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The third author

Thank you Bruno :

without your long birthday ...

this work would have progressed even slower ...
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Our aims

This work is a first step toward :

a p-adic theory of partial differential equations,

a relative version of the de Rham cohomology for smooth
schemes over a field of characteristic p (Arabia-Mebkhout).

relative = with coefficients depending on parameter(s)
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Basic field

Let K be a p-adic field (i.e. a complete extension of Qp )

and let normalize the valuation on K by |p| =
1

p
.

We will say algebra for K -algebra.
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†-adic algebras

A †-adic algebra B† is an algebra for which there is a family{(
Bτ , ‖.‖τ

)
, τ ≥ 1

}
of Banach algebras such that :

1 Bτ ⊃ Bτ ′ for τ < τ ′ , B† =
⋃
τ>1 Bτ ,

2 for b ∈ Bτ , t 7→ ‖b‖t is increasing and log-convex on [1, τ ] ,

and each Bτ is dense in B1 for ‖.‖1 ,

3 the “Gauss norm” ‖.‖1 is multiplicative.

B† is endowed with an LF-topology as inductive limit of the Bτ ,
it is also endowed with the the Gauss norm tolology.
†-adic morphisms = algebra morphisms continuous for both topologies.

Our aim is to study D.E. with “constants” lying in a †-adic algebra.

The condition 3 (multiplicativity of ‖.‖1) ensures that the completion of
the field of quotients of B1 is a p-adic field that will be denoted by E .
Hence it makes available the powerfull theory of D.E. over E .
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Basic examples

Notations : y = (y1, ..., ym) , n = (n1, ..., nm) , |n| = n1 +···+ nm ,

• K<y>τ
def
=
{ ∑

n∈Nm

an y
n ∈ K [[y]] ; lim

|n|→∞
|an| τ |n| = 0

}
endowed with ‖a‖τ = maxn∈Nm |an|τ |n|

[for each τ it is a Tate algebra] ,

• K<y>† =
{

Power series overconvergent in the unit polydisk
}

[it is sometime called the Dwork-Monsky-Washnitzer algebra] ,

• E =
{

completion of K (y) for ‖.‖1
}

[field of analytic elements in the generic (unit) polydisk] .
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General examples (after Z. Mebkhout & L. Narvaez)

Principle : quotient the basic example by an ideal a of K<y>† .

Key point : any such ideal is actually closed !

• Bτ
def
= K<y>τ /a ∩ K<y>τ (τ > 1)

endowed with the quotient norm ‖b̃‖τ
def
= infa∈a ‖b + a‖τ ,

(∃ae ideal of K<y>1 s.t. B1
def
= K<y>1 /a

e K<y>1 with ‖.‖1-q.n.).

• B† = K<y>† /a ∩ K<y>† satifies conditions 1 and 2 .

It will be a †-adic algebra provided ‖.‖1 is multiplicative, namely iff

B̃1
def
= O1/mO1 is integral (O1

def
= {x ∈ B1; ‖x‖1 ≤ 1} , m def

= {m ∈ K ; |m| < 1}).

Moreover both topologies on B† are separated and do not depend on the
“presentation” a→ K<y>† .
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One dimensional examples

B1 =
{

analytic elements in { (finite union of residue classes)
}

,

Bτ =
{

analytic elements in { (finite union of disks with radius
1

τ
)
}

.

They are special cases of “general examples” realized, for instance, with

m = 2 , b ∈ K<y1> , a =
(
1− b y2

)
K<y1, y2>
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The B-algebra AB(I ) for a Banach algebra B

For I = (a, b) ⊂ [0,∞] and
(
B, ‖.‖

)
a Banach algebra we set :

AB(I )
def
=
{∑

s∈Z
as x

s ; as ∈ B et (∀ρ ∈ I ) lim
s→±∞

‖as‖ ρs = 0
}

.

It is a Frechet algebra for the two (equivalent) norm families :

for ρ ∈ I : ‖.‖ρ
def
= max

s∈Z

(
‖as‖ ρs

)
,

for J closed ⊂ I : ‖.‖J = max
ρ∈J
‖.‖ρ .

As usually these norms can be extended to the matrices :

for G ∈ Mat
(
AB(I )

) def
=
{
d×d-matrices with coeff. ∈ AB(I )

}
we set

‖G‖ρ
def
= max

1≤i ,j≤d
‖Gij‖ρ , ‖G‖J

def
= max

1≤i ,j≤d
‖Gij‖J .

We will also denote by Gl
(
AB(I )

)
the group of invertible matrices.
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The B†-algebra AB>1(I ) for a †-adic algebra B†

For B† a †-adic algebra we set :

AB>1(I )
def
=
{∑

s∈Z
as x

s ; (∃τ > 1) as ∈ Bτ

and (∀ρ ∈ I ) (∃τρ > 1) lim
s→±∞

‖as‖τρ ρs = 0
}

=
⋂

J closed ⊂I

⋃
τ>1

ABτ (J) .

It is a B†-algebra endowed with a complete, but useless, topology.

Examples : let B† = K<y>† , I = [0, 1) and |π| = p−1/(p−1) .

* The function exp(π y x) =
∑

n∈N
πn

n! y
n xn ∈ AB>1

(
I
)

,

* The function
∑
n∈N

yn
2
xn ∈ AB1

(
I
)

but /∈ AB>1

(
I
)

.
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ABτ (J) .

It is a B†-algebra endowed with a complete, but useless, topology.

Examples : let B† = K<y>† , I = [0, 1) and |π| = p−1/(p−1) .

* The function exp(π y x) =
∑

n∈N
πn

n! y
n xn ∈ AB>1

(
I
)

,

* The function
∑
n∈N

yn
2
xn ∈ AB1

(
I
)

but /∈ AB>1

(
I
)

.
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Main results in the null monodromy case

Let B† be a †-adic algebra and E the completion of the quotient field of B1 .

Theorem EB (from E to B1)

Let H ∈ Gl
(
AE (I )

)
be s.t. G

def
= d

dxH H−1 ∈ Mat
(
AB1(I )

)
,

then there exists C ∈ Gl(E ) s.t. H C ∈ Gl
(
AB1(I )

)
.

Theorem BB (from B1 to B†)

Let H ∈ Gl
(
AB1(I )

)
be s.t. G

def
= d

dxH H−1 ∈ Mat
(
AB>1(I )

)
,

then there exists C ∈ Gl(B1) s.t. H C ∈ Gl
(
AB>1(I )

)
.

Putting the two theorems together gives

Theorem EB† (from E to B†)

Let H ∈ Gl
(
AE (I )

)
be s.t. G

def
= d

dxH H−1 ∈ Mat
(
AB>1(I )

)
,

then there exist C ∈ Gl(E ) , s.t. H C ∈ Gl
(
AB>1(I )

)
.
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Main results for general Robba differential modules

Theorem (structure of Robba modules over p-adic fields)

Let G ∈ Mat
(
AE (I )

)
satisfying Robba condition [ (∀ρ ∈ I ) rayG (ρ) = ρ ]

with exponent α = (α1, . . . , αd) ∈ Zd
p/E satisfying DNL,

[α̃ = {αi} ∈
{
Zp/Z

}d
and the Differences αi −αj are Non Liouville numbers]

Then there is a “change-of-basis matrix” H ∈ Gl
(
AE (I )

)
(from G to 1

xM)

s.t. d
dxH = G H − H 1

xM , where M ∈ Mat(Zp) is the “monodromy matrix” :

M = D + N with D = diag{α1, ..., αd} , N is nilpotent and DN = ND.

Theorem (structure of Robba modules over †-adic algebras)

Let G ∈ Mat
(
AB>1(I )

)
satisfying Robba condition with DNL exponent.

Then the change-of-basis matrix H can be taken in Gl
(
AB>1(I )

)
.
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Proof of BB : reduction to a weak version (WV)

The theorem BB can be deduced from a seemingly weaker one.

Let
o
J denote the interior of J and let J ′ ( J mean J ′ ⊂

o
J .

Theorem WV : Let J ′ ( J two closed subintervals of I .

If H =
∑

s∈ZHs x
s ∈ Gl

(
AB1(J)

)
satisfies both conditions

WV 1. G
def
= d

dxH H−1 ∈ Mat
(
ABτ (J)

)
for some τ > 1 ,

WV 2. H0 = Id and ‖H − Id ‖1,J < 1 ,

then there is τ ′ , 1 < τ ′ ≤ τ , s.t. H ∈ Gl
(
ABτ ′ (J

′)
)

.

Beyond the play on intervals related to the definition of B† , the theorem
BB follows from theorem WV using the next lemma

Lemma : Let H ∈ Gl
(
AB1(J)

)
and τ > 1 .

Then there is D ∈ Gl
(
ABτ (J)

)
s.t. ‖D H − Id ‖1,J < 1 .

which itself is a consequence of the density of Bτ in B1 .
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Proof of WV : matrices G<n> and function rayG (t, ρ)

By WV1 , H ∈ Gl
(
AB1(J)

)
and G

def
= d

dxH H−1 ∈ Mat
(
ABτ (J)

)
.

Set G<0> = Id , G<n+1> = d
dxG<n> + G<n> G , and let

rayG (t, ρ)
def
= min

{
ρ ; lim inf

n→∞

∥∥∥ 1

n!
G<n>

∥∥∥−1/n
t,ρ

}
for t ∈ [1, τ ], ρ ∈ J .

By construction G<n> ∈ Mat
(
ABτ (J)

)
and a convexity argument

proves that the function rayG (t, ρ) is continuous on [1, τ)×
o
J .

Moreover G<n> = dn

dxnH H−1 , whence rayG (1, ρ) = ρ for ρ ∈ J .

The theorem WV asserts that rayG (t, ρ) = ρ on [1, τ ′]× J ′ .

6

-ρ

τ

J

τ

J ′

τ ′

1
I

and the theorem BB asserts this is true on some open set edged with I .
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Proof of WV : Frobenius machinery

By WV2 , H =
∑

s∈ZHs x
s with H0 = Id , ‖H − Id ‖1,J < 1 .

Then, H(`) def
=
∑

s∈ZHp`s x
p`s ∈ Gl

(
AB1(J)

)
for ` ≥ 1 .

So that R
(`)
G

def
= H(`) H−1∈ Gl

(
AB1(J)

)
and ‖R(`)

G − Id ‖1,J < 1 .

However, using Taylor’s formula between x and ζ x , one gets

R
(`)
G = p−`

∑
ζp`=1

∑
n∈N

(ζ − 1)n
1

n!
xn G<n> .

As |ζ − 1| < 1 and rayG is continuous, there exists τ` > 1 s.t.

R
(`)
G ∈ Gl

(
ABτ`

(J)
)
.

Idea : H = R
(`)
G

−1
H(`) hence H = limR

(`)
G

−1
in Gl

(
AB1(J)

)
.

Proving convergence in Gl
(
ABτ ′ (J

′)
)

will prove the theorem WV.

Unfortunately lim
`→∞

τ` = 1 and we have ... yet to work.
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Proof of WV : going from R (`) to R (`+1)

Let’s define G (`) by p`xp
`
G (`)(xp

`
)

def
= x d

dxH
(`)H(`)−1 .

Then G (`) ∈ Mat
(
AB1(Jp

`
)
)

and R
(`+1)
G = R

(1)

G (`)(x
p`) R

(`)
G .

Lemma RG: If τ` ≤ τ , R
(`)
G ∈ Gl

(
ABτ`

(J)
)
⇒ G (`) ∈ Mat

(
ABτ`

(Jp
`
)
)

.

Proof : p`xp
`
G (`)(xp

`
) = x

(
d
dxR

(`)
G + R

(`)
G G

)
R
(`)
G

−1
.

Lemma GR : If R
(`)
G ∈ Gl

(
ABτ`

(J)
)

and ‖x G (`)‖
τ`,Jp

` < 1

then R
(`+1)
G ∈ Gl

(
ABτ`

(J)
)

and ‖x G (`+1)‖
τ`,Jp

`+1 < p .

Proof: Noticing that
∣∣∣∑ζp=1

(ζ−1)n
n!

∣∣∣ < 1 for n ≥ 1 , we get :

R
(1)

G (`) =
∑

n∈N
∑

ζp=1
(ζ−1)n

n! xn G
(`)
<n> ∈ Gl

(
ABτ`

(Jp
`
)
)

,

p xp G (`+1)(xp) = x
(

d
dxR

(1)

G (`) + R
(1)

G (`) G
(`)
)
R
(1)

G (`)

−1
.

It remains to kill the “p” that appears at each step ` .
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Proof of WV : killing p in nonresidue terms of G (`)

Principle : reducing the interval J .

Let’s write xp
`
G (`)(xp

`
) =

∑
G

(`)
s x sp

`
, J = [pa, pb] , J ′ = [pa

′
, pb

′
] and

let’s choose `0 big enough to have
∑

`≥`0 p
−` ≤ min{b − b′ ; a′ − a} .

For s 6= 0, ‖G (`)
s x sp

`‖τ,J is max. at a or b and decreases at least as ρp
`
.

For ` > `0 one obtains the following (logarithmic) picture :

-
J`0 = Ja ba′ b′ logp ρ

J`0+1

a+p`0 b−p`0

slope −p`0 ↗ ↖ slope p`0@
@

�
�

J`0+2
�
�

A
A

slope −p`0+1 ↗ ↖ slope p`0+1

C
C
E
E

�
�
�
�

· · ·

J ′
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Proof of WV : killing p in the residue of G (`)

Principle : decreasing τ ,

Tools : use smallness of ‖G (`)
0 ‖1 and log-convexity of t 7→ ‖G (`)

0 ‖t .

Graph of t 7→ ‖G (`)
0 ‖t in logarithmic coordinates

logp t
logp ‖G

(`)
0 ‖t 6

-

logp ‖G
(`)
0 ‖1 �

�����������������
�
�
�
�

logp ‖G
(`)
0 ‖τ`

logp ‖G
(`)
0 ‖1

logpτ`

�
��

�
��
�
��

�
��

�
��

�
��

logp ‖pG
(`)
0 ‖τ`

logpτ`+1

We conclude showing τ ′
def
= lim

`→∞
τ` > 1 .
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Thank you for your attention
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