
- * The function $\sum_{n \in \mathbb{N}} y^{n^2} x^n \in \mathcal{A}_{B_1}(I)$ but $\notin \mathcal{A}_{B^{>1}}(I)$.
Main results in the null monodromy case

Let B^{\dagger} be a \dagger -adic algebra and E the completion of the quotient field of B_1 .

Main results in the null monodromy case

Let B^{\dagger} be a \dagger -adic algebra and E the completion of the quotient field of B_1 .

Theorem EB (from *E* to *B*₁) Let $H \in \operatorname{Gl}(\mathcal{A}_{E}(I))$ be s.t. $G \stackrel{def}{=} \frac{d}{dx}HH^{-1} \in \operatorname{Mat}(\mathcal{A}_{B_{1}}(I))$, then there exists $C \in \operatorname{Gl}(E)$ s.t. $H C \in \operatorname{Gl}(\mathcal{A}_{B_{1}}(I))$.

Main results in the null monodromy case

Let B^{\dagger} be a \dagger -adic algebra and E the completion of the quotient field of B_1 .

Theorem EB (from *E* to *B*₁) Let $H \in \operatorname{Gl}(\mathcal{A}_{E}(I))$ be s.t. $G \stackrel{def}{=} \frac{d}{dx}HH^{-1} \in \operatorname{Mat}(\mathcal{A}_{B_{1}}(I))$, then there exists $C \in \operatorname{Gl}(E)$ s.t. $H C \in \operatorname{Gl}(\mathcal{A}_{B_{1}}(I))$.

Theorem BB (from B_1 to B^{\dagger}) Let $H \in \operatorname{Gl}(\mathcal{A}_{B_1}(I))$ be s.t. $G \stackrel{\text{def}}{=} \frac{d}{dx}HH^{-1} \in \operatorname{Mat}(\mathcal{A}_{B^{>1}}(I))$, then there exists $C \in \operatorname{Gl}(B_1)$ s.t. $H C \in \operatorname{Gl}(\mathcal{A}_{B^{>1}}(I))$. Let B^{\dagger} be a \dagger -adic algebra and E the completion of the quotient field of B_1 .

Theorem EB (from E to B_1) Let $H \in \operatorname{Gl}(\mathcal{A}_{E}(I))$ be s.t. $G \stackrel{def}{=} \frac{d}{dx}HH^{-1} \in \operatorname{Mat}(\mathcal{A}_{B_1}(I))$, then there exists $C \in \operatorname{Gl}(E)$ s.t. $H C \in \operatorname{Gl}(\mathcal{A}_{B_1}(I))$.

Theorem BB (from B_1 to B^{\dagger}) Let $H \in \operatorname{Gl}(\mathcal{A}_{B_1}(I))$ be s.t. $G \stackrel{\text{def}}{=} \frac{d}{dx}HH^{-1} \in \operatorname{Mat}(\mathcal{A}_{B^{>1}}(I))$, then there exists $C \in \operatorname{Gl}(B_1)$ s.t. $H C \in \operatorname{Gl}(\mathcal{A}_{B^{>1}}(I))$.

Putting the two theorems together gives

Theorem EB[†] (from *E* to *B*[†]) Let $H \in \operatorname{Gl}(\mathcal{A}_{E}(I))$ be s.t. $G \stackrel{\text{def}}{=} \frac{d}{dx}HH^{-1} \in \operatorname{Mat}(\mathcal{A}_{B>1}(I))$, then there exist $C \in \operatorname{Gl}(E)$, s.t. $HC \in \operatorname{Gl}(\mathcal{A}_{B>1}(I))$. Theorem (structure of Robba modules over *p*-adic fields) Let $G \in Mat(\mathcal{A}_{E}(I))$ satisfying Robba condition $[(\forall \rho \in I) \operatorname{ray}_{G}(\rho) = \rho]$ with exponent $\alpha = (\alpha_{1}, ..., \alpha_{d}) \in \mathbb{Z}_{p}^{d}/\mathfrak{E}$ satisfying DNL, $[\widetilde{\alpha} = {\alpha_{i}} \in {\mathbb{Z}_{p}/\mathbb{Z}}^{d}$ and the Differences $\alpha_{i} - \alpha_{j}$ are Non Liouville numbers] Then there is a "change-of-basis matrix" $H \in Gl(\mathcal{A}_{E}(I))$ (from G to $\frac{1}{x}M$) s.t. $\frac{d}{dx}H = GH - H\frac{1}{x}M$, where $M \in Mat(\mathbb{Z}_{p})$ is the "monodromy matrix" : M = D + N with $D = diag{\alpha_{1}, ..., \alpha_{d}}$, N is nilpotent and DN = ND. Theorem (structure of Robba modules over *p*-adic fields) Let $G \in Mat(\mathcal{A}_{E}(I))$ satisfying Robba condition $[(\forall \rho \in I) \operatorname{ray}_{G}(\rho) = \rho]$ with exponent $\alpha = (\alpha_{1}, ..., \alpha_{d}) \in \mathbb{Z}_{p}^{d}/\mathfrak{E}$ satisfying DNL, $[\widetilde{\alpha} = {\alpha_{i}} \in {\mathbb{Z}_{p}/\mathbb{Z}}^{d}$ and the Differences $\alpha_{i} - \alpha_{j}$ are Non Liouville numbers] Then there is a "change-of-basis matrix" $H \in Gl(\mathcal{A}_{E}(I))$ (from G to $\frac{1}{x}M$) s.t. $\frac{d}{dx}H = GH - H\frac{1}{x}M$, where $M \in Mat(\mathbb{Z}_{p})$ is the "monodromy matrix" : M = D + N with $D = diag{\alpha_{1}, ..., \alpha_{d}}$, N is nilpotent and DN = ND.

Theorem (structure of Robba modules over \dagger -adic algebras) Let $G \in Mat(A_{B>1}(I))$ satisfying Robba condition with DNL exponent. Then the change-of-basis matrix H can be taken in $Gl(A_{B>1}(I))$.

The theorem BB can be deduced from a seemingly weaker one.

The theorem BB can be deduced from a seemingly weaker one. Let $\overset{o}{J}$ denote the interior of J and let $J' \subsetneq J$ mean $J' \subset \overset{o}{J}$. Theorem WV : Let $J' \subsetneq J$ two closed subintervals of I. If $H = \sum_{s \in \mathbb{Z}} H_s x^s \in \operatorname{Gl}(\mathcal{A}_{B_1}(J))$ satisfies both conditions WV 1. $G \stackrel{\text{def}}{=} \frac{d}{dx} H H^{-1} \in \operatorname{Mat}(\mathcal{A}_{B_{\tau}}(J))$ for some $\tau > 1$,

The theorem BB can be deduced from a seemingly weaker one. Let $\overset{o}{J}$ denote the interior of J and let $J' \subsetneq J$ mean $J' \subset \overset{o}{J}$. Theorem WV : Let $J' \subsetneq J$ two closed subintervals of I. If $H = \sum_{s \in \mathbb{Z}} H_s x^s \in \operatorname{Gl}(\mathcal{A}_{B_1}(J))$ satisfies both conditions WV 1. $G \stackrel{\text{def}}{=} \frac{d}{dx} H H^{-1} \in \operatorname{Mat}(\mathcal{A}_{B_{\tau}}(J))$ for some $\tau > 1$, WV 2. $H_0 = \operatorname{Id}$ and $\|H - \operatorname{Id}\|_{1,J} < 1$,

The theorem BB can be deduced from a seemingly weaker one. Let $\overset{o}{J}$ denote the interior of J and let $J' \subsetneq J$ mean $J' \subset \overset{o}{J}$. Theorem WV : Let $J' \subsetneq J$ two closed subintervals of I. If $H = \sum_{s \in \mathbb{Z}} H_s x^s \in \operatorname{Gl}(\mathcal{A}_{B_1}(J))$ satisfies both conditions WV 1. $G \stackrel{\text{def}}{=} \frac{d}{dx} H H^{-1} \in \operatorname{Mat}(\mathcal{A}_{B_{\tau}}(J))$ for some $\tau > 1$, WV 2. $H_0 = \operatorname{Id}$ and $\|H - \operatorname{Id}\|_{1,J} < 1$, then there is τ' , $1 < \tau' \leq \tau$, s.t. $H \in \operatorname{Gl}(\mathcal{A}_{B_{\tau'}}(J'))$.

The theorem BB can be deduced from a seemingly weaker one. Let $\overset{o}{J}$ denote the interior of J and let $J' \subsetneq J$ mean $J' \subset \overset{o}{J}$. Theorem WV : Let $J' \subsetneq J$ two closed subintervals of I. If $H = \sum_{s \in \mathbb{Z}} H_s x^s \in \operatorname{Gl}(\mathcal{A}_{B_1}(J))$ satisfies both conditions WV 1. $G \stackrel{\text{def}}{=} \frac{d}{dx} H H^{-1} \in \operatorname{Mat}(\mathcal{A}_{B_{\tau}}(J))$ for some $\tau > 1$, WV 2. $H_0 = \operatorname{Id}$ and $\|H - \operatorname{Id}\|_{1,J} < 1$, then there is τ' , $1 < \tau' \leq \tau$, s.t. $H \in \operatorname{Gl}(\mathcal{A}_{B_{\tau'}}(J'))$.

Beyond the play on intervals related to the definition of B^{\dagger} , the theorem BB follows from theorem WV using the next lemma

The theorem BB can be deduced from a seemingly weaker one. Let $\overset{o}{J}$ denote the interior of J and let $J' \subsetneq J$ mean $J' \subset \overset{o}{J}$. Theorem WV : Let $J' \subsetneq J$ two closed subintervals of I. If $H = \sum_{s \in \mathbb{Z}} H_s x^s \in \operatorname{Gl}(\mathcal{A}_{B_1}(J))$ satisfies both conditions WV 1. $G \stackrel{\text{def}}{=} \frac{d}{dx} H H^{-1} \in \operatorname{Mat}(\mathcal{A}_{B_{\tau}}(J))$ for some $\tau > 1$, WV 2. $H_0 = \operatorname{Id}$ and $\|H - \operatorname{Id}\|_{1,J} < 1$, then there is τ' , $1 < \tau' \leq \tau$, s.t. $H \in \operatorname{Gl}(\mathcal{A}_{B_{\tau'}}(J'))$.

Beyond the play on intervals related to the definition of B^{\dagger} , the theorem BB follows from theorem WV using the next lemma

Lemma : Let
$$H \in \operatorname{Gl}(\mathcal{A}_{B_1}(J))$$
 and $\tau > 1$.
Then there is $D \in \operatorname{Gl}(\mathcal{A}_{B_{\tau}}(J))$ s.t. $\|DH - \operatorname{Id}\|_{1,J} < 1$.

The theorem BB can be deduced from a seemingly weaker one. Let $\overset{o}{J}$ denote the interior of J and let $J' \subsetneq J$ mean $J' \subset \overset{o}{J}$. Theorem WV : Let $J' \subsetneq J$ two closed subintervals of I. If $H = \sum_{s \in \mathbb{Z}} H_s x^s \in \operatorname{Gl}(\mathcal{A}_{B_1}(J))$ satisfies both conditions WV 1. $G \stackrel{\text{def}}{=} \frac{d}{dx} H H^{-1} \in \operatorname{Mat}(\mathcal{A}_{B_{\tau}}(J))$ for some $\tau > 1$, WV 2. $H_0 = \operatorname{Id}$ and $\|H - \operatorname{Id}\|_{1,J} < 1$, then there is τ' , $1 < \tau' \leq \tau$, s.t. $H \in \operatorname{Gl}(\mathcal{A}_{B_{\tau'}}(J'))$.

Beyond the play on intervals related to the definition of B^{\dagger} , the theorem BB follows from theorem WV using the next lemma

which itself is a consequence of the density of $\ B_{ au}$ in $\ B_1$.

By WV1, $H \in \operatorname{Gl}(\mathcal{A}_{B_1}(J))$ and $G \stackrel{\text{def}}{=} \frac{d}{dx}HH^{-1} \in \operatorname{Mat}(\mathcal{A}_{B_\tau}(J))$.

By WV1, $H \in \operatorname{Gl}(\mathcal{A}_{B_1}(J))$ and $G \stackrel{\text{def}}{=} \frac{d}{dx}HH^{-1} \in \operatorname{Mat}(\mathcal{A}_{B_\tau}(J))$.

Set $G_{<0>} = \operatorname{Id}$, $G_{<n+1>} = \frac{d}{dx}G_{<n>} + G_{<n>}G$,

By WV1, $H \in \operatorname{Gl}(\mathcal{A}_{B_1}(J))$ and $G \stackrel{\text{def}}{=} \frac{d}{dx}HH^{-1} \in \operatorname{Mat}(\mathcal{A}_{B_\tau}(J))$. Set $G_{<0>} = \operatorname{Id}$, $G_{<n+1>} = \frac{d}{dx}G_{<n>} + G_{<n>}G$, and let $\operatorname{ray}_G(t,\rho) \stackrel{\text{def}}{=} \min \left\{\rho; \liminf_{n \to \infty} \left\| \frac{1}{n!} G_{<n>} \right\|_{t,\rho}^{-1/n} \right\}$ for $t \in [1,\tau], \rho \in J$.

Proof of WV : matrices $G_{\langle n \rangle}$ and function $\operatorname{ray}_{G}(t, \rho)$

By WV1, $H \in \operatorname{Gl}(\mathcal{A}_{B_1}(J))$ and $G \stackrel{\text{def}}{=} \frac{d}{dx}HH^{-1} \in \operatorname{Mat}(\mathcal{A}_{B_\tau}(J))$. Set $G_{<0>} = \operatorname{Id}$, $G_{<n+1>} = \frac{d}{dx}G_{<n>} + G_{<n>}G$, and let $\operatorname{ray}_G(t,\rho) \stackrel{\text{def}}{=} \min\left\{\rho; \liminf_{n \to \infty} \left\|\frac{1}{n!}G_{<n>}\right\|_{t,\rho}^{-1/n}\right\}$ for $t \in [1,\tau], \rho \in J$.

By construction $G_{<n>} \in \operatorname{Mat} \left(\mathcal{A}_{B_{\tau}}(J) \right)$

Proof of WV : matrices $G_{\langle n \rangle}$ and function $\operatorname{ray}_{G}(t, \rho)$

By WV1, $H \in \operatorname{Gl}(\mathcal{A}_{B_1}(J))$ and $G \stackrel{\text{def}}{=} \frac{d}{dx}HH^{-1} \in \operatorname{Mat}(\mathcal{A}_{B_\tau}(J))$. Set $G_{<0>} = \operatorname{Id}$, $G_{<n+1>} = \frac{d}{dx}G_{<n>} + G_{<n>}G$, and let $\operatorname{ray}_G(t,\rho) \stackrel{\text{def}}{=} \min \left\{\rho; \liminf_{n \to \infty} \left\|\frac{1}{n!}G_{<n>}\right\|_{t,\rho}^{-1/n}\right\}$ for $t \in [1,\tau], \rho \in J$. By construction $G_{<n>} \in \operatorname{Mat}(\mathcal{A}_{B_\tau}(J))$ and a convexity argument proves that the function $\operatorname{ray}_G(t,\rho)$ is continuous on $[1,\tau) \times \overset{\circ}{J}$.

By WV1, $H \in \operatorname{Gl}(\mathcal{A}_{B_1}(J))$ and $G \stackrel{\text{def}}{=} \frac{d}{dx}HH^{-1} \in \operatorname{Mat}(\mathcal{A}_{B_\tau}(J))$. Set $G_{<0>} = \operatorname{Id}$, $G_{<n+1>} = \frac{d}{dx}G_{<n>} + G_{<n>}G$, and let $\operatorname{ray}_G(t,\rho) \stackrel{\text{def}}{=} \min \left\{\rho; \liminf_{n \to \infty} \left\|\frac{1}{n!}G_{<n>}\right\|_{t,\rho}^{-1/n}\right\}$ for $t \in [1,\tau], \rho \in J$. By construction $G_{<n>} \in \operatorname{Mat}(\mathcal{A}_{B_\tau}(J))$ and a convexity argument

proves that the function $\operatorname{ray}_G(t,\rho)$ is continuous on $[1,\tau) \times \overset{\circ}{J}$. Moreover $G_{\leq n \geq} = \frac{d^n}{dv^n} H H^{-1}$, whence $\operatorname{ray}_G(1,\rho) = \rho$ for $\rho \in J$.

Proof of WV : matrices $G_{\langle n \rangle}$ and function $\operatorname{ray}_{G}(t, \rho)$

By WV1, $H \in \operatorname{Gl}(\mathcal{A}_{B_1}(J))$ and $G \stackrel{\text{def}}{=} \frac{d}{dx}HH^{-1} \in \operatorname{Mat}(\mathcal{A}_{B_\tau}(J))$. Set $G_{<0>} = \operatorname{Id}$, $G_{<n+1>} = \frac{d}{dx}G_{<n>} + G_{<n>}G$, and let $\operatorname{ray}_G(t,\rho) \stackrel{\text{def}}{=} \min \left\{\rho; \liminf_{n \to \infty} \left\| \frac{1}{n!} G_{<n>} \right\|_{t,\rho}^{-1/n} \right\}$ for $t \in [1,\tau], \rho \in J$.

By construction $G_{\leq n >} \in \operatorname{Mat} \left(\mathcal{A}_{B_{\tau}}(J) \right)$ and a convexity argument proves that the function $\operatorname{ray}_{G}(t, \rho)$ is continuous on $[1, \tau) \times \overset{o}{J}$. Moreover $G_{\leq n >} = \frac{d^{n}}{dx^{n}}H H^{-1}$, whence $\operatorname{ray}_{G}(1, \rho) = \rho$ for $\rho \in J$. The theorem WV asserts that $\operatorname{ray}_{G}(t, \rho) = \rho$ on $[1, \tau'] \times J'$.

Proof of WV : matrices $G_{\langle n \rangle}$ and function $\operatorname{ray}_{G}(t, \rho)$

By WV1, $H \in \operatorname{Gl}(\mathcal{A}_{B_1}(J))$ and $G \stackrel{\text{def}}{=} \frac{d}{dx}HH^{-1} \in \operatorname{Mat}(\mathcal{A}_{B_\tau}(J))$. Set $G_{<0>} = \operatorname{Id}$, $G_{<n+1>} = \frac{d}{dx}G_{<n>} + G_{<n>}G$, and let $\operatorname{ray}_G(t,\rho) \stackrel{\text{def}}{=} \min \left\{\rho; \liminf_{n \to \infty} \left\| \frac{1}{n!} G_{<n>} \right\|_{t,\rho}^{-1/n} \right\}$ for $t \in [1,\tau], \rho \in J$.

By construction $G_{\langle n \rangle} \in \operatorname{Mat} \left(\mathcal{A}_{B_{\tau}}(J) \right)$ and a convexity argument proves that the function $\operatorname{ray}_{G}(t,\rho)$ is continuous on $[1,\tau) \times \overset{\circ}{J}$. Moreover $G_{\langle n \rangle} = \frac{d^{n}}{dx^{n}}H H^{-1}$, whence $\operatorname{ray}_{G}(1,\rho) = \rho$ for $\rho \in J$.

and the theorem BB asserts this is true on some open set edged with I.

By WV2, $H = \sum_{s \in \mathbb{Z}} H_s x^s$ with $H_0 = \text{Id}$, $||H - \text{Id}||_{1,J} < 1$. Then, $H^{(\ell)} \stackrel{\text{def}}{=} \sum_{s \in \mathbb{Z}} H_{p^{\ell}s} x^{p^{\ell}s} \in \text{Gl}(\mathcal{A}_{B_1}(J))$ for $\ell \ge 1$.

By WV2, $H = \sum_{s \in \mathbb{Z}} H_s x^s$ with $H_0 = \operatorname{Id}$, $||H - \operatorname{Id}||_{1,J} < 1$. Then, $H^{(\ell)} \stackrel{\text{def}}{=} \sum_{s \in \mathbb{Z}} H_{p^{\ell_s}} x^{p^{\ell_s}} \in \operatorname{Gl}(\mathcal{A}_{B_1}(J))$ for $\ell \ge 1$. So that $R_G^{(\ell)} \stackrel{\text{def}}{=} H^{(\ell)} H^{-1} \in \operatorname{Gl}(\mathcal{A}_{B_1}(J))$ and $||R_G^{(\ell)} - \operatorname{Id}||_{1,J} < 1$.

By WV2, $H = \sum_{s \in \mathbb{Z}} H_s x^s$ with $H_0 = \text{Id}$, $||H - \text{Id}||_{1,J} < 1$. Then, $H^{(\ell)} \stackrel{\text{def}}{=} \sum_{s \in \mathbb{Z}} H_{p^{\ell}s} x^{p^{\ell}s} \in \text{Gl}(\mathcal{A}_{B_1}(J))$ for $\ell \ge 1$. So that $R_G^{(\ell)} \stackrel{\text{def}}{=} H^{(\ell)} H^{-1} \in \text{Gl}(\mathcal{A}_{B_1}(J))$ and $||R_G^{(\ell)} - \text{Id}||_{1,J} < 1$. However, using Taylor's formula between x and ζx , one gets

$$R_{G}^{(\ell)} = \rho^{-\ell} \sum_{\zeta^{p^{\ell}} = 1} \sum_{n \in \mathbb{N}} (\zeta - 1)^{n} \frac{1}{n!} x^{n} G_{}$$

By WV2, $H = \sum_{s \in \mathbb{Z}} H_s x^s$ with $H_0 = \text{Id}$, $||H - \text{Id}||_{1,J} < 1$. Then, $H^{(\ell)} \stackrel{\text{def}}{=} \sum_{s \in \mathbb{Z}} H_{p^{\ell}s} x^{p^{\ell}s} \in \text{Gl}(\mathcal{A}_{B_1}(J))$ for $\ell \ge 1$. So that $R_G^{(\ell)} \stackrel{\text{def}}{=} H^{(\ell)} H^{-1} \in \text{Gl}(\mathcal{A}_{B_1}(J))$ and $||R_G^{(\ell)} - \text{Id}||_{1,J} < 1$. However, using Taylor's formula between x and ζx , one gets $P^{(\ell)} = n^{-\ell} \sum \sum (\zeta - 1)^n \frac{1}{2} x^n \zeta$

$$R_{G}^{(\ell)} = p^{-\ell} \sum_{\zeta^{p^{\ell}} = 1} \sum_{n \in \mathbb{N}} (\zeta - 1)^{n} \frac{1}{n!} x^{n} G_{< n > n}$$

As $|\zeta - 1| < 1$ and ray_G is continuous, there exists $\tau_{\ell} > 1$ s.t. $R_G^{(\ell)} \in \operatorname{Gl} \left(\mathcal{A}_{B_{\tau_{\ell}}}(J) \right)$.

By WV2, $H = \sum_{s \in \mathbb{Z}} H_s x^s$ with $H_0 = \text{Id}$, $||H - \text{Id}||_{1,J} < 1$. Then, $H^{(\ell)} \stackrel{\text{def}}{=} \sum_{s \in \mathbb{Z}} H_{p^{\ell}s} x^{p^{\ell}s} \in \text{Gl}(\mathcal{A}_{B_1}(J))$ for $\ell \ge 1$. So that $R_G^{(\ell)} \stackrel{\text{def}}{=} H^{(\ell)} H^{-1} \in \text{Gl}(\mathcal{A}_{B_1}(J))$ and $||R_G^{(\ell)} - \text{Id}||_{1,J} < 1$. However, using Taylor's formula between x and ζx , one gets $P_{0}^{(\ell)} = e^{-\ell} \sum_{s \in \mathbb{Z}} \sum_{s \in \mathbb{Z}} (\zeta - 1)^{p-1} = p_s \zeta$

$${\cal R}_{G}^{(\ell)} =
ho^{-\ell} \sum_{\zeta^{
ho^{\ell}} = 1} \sum_{n \in \mathbb{N}} (\zeta - 1)^{n} \, rac{1}{n!} x^{n} \, G_{< n > n}$$

As $|\zeta - 1| < 1$ and ray_G is continuous, there exists $\tau_{\ell} > 1$ s.t. $R_G^{(\ell)} \in \operatorname{Gl}\left(\mathcal{A}_{B_{\tau_{\ell}}}(J)\right)$. Idea : $H = R_G^{(\ell)^{-1}} H^{(\ell)}$ hence $H = \lim R_G^{(\ell)^{-1}}$ in $\operatorname{Gl}\left(\mathcal{A}_{B_1}(J)\right)$.

By WV2, $H = \sum_{s \in \mathbb{Z}} H_s x^s$ with $H_0 = \operatorname{Id}$, $||H - \operatorname{Id}||_{1,J} < 1$. Then, $H^{(\ell)} \stackrel{\text{def}}{=} \sum_{s \in \mathbb{Z}} H_{p^{\ell}s} x^{p^{\ell}s} \in \operatorname{Gl}(\mathcal{A}_{B_1}(J))$ for $\ell \ge 1$. So that $R_G^{(\ell)} \stackrel{\text{def}}{=} H^{(\ell)} H^{-1} \in \operatorname{Gl}(\mathcal{A}_{B_1}(J))$ and $||R_G^{(\ell)} - \operatorname{Id}||_{1,J} < 1$. However, using Taylor's formula between x and ζx , one gets $R_G^{(\ell)} = p^{-\ell} \sum \sum (\zeta - 1)^n \frac{1}{n!} x^n G_{<n>}$.

As $|\zeta - 1| < 1$ and ray_G is continuous, there exists $\tau_{\ell} > 1$ s.t. $R_G^{(\ell)} \in \operatorname{Gl}\left(\mathcal{A}_{B_{\tau_{\ell}}}(J)\right)$. Idea : $H = R_G^{(\ell)^{-1}} H^{(\ell)}$ hence $H = \lim R_G^{(\ell)^{-1}}$ in $\operatorname{Gl}\left(\mathcal{A}_{B_1}(J)\right)$. Proving convergence in $\operatorname{Gl}\left(\mathcal{A}_{B_{-\ell}}(J')\right)$ will prove the theorem WV.

 $c p^{\ell} = 1 n \in \mathbb{N}$

By WV2, $H = \sum_{s \in \mathbb{Z}} H_s x^s$ with $H_0 = \operatorname{Id}$, $||H - \operatorname{Id}||_{1,J} < 1$. Then, $H^{(\ell)} \stackrel{\text{def}}{=} \sum_{s \in \mathbb{Z}} H_{p^{\ell}s} x^{p^{\ell}s} \in \operatorname{Gl}(\mathcal{A}_{B_1}(J))$ for $\ell \ge 1$. So that $R_G^{(\ell)} \stackrel{\text{def}}{=} H^{(\ell)} H^{-1} \in \operatorname{Gl}(\mathcal{A}_{B_1}(J))$ and $||R_G^{(\ell)} - \operatorname{Id}||_{1,J} < 1$. However, using Taylor's formula between x and ζx , one gets $R_G^{(\ell)} = p^{-\ell} \sum_{\zeta p^{\ell} = 1} \sum_{n \in \mathbb{N}} (\zeta - 1)^n \frac{1}{n!} x^n G_{<n>}$.

As $|\zeta - 1| < 1$ and ray_G is continuous, there exists $\tau_{\ell} > 1$ s.t. $R_G^{(\ell)} \in \operatorname{Gl}\left(\mathcal{A}_{B_{\tau_{\ell}}}(J)\right)$. Idea : $H = R_G^{(\ell)^{-1}} H^{(\ell)}$ hence $H = \lim R_G^{(\ell)^{-1}}$ in $\operatorname{Gl}\left(\mathcal{A}_{B_1}(J)\right)$.

Proving convergence in $\operatorname{Gl}(\mathcal{A}_{B_{\tau'}}(J'))$ will prove the theorem WV. Unfortunately $\lim_{\ell \to \infty} \tau_{\ell} = 1$ and we have ... yet to work.

Let's define $G^{(\ell)}$ by $p^{\ell} x^{p^{\ell}} G^{(\ell)}(x^{p^{\ell}}) \stackrel{\text{def}}{=} x \frac{d}{dx} H^{(\ell)} H^{(\ell)^{-1}}$.

Let's define $G^{(\ell)}$ by $p^{\ell} x^{p^{\ell}} G^{(\ell)}(x^{p^{\ell}}) \stackrel{\text{def}}{=} x \frac{d}{dx} H^{(\ell)} H^{(\ell)-1}$. Then $G^{(\ell)} \in \text{Mat} \left(\mathcal{A}_{B_1}(J^{p^{\ell}}) \right)$ and $R_G^{(\ell+1)} = R_{G^{(\ell)}}^{(1)}(x^{p^{\ell}}) R_G^{(\ell)}$.

伺 ト イヨ ト イヨ ト ヨ うくや

Let's define $G^{(\ell)}$ by $p^{\ell} x^{p^{\ell}} G^{(\ell)}(x^{p^{\ell}}) \stackrel{\text{def}}{=} x \frac{d}{dx} H^{(\ell)} H^{(\ell)^{-1}}$. Then $G^{(\ell)} \in \text{Mat} \left(\mathcal{A}_{B_1}(J^{p^{\ell}}) \right)$ and $R_G^{(\ell+1)} = R_{G^{(\ell)}}^{(1)}(x^{p^{\ell}}) R_G^{(\ell)}$. Lemma RG: If $\tau_{\ell} \leq \tau$, $R_G^{(\ell)} \in \text{Gl} \left(\mathcal{A}_{B_{\tau_{\ell}}}(J) \right) \Rightarrow G^{(\ell)} \in \text{Mat} \left(\mathcal{A}_{B_{\tau_{\ell}}}(J^{p^{\ell}}) \right)$.

A D A E A E A A A A

Let's define $G^{(\ell)}$ by $p^{\ell} x^{p^{\ell}} G^{(\ell)}(x^{p^{\ell}}) \stackrel{\text{def}}{=} x \frac{d}{dx} H^{(\ell)} H^{(\ell)-1}$. Then $G^{(\ell)} \in \text{Mat} \left(\mathcal{A}_{B_1}(J^{p^{\ell}})\right)$ and $R_G^{(\ell+1)} = R_{G^{(\ell)}}^{(1)}(x^{p^{\ell}}) R_G^{(\ell)}$. Lemma RG: If $\tau_{\ell} \leq \tau$, $R_G^{(\ell)} \in \text{Gl} \left(\mathcal{A}_{B_{\tau_{\ell}}}(J)\right) \Rightarrow G^{(\ell)} \in \text{Mat} \left(\mathcal{A}_{B_{\tau_{\ell}}}(J^{p^{\ell}})\right)$. Proof : $p^{\ell} x^{p^{\ell}} G^{(\ell)}(x^{p^{\ell}}) = x \left(\frac{d}{dx} R_G^{(\ell)} + R_G^{(\ell)} G\right) R_G^{(\ell)-1}$.

A D A E A E A A A A

Let's define $G^{(\ell)}$ by $p^{\ell} x^{p^{\ell}} G^{(\ell)}(x^{p^{\ell}}) \stackrel{\text{def}}{=} x \frac{d}{dx} H^{(\ell)} H^{(\ell)^{-1}}$. Then $G^{(\ell)} \in \text{Mat} \left(\mathcal{A}_{B_{1}}(J^{p^{\ell}})\right)$ and $R_{G}^{(\ell+1)} = R_{G^{(\ell)}}^{(1)}(x^{p^{\ell}}) R_{G}^{(\ell)}$. Lemma RG: If $\tau_{\ell} \leq \tau$, $R_{G}^{(\ell)} \in \text{Gl} \left(\mathcal{A}_{B_{\tau_{\ell}}}(J)\right) \Rightarrow G^{(\ell)} \in \text{Mat} \left(\mathcal{A}_{B_{\tau_{\ell}}}(J^{p^{\ell}})\right)$. Proof : $p^{\ell} x^{p^{\ell}} G^{(\ell)}(x^{p^{\ell}}) = x \left(\frac{d}{dx} R_{G}^{(\ell)} + R_{G}^{(\ell)} G\right) R_{G}^{(\ell)^{-1}}$. Lemma GR : If $R_{G}^{(\ell)} \in \text{Gl} \left(\mathcal{A}_{B_{\tau_{\ell}}}(J)\right)$ and $\|x G^{(\ell)}\|_{\tau_{\ell}, J^{p^{\ell}}} < 1$ then $R_{G}^{(\ell+1)} \in \text{Gl} \left(\mathcal{A}_{B_{\tau_{\ell}}}(J)\right)$ and $\|x G^{(\ell+1)}\|_{\tau_{\ell}, J^{p^{\ell+1}}} < p$.

Let's define $G^{(\ell)}$ by $p^{\ell} x^{p^{\ell}} G^{(\ell)}(x^{p^{\ell}}) \stackrel{\text{def}}{=} x \frac{d}{dx} H^{(\ell)} H^{(\ell)-1}$. Then $G^{(\ell)} \in Mat(\mathcal{A}_{B_1}(J^{p^{\ell}}))$ and $R_G^{(\ell+1)} = R_{G^{(\ell)}}^{(1)}(x^{p^{\ell}}) R_G^{(\ell)}$. Lemma RG: If $\tau_{\ell} \leq \tau$, $R_{G}^{(\ell)} \in \operatorname{Gl}\left(\mathcal{A}_{B_{\tau_{\ell}}}(J)\right) \Rightarrow G^{(\ell)} \in \operatorname{Mat}\left(\mathcal{A}_{B_{\tau_{\ell}}}(J^{p^{\ell}})\right)$. Proof : $p^{\ell} x^{p^{\ell}} G^{(\ell)}(x^{p^{\ell}}) = x \left(\frac{d}{dx} R_G^{(\ell)} + R_G^{(\ell)} G\right) R_G^{(\ell)^{-1}}$. Lemma GR : If $R_G^{(\ell)} \in \operatorname{Gl}(\mathcal{A}_{B_{\tau_\ell}}(J))$ and $\| x G^{(\ell)} \|_{\tau_{\tau_\ell} | I^{\rho_\ell}} < 1$ then $R_G^{(\ell+1)} \in \mathrm{Gl}\left(\mathcal{A}_{\mathcal{B}_{\tau_\ell}}(J)\right)$ and $\left\| x \ G^{(\ell+1)} \right\|_{\tau_e \ I^{p^{\ell+1}}} < p$. Proof: Noticing that $\left|\sum_{\zeta^p=1} \frac{(\zeta-1)^n}{n!}\right| < 1$ for $n \ge 1$, we get : $R_{C^{(\ell)}}^{(1)} = \sum_{n \in \mathbb{N}} \sum_{\zeta^{p}=1} \frac{(\zeta-1)^{n}}{n!} x^{n} G_{\leq n \geq}^{(\ell)} \in \mathrm{Gl}\left(\mathcal{A}_{B_{\mathcal{T}_{\ell}}}(J^{p^{\ell}})\right),$ $p x^{p} G^{(\ell+1)}(x^{p}) = x \left(\frac{d}{dx} R_{G^{(\ell)}}^{(1)} + R_{G^{(\ell)}}^{(1)} G^{(\ell)} \right) R_{G^{(\ell)}}^{(1)^{-1}}.$

Let's define $G^{(\ell)}$ by $p^{\ell} x^{p^{\ell}} G^{(\ell)}(x^{p^{\ell}}) \stackrel{\text{def}}{=} x \frac{d}{d\nu} H^{(\ell)} H^{(\ell)-1}$. Then $G^{(\ell)} \in Mat(\mathcal{A}_{B_1}(J^{p^{\ell}}))$ and $R_G^{(\ell+1)} = R_G^{(1)}(x^{p^{\ell}}) R_G^{(\ell)}$. Lemma RG: If $\tau_{\ell} \leq \tau$, $R_{G}^{(\ell)} \in \operatorname{Gl}\left(\mathcal{A}_{B_{\tau_{\ell}}}(J)\right) \Rightarrow G^{(\ell)} \in \operatorname{Mat}\left(\mathcal{A}_{B_{\tau_{\ell}}}(J^{p^{\ell}})\right)$. Proof : $p^{\ell} x^{p^{\ell}} G^{(\ell)}(x^{p^{\ell}}) = x \left(\frac{d}{dx} R_G^{(\ell)} + R_G^{(\ell)} G \right) R_G^{(\ell)^{-1}}$. Lemma GR : If $R_G^{(\ell)} \in \operatorname{Gl}(\mathcal{A}_{B_{\tau_\ell}}(J))$ and $\| x G^{(\ell)} \|_{\tau_{\tau_\ell} | I^{\rho_\ell}} < 1$ then $R_G^{(\ell+1)} \in \mathrm{Gl}\left(\mathcal{A}_{B_{\tau_\ell}}(J)\right)$ and $\left\| x \ G^{(\ell+1)} \right\|_{\tau_e} |_{P^{\ell+1}} < p$. Proof: Noticing that $\left|\sum_{\zeta^p=1} \frac{(\zeta-1)^n}{n!}\right| < 1$ for $n \ge 1$, we get : $R_{C^{(\ell)}}^{(1)} = \sum_{n \in \mathbb{N}} \sum_{\zeta^{p}=1} \frac{(\zeta^{-1})^n}{n!} x^n G_{\leq n \geq}^{(\ell)} \in \mathrm{Gl}\left(\mathcal{A}_{B_{\tau_\ell}}(J^{p^\ell})\right),$ $p x^{p} G^{(\ell+1)}(x^{p}) = x \left(\frac{d}{dx} R_{G^{(\ell)}}^{(1)} + R_{G^{(\ell)}}^{(1)} G^{(\ell)} \right) R_{G^{(\ell)}}^{(1)^{-1}}.$

It remains to kill the "p" that appears at each step $\ \ell$.

Proof of WV : killing p in nonresidue terms of $G^{(\ell)}$

Principle : reducing the interval J. Let's write $x^{p^{\ell}} G^{(\ell)}(x^{p^{\ell}}) = \sum G_s^{(\ell)} x^{sp^{\ell}}$, $J = [p^a, p^b]$, $J' = [p^{a'}, p^{b'}]$ and let's choose ℓ_0 big enough to have $\sum_{\ell \ge \ell_0} p^{-\ell} \le \min\{b - b'; a' - a\}$.
Principle : reducing the interval J. Let's write $x^{p^{\ell}} G^{(\ell)}(x^{p^{\ell}}) = \sum G_s^{(\ell)} x^{sp^{\ell}}$, $J = [p^a, p^b]$, $J' = [p^{a'}, p^{b'}]$ and let's choose ℓ_0 big enough to have $\sum_{\ell \geq \ell_0} p^{-\ell} \leq \min\{b - b'; a' - a\}$. For $s \neq 0$, $\|G_s^{(\ell)} x^{sp^{\ell}}\|_{\tau, J}$ is max. at a or b and decreases at least as $\rho^{p^{\ell}}$.

Principle : reducing the interval J. Let's write $x^{p^{\ell}} G^{(\ell)}(x^{p^{\ell}}) = \sum G_s^{(\ell)} x^{sp^{\ell}}$, $J = [p^a, p^b]$, $J' = [p^{a'}, p^{b'}]$ and let's choose ℓ_0 big enough to have $\sum_{\ell \geq \ell_0} p^{-\ell} \leq \min\{b - b'; a' - a\}$. For $s \neq 0$, $\|G_s^{(\ell)} x^{sp^{\ell}}\|_{\tau,J}$ is max. at *a* or *b* and decreases at least as $\rho^{p^{\ell}}$. For $\ell > \ell_0$ one obtains the following (logarithmic) picture :

$$a \qquad a' \qquad J_{\ell_0} = J \qquad b' \qquad b \qquad \log_p \rho$$

Principle : reducing the interval J. Let's write $x^{p^{\ell}} G^{(\ell)}(x^{p^{\ell}}) = \sum G_s^{(\ell)} x^{sp^{\ell}}$, $J = [p^a, p^b]$, $J' = [p^{a'}, p^{b'}]$ and let's choose ℓ_0 big enough to have $\sum_{\ell \geq \ell_0} p^{-\ell} \leq \min\{b - b'; a' - a\}$. For $s \neq 0$, $\|G_s^{(\ell)} x^{sp^{\ell}}\|_{\tau,J}$ is max. at *a* or *b* and decreases at least as $\rho^{p^{\ell}}$. For $\ell > \ell_0$ one obtains the following (logarithmic) picture :

Principle : reducing the interval J. Let's write $x^{p^{\ell}} G^{(\ell)}(x^{p^{\ell}}) = \sum G_s^{(\ell)} x^{sp^{\ell}}$, $J = [p^a, p^b]$, $J' = [p^{a'}, p^{b'}]$ and let's choose ℓ_0 big enough to have $\sum_{\ell \ge \ell_0} p^{-\ell} \le \min\{b - b'; a' - a\}$. For $s \ne 0$, $\|G_s^{(\ell)} x^{sp^{\ell}}\|_{\tau,J}$ is max. at *a* or *b* and decreases at least as $\rho^{p^{\ell}}$. For $\ell > \ell_0$ one obtains the following (logarithmic) picture :

Principle : reducing the interval J. Let's write $x^{p^{\ell}} G^{(\ell)}(x^{p^{\ell}}) = \sum G_s^{(\ell)} x^{sp^{\ell}}$, $J = [p^a, p^b]$, $J' = [p^{a'}, p^{b'}]$ and let's choose ℓ_0 big enough to have $\sum_{\ell > \ell_0} p^{-\ell} \le \min\{b - b'; a' - a\}$. For $s \neq 0$, $\|G_s^{(\ell)} x^{sp^{\ell}}\|_{\tau,J}$ is max. at *a* or *b* and decreases at least as $\rho^{p^{\ell}}$. For $\ell > \ell_0$ one obtains the following (logarithmic) picture :

Principle : reducing the interval J. Let's write $x^{p^{\ell}} G^{(\ell)}(x^{p^{\ell}}) = \sum G_s^{(\ell)} x^{sp^{\ell}}$, $J = [p^a, p^b]$, $J' = [p^{a'}, p^{b'}]$ and let's choose ℓ_0 big enough to have $\sum_{\ell > \ell_0} p^{-\ell} \le \min\{b - b'; a' - a\}$. For $s \neq 0$, $\|G_s^{(\ell)} x^{sp^{\ell}}\|_{\tau,J}$ is max. at *a* or *b* and decreases at least as $\rho^{p^{\ell}}$. For $\ell > \ell_0$ one obtains the following (logarithmic) picture :

Christol-Mebkhout

Padova, september 20, 2022

Principle : decreasing au ,

3

Principle : decreasing τ , Tools : use smallness of $\|G_0^{(\ell)}\|_1$

3

Principle : decreasing au ,

Tools : use smallness of $\|G_0^{(\ell)}\|_1$ and log-convexity of $t\mapsto \|G_0^{(\ell)}\|_t$.

Principle : decreasing au ,

Tools : use smallness of $\|G_0^{(\ell)}\|_1$ and log-convexity of $t\mapsto \|G_0^{(\ell)}\|_t$.

Graph of $t \mapsto \|G_0^{(\ell)}\|_t$ in logarithmic coordinates

Principle : decreasing au ,

Tools : use smallness of $\|G_0^{(\ell)}\|_1$ and log-convexity of $t\mapsto \|G_0^{(\ell)}\|_t$.

Principle : decreasing τ , Tools : use smallness of $\|G_0^{(\ell)}\|_1$ and log-convexity of $t \mapsto \|G_0^{(\ell)}\|_t$. $\log_p \|G_0^{(\ell)}\|_t^{\dagger}$

 $\log_p \|G_0^{(\ell)}\|_1 \Big|$ Graph of $t \mapsto \|G_0^{(\ell)}\|_t$ in logarithmic coordinates

 $\log_p t$

Thank you for your attention