
Ñîâðåìåííàÿ ìàòåìàòèêà. Ôóíäàìåíòàëüíûå íàïðàâëåíèÿ. Òîì (). Ñ. 1�13

ÓÄÊ ...

HYPOELLIPTIC HEAT KERNEL OVER 3-STEP NILPOTENT LIE

GROUPS

c© ã. UGO BOSCAIN, JEAN-PAUL GAUTHIER, FRANCESCO ROSSI

Àííîòàöèÿ. In this paper we provide explicitly the connection between the hypoelliptic heat kernel
for some 3-step sub-Riemannian manifolds and the quartic oscillator. We study the left-invariant sub-
Riemannian structure on two nilpotent Lie groups, namely the (2,3,4) group (called the Engel group)
and the (2,3,5) group (called the Cartan group or the generalized Dido problem). Our main technique
is noncommutative Fourier analysis that permits to transform the hypoelliptic heat equation into a one
dimensional heat equation with a quartic potential.
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1. Introduction

The study of the properties of the heat kernel in a sub-Riemannian manifold drew an increasing
attention since the pioneer work of H�ormander [24]. Since then, many estimates and properties of the
kernel in terms of the sub-Riemannian distance have been provided (see [6,7,17,28,34] and references
therein). For some particular structures, it is moreover possible to �nd explicit expressions of the
hypoelliptic heat kernels. In general, this computation can be performed only when the sub-Riemannian
structure and the corresponding hypoelliptic heat operator present symmetry properties. For this
reason, the most natural choice in this �eld is to consider invariant operators de�ned on Lie groups.
Results of this kind have been �rst provided in [18, 25] in the case of the 3D Heisenberg group.
Afterwards, other explicit expressions have been found �rst for 2-step nilpotent free Lie groups (again
in [18]) and then for general 2-step nilpotent Lie groups (see [4,10]). We provided in [1] the expressions
of heat kernels for 2-step groups that are not nilpotent, namely SU(2), SO(3), SL(2) and the group of
rototranslations of the plane SE(2). See also [15]. For other examples, see e.g. [35, 36].

c©ÐÓÄÍ

1



2 UGO BOSCAIN, JEAN-PAUL GAUTHIER, FRANCESCO ROSSI

In our paper we present the �rst results, to our knowledge, about the expression of the hypoelliptic
heat kernel on the following 3-step Lie groups. The �rst one is the Engel group G4, that is the nilpotent
group with growth vector (2, 3, 4). Its Lie algebra is L4 = span {l1, l2, l3, l4}, the generators of which
satisfy

[l1, l2] = l3, [l1, l3] = l4, [l1, l4] = [l2, l3] = [l2, l4] = [l3, l4] = 0.

The second example is the Cartan group G5, that is the free nilpotent group with growth vector
(2, 3, 5). Its Lie algebra is L5 = span {l1, l2, l3, l4, l5} and generators satisfy

[l1, l2] = l3, [l1, l3] = l4, [l2, l3] = l5,

[l1, l4] = [l1, l5] = [l2, l4] = [l2, l5] = [l3, l4] = [l3, l5] = [l4, l5] = 0.

In both cases, we consider the heat equation with the so-called intrinsic hypoelliptic Laplacian ∆H

of the sub-Riemannian structure for which {gl1, gl2} (g element of the group) is an orthonormal frame.
It is intrinsic in the sense of [1], see also Section 2.2.1). As it has been proved in [1], since G4 and G5

are unimodular, then the intrinsic hypoelliptic Laplacian is the sum of the squares of the Lie derivative
with respect to the vector �elds gl1, gl2.

One interesting feature of these two sub-Riemannian problems is that they present abnormal mini-
mizers (see [29,30]) and it is known that in both cases ∆H is not analytic hypoelliptic1 [9]. Hence, for
these two examples the Tr�eves conjecture2 holds. Having information about the expression of the heat
kernel can help for further investigations in this direction.

Any other left-invariant sub-Riemannian structure of rank 2 on these groups is indeed isometric to
the ones we study in this paper, see [29, 30]. Moreover, notice that the sub-Riemannian structures we
study on G4 and G5 are local approximations (nilpotentizations, see [20]) of arbitrary sub-Riemannian
structures at regular points with growth vector (2, 3, 4) or (2, 3, 5), hence, roughly speaking, the kernels
on G4 and G5 provide approximations of the heat kernels at these points.

The goal of this paper is to transform the hypoelliptic heat equations on these Lie groups into a
family of elliptic heat equations on R, depending on one parameter. To this purpose, we apply the
method developed in [1], based on the Generalized Fourier Transform (GFT for short), and hence on
representation theory of these groups (see [12, p. 333�338]).

Applying the GFT to the original equation, we get an evolution equation on the Hilbert space where
representations act. For both examples, this is the heat equation over R with quartic potential, the
so-called quartic oscillator (see [11, 31]), for which no general explicit solution is known. Notice that
the connection between the quartic oscillator and degenerate elliptic operators has been already noted
(see [19]).

It is clearly possible to use numerical approximations of the evolution equation with quartic po-
tential (for which a huge amount of literature is available) to �nd numerical approximations of the
hypoelliptic heat kernel. However, this analysis is outside the aims of this paper.

The organization of the paper is the following. In Section 2 we recall the main de�nitions from sub-
Riemannian geometry, in particular for invariant structures on Lie groups. We then recall the de�nition
of the Generalized Fourier Transform and its main properties. Finally, we recall the main results of our
previous paper [1], where we studied hypoelliptic heat equations on Lie groups.

The main part of the paper is Section 3. We �rst present the Lie groups G4 and G5, their algebras
and their Euclidian and matrix presentations. We then recall results about their representations. We
�nally apply the method of computation of hypoelliptic heat kernels to the two groups G4 and G5, to
�nd explicitly the connection between the heat kernels on these groups and the fundamental solution
of the 1D heat equation with quartic potential.

1We recall that an operator P is analytic hypoelliptic when, given U ⊂ M and φ : U → R such that Pφ is analytic,
then φ is analytic.

2We recall that Tr�eves conjectured in [33] that the existence of abnormal minimizers on a sub-Riemannian manifold
is equivalent to the loss of analytic-hypoellipticity of ∆H .
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2. The hypoelliptic heat equation on a sub-Riemannian manifold

In this section we recall basic de�nitions from sub-Riemannian geometry, including the one of the
intrinsic hypoelliptic Laplacian. Then we recall our method for computing the hypoelliptic heat kernel
in the case of unimodular Lie groups, using the GFT.

2.1. Sub-Riemannian manifolds. We start by recalling the de�nition of sub-Riemannian mani-
fold.

De�nition 1. A (n,m)-sub-Riemannian manifold is a triple (M,N,g), where

• M is a connected smooth manifold of dimension n;
• N is a smooth distribution of constant rank m < n satisfying the H�ormander condition, i.e. N
is a smooth map that associates to q ∈M a m-dim subspace N(q) of TqM and ∀ q ∈M we have

span {[X1, [. . . [Xk−1, Xk] . . .]](q) | Xi ∈ VecH(M)} = TqM (1)

where VecH(M) denotes the set of horizontal smooth vector �elds on M , i.e.

VecH(M) = {X ∈ Vec(M) | X(p) ∈ N(p) ∀ p ∈M} .

• gq is a Riemannian metric on N(q), that is smooth as function of q.

When M is an orientable manifold, we say that the sub-Riemannian manifold is orientable.

A Lipschitz continuous curve γ : [0, T ] → M is said to be horizontal if γ̇(t) ∈ N(γ(t)) for almost
every t ∈ [0, T ]. Given an horizontal curve γ : [0, T ]→M , the length of γ is

l(γ) =

∫ T

0

√
gγ(t)(γ̇(t), γ̇(t)) dt. (2)

The distance induced by the sub-Riemannian structure on M is the function

d(q0, q1) = inf{l(γ) | γ(0) = q0, γ(T ) = q1, γ horizontal}. (3)

The hypothesis of connectedness of M and the H�ormander condition guarantee the �niteness and
the continuity of d(·, ·) with respect to the topology of M (Chow's Theorem, see for instance [2]). The
function d(·, ·) is called the Carnot-Charateodory distance and gives toM the structure of metric space
(see [5, 20]).

Locally, the pair (N,g) can be given by assigning a set of m smooth vector �elds spanning N and
that are orthonormal for g, i.e.

N(q) = span {X1(q), . . . , Xm(q)} , gq(Xi(q), Xj(q)) = δij . (4)

In this case, the set {X1, . . . , Xm} is called a local orthonormal frame for the sub-Riemannian
structure. When (N,g) can be de�ned as in (4) by m vector �elds de�ned globally, we say that the
sub-Riemannian manifold is trivializable.

When the manifold is analytic and the orthonormal frame can be assigned throughm analytic vector
�elds, we say that the sub-Riemannian manifold is analytic.

We end this section with the de�nition of regular sub-Riemannian manifold.

De�nition 2. Let N be a distribution and de�ne through the recursive formula

N1 := N, Nn+1 := Nn + [Nn,N].

The small �ag of N is the sequence

N1 ⊂ N2 ⊂ . . . ⊂ Nn ⊂ . . .

A sub-Riemannian manifold is said to be regular if for each n = 1, 2, . . . the dimension of Nn(q0)
does not depend on the point q0 ∈M .

In this paper we always deal with sub-Riemannian manifolds that are orientable, analytic, trivializ-
able and regular.
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2.2. Left-invariant sub-Riemannian manifolds. In this section we present a natural sub-
Riemannian structure that can be de�ned on Lie groups. All along the paper, we use the notation
for Lie groups of matrices. For general Lie groups, by gv with g ∈ G and v ∈ L, we mean (Lg)∗(v)
where Lg is the left-translation of the group.

De�nition 3. Let G be a Lie group with Lie algebra L and P ⊆ L a subspace of L satisfying the
Lie bracket generating condition

Lie P := span {[p1, [p2, . . . , [pn−1, pn]]] | pi ∈ P} = L.

Endow P with a positive de�nite quadratic form 〈., .〉. De�ne a sub-Riemannian structure on G as
follows:

• the distribution is the left-invariant distribution N(g) := gP;
• the quadratic form g on N is given by gg(v1, v2) := 〈g−1v1, g

−1v2〉.
In this case we say that (G,N,g) is a left-invariant sub-Riemannian manifold.

Remark 4. Observe that all left-invariant manifolds (G,N,g) are regular.

In the following we de�ne a left-invariant sub-Riemannian manifold choosing a set of m vectors
{p1, . . . , pm} that are an orthonormal basis for the subspace P ⊆ L with respect to the metric de-
�ned in De�nition 3, i.e. P = span {p1, . . . , pm} and 〈pi, pj〉 = δij . We thus have N(g) = gP =
span {gp1, . . . , gpm} and gg(gpi, gpj) = δij . Hence, every left-invariant sub-Riemannian manifold is
trivializable.

2.2.1. The intrinsic hypoelliptic Laplacian. In this section, we recall the de�nition of intrinsic hypoel-
liptic Laplacian given in [1], based on the Popp volume form in sub-Riemannian geometry presented
in [27].

Let (M,N,g) be a (n,m)-sub-Riemannian manifold and {X1, . . . Xm} a local orthonormal frame.
The operator obtained by the sum of squares of these vector �elds is not a good de�nition of hypoelliptic
Laplacian, since it depends on the choice of the orthonormal frame (see for instance [1]).

In sub-Riemannian geometry an invariant de�nition of hypoelliptic Laplacian is obtained by com-
puting the divergence of the horizontal gradient, like the Laplace-Beltrami operator in Riemannian
geometry.

De�nition 5. Let (M,N,g) be an orientable regular sub-Riemannian manifold. We de�ne the in-
trinsic hypoelliptic Laplacian as ∆Hφ := divHgradHφ, where

• the horizontal gradient is the unique operator gradH from C∞(M) to VecH(M) satisfying
gq(gradHφ(q), v) = dφq(v) ∀ q ∈ M, v ∈ N(q). (In coordinates if {X1, . . . Xm} is a local
orthonormal frame for (M,N,g), then gradHφ =

∑m
i=1 (LXiφ)Xi.)

• the divergence of a vector �eld X is the unique function satisfying divXµH = LXµH where µH is
the Popp volume form.

The construction of the Popp volume form is not totally trivial and we address the reader to [27]
or [1] for details. We just recall that the Popp volume form coincide with the Lebesgue measure in
a special system of coordinate related to the nilpotent approximation. In sub-Riemannian geometry
one can also de�ne other intrinsic volume forms, like the Hausdor� or the spherical Hausdor� volume.
However, at the moment, the Popp volume form is the only one known to be smooth in general.
However for left-invariant sub-Riemannian manifolds all these measures are proportional to the left
Haar measure.

The hypoellipticity of ∆H (i.e. given U ⊂ M and φ : U → R such that ∆Hφ ∈ C∞, then φ is C∞)
follows from the H�ormander Theorem (see [24]).

In this paper we are interested only to nilpotent Lie groups. The next proposition shows that for
all unimodular Lie groups, i.e. for groups such that the left and right Haar measure coincides (and
in particular for real connected nilpotent groups) the intrinsic hypoelliptic Laplacian is the sum of
squares.

Proposition 6. Let (G,N,g) be a left-invariant sub-Riemannian manifold generated by the or-
thonormal basis {p1, . . . , pm} ⊂ l. If G is unimodular then ∆Hφ =

∑m
i=1

(
L2
Xi
φ
)
where LXi is the Lie

derivative w.r.t. the �eld Xi = gpi.
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2.3. Computation of the hypoelliptic heat kernel via the Generalized Fourier Transform.
In this section we describe the method, developed in [1], for the computation of the hypoelliptic heat
kernel for left-invariant sub-Riemannian structures on unimodular Lie groups.

The method is based upon the GFT, that permits to disintegrate a function from a Lie group G
to R on its components on (the class of) non-equivalent unitary irreducible representations of G. For
proofs and more details, see [1].

2.3.1. The Generalized Fourier Transform. Let f ∈ L1(R,R): its Fourier transform is de�ned by the
formula

f̂(λ) =

∫
R
f(x)e−ixλdx.

If f ∈ L1(R,R) ∩ L2(R,R) then f̂ ∈ L2(R,R) and one has∫
R
|f(x)|2dx =

∫
R
|f̂(λ)|2 dλ

2π
,

called Parseval or Plancherel equation. By density of L1(R,R) ∩ L2(R,R) in L2(R,R), this equation
expresses the fact that the Fourier transform is an isometry between L2(R,R) and itself. Moreover, the
following inversion formula holds:

f(x) =

∫
R
f̂(λ)eixλ

dλ

2π
,

where the equality is intended in the L2 sense. It has been known from more than 50 years that the
Fourier transform generalizes to a wide class of locally compact groups (see for instance [8, 16, 22, 23,
26,32]). Next we brie�y present this generalization for groups satisfying the following hypothesis:

(H0): G is a unimodular Lie group of Type I.

For the de�nition of groups of Type I see [13]. For our purposes it is su�cient to recall that all groups
treated in this paper (i.e. G4 and G5) are of Type I. Actually, all the real connected nilpotent Lie
groups are of Type I [12,21]. In the following, the Lp spaces Lp(G,C) are intended with respect to the
Haar measure µ := µL = µR.

Let G be a Lie group satisfying (H0) and Ĝ be the dual1 of the group G, i.e. the set of all equivalence

classes of unitary irreducible representations of G. Let λ ∈ Ĝ: in the following we indicate by Xλ a
choice of an irreducible representation in the class λ. By de�nition, Xλ is a map that to an element of
G associates a unitary operator acting on a complex separable Hilbert space Hλ:

Xλ :
G → U(Hλ)

g 7→ Xλ(g).

The index λ for Hλ indicates that in general the Hilbert space can vary with λ.

De�nition 7. Let G be a Lie group satisfying (H0), and f ∈ L1(G,C). The generalized (or non-

commutative) Fourier transform (GFT) of f is the map (indicated in the following as f̂ or F(f)) that

to each element of Ĝ associates the linear operator on Hλ:

f̂(λ) := F(f) :=

∫
G
f(g)Xλ(g−1)dµ. (5)

Notice that since f is integrable and Xλ unitary, then f̂(λ) is a bounded operator.

Remark 8. f̂ can be seen as an operator from
⊕∫
Ĝ H

λ to itself. We also use the notation f̂ =
⊕∫
Ĝ f̂(λ)

In general Ĝ is not a group and its structure can be quite complicated. In the case in which G is
abelian then Ĝ is a group; if G is nilpotent (as in our cases) then Ĝ has the structure of Rn for some
n.

1 In this paper, by the dual of the group, we mean the support of the Plancherel measure on the set of non-equivalent
unitary irreducible representations of G; we thus ignore the singular representations.
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Under the hypothesis (H0) one can de�ne on Ĝ a positive measure dP (λ) (called the Plancherel
measure) such that for every f ∈ L1(G,C) ∩ L2(G,C) one has∫

G
|f(g)|2µ(g) =

∫
Ĝ
Tr(f̂(λ) ◦ f̂(λ)∗)dP (λ).

By density of L1(G,C) ∩ L2(G,C) in L2(G,C), this formula expresses the fact that the GFT is an

isometry between L2(G,C) and
⊕∫
Ĝ HSλ, the set of Hilbert-Schmidt operators with respect to the

Plancherel measure. Moreover, it is obvious that:

Proposition 9. Let G be a Lie group satisfying (H0)and f ∈ L1(G,C) ∩ L2(G,C). We have, for
each g ∈ G

f(g) =

∫
Ĝ
Tr(f̂(λ) ◦ Xλ(g))dP (λ). (6)

where the equality is intended in the L2 sense.

It is immediate to verify that, given two functions f1, f2 ∈ L1(G,C) and de�ning their convolution as

(f1 ∗ f2)(g) =

∫
G
f1(h)f2(h−1g)dh, (7)

then the GFT maps the convolution into non-commutative product:

F(f1 ∗ f2)(λ) = f̂2(λ)f̂1(λ). (8)

Another important property is that if δId(g) is the Dirac function at the identity over G, then

δ̂Id(λ) = IdHλ . (9)

In the following, a key role is played by the in�nitesimal version of the representation Xλ, that is the
map

dXλ : X 7→ dXλ(X) :=
d

dt

∣∣∣∣
t=0

Xλ(etp), (10)

where X = gp, (p ∈ l, g ∈ G) is a left-invariant vector �eld over G. By Stone theorem (see for
instance [32, p. 6]), dXλ(X) is a (possibly unbounded) skew-adjoint operator on Hλ. We have the
following:

Proposition 10. Let G be a Lie group satisfying (H0) and X be a left-invariant vector �eld over

G. The GFT of X, i.e. X̂ = FLXF−1 splits into the Hilbert sum of operators X̂λ, each of them acting
on the set HSλ of Hilbert-Schmidt operators over Hλ:

X̂ =

⊕∫
Ĝ
X̂λ.

Moreover,

X̂λΞ = dXλ(X) ◦ Ξ, for every Ξ ∈ HSλ, (11)

i.e. the GFT of a left-invariant vector �eld acts as a left-translation over HSλ.

Remark 11. From the fact that the GFT of a left-invariant vector �eld acts as a left-translation, it
follows that X̂λ can be interpreted as an operator over Hλ.
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2.3.2. Computation of the kernel of the hypoelliptic heat equation. In this section we provide a general
method to compute the kernel of the hypoelliptic heat equation on a left-invariant sub-Riemannian
manifold (G,N,g) such that G satis�es the assumption (H0).

We begin by recalling some existence results (for the semigroup of evolution and for the corresponding
kernel) in the case of the sum of squares. We recall that for all the examples treated in this paper the
invariant hypoelliptic Laplacian is the sum of squares.

Let G be a unimodular Lie group and (G,N,g) a left-invariant sub-Riemannian manifold generated
by the orthonormal basis {p1, . . . , pm}, and consider the hypoelliptic heat equation

∂tφ(t, g) = ∆Hφ(t, g). (12)

Since G is unimodular, then ∆H = L2
X1

+ . . .+ L2
Xm

, where LXi is the Lie derivative w.r.t. the vector
�eld Xi := gpi (i = 1, . . . ,m). Following Varopoulos [34, pp. 20-21, 106], since ∆H is a sum of squares,
then it is a symmetric operator that we identify with its Friedrichs (self-adjoint) extension, that is
the in�nitesimal generator of a (Markov) semigroup et∆H . Thanks to the left-invariance of Xi (with
i = 1, . . . ,m), et∆H admits a a right-convolution kernel pt(.), i.e.

et∆Hφ0(g) = φ0 ∗ pt(g) =

∫
G
φ0(h)pt(h

−1g)µ(h) (13)

is the solution for t > 0 to (12) with initial condition φ(0, g) = φ0(g) ∈ L1(G,R) with respect to the
Haar measure.

Since the operator ∂t − ∆H is hypoelliptic, then the kernel is a C∞ function of (t, g) ∈ R+ × G.
Notice that pt(g) = et∆HδId(g).

The main results of the paper are based on the following key fact.

Theorem 12. Let G be a Lie group satisfying (H0) and (G,N,g) a left-invariant sub-Riemannian
manifold generated by the orthonormal basis {p1, . . . , pm}. Let ∆H = L2

X1
+ . . .+L2

Xm
be the intrinsic

hypoelliptic Laplacian where LXi is the Lie derivative w.r.t. the vector �eld Xi := gpi.
Let

{
Xλ
}
λ∈Ĝ be the set of all non-equivalent classes of irreducible representations of the group G,

each acting on an Hilbert space Hλ, and dP (λ) be the Plancherel measure on the dual space Ĝ. We
have the following:

(i) the GFT of ∆H splits into the Hilbert sum of operators ∆̂λ
H , each one of which leaves Hλ invari-

ant:

∆̂H = F∆HF−1 =

⊕∫
Ĝ

∆̂λ
HdP (λ), where ∆̂λ

H =
m∑
i=1

(
X̂λ
i

)2
. (14)

(ii) The operator ∆̂λ
H is self-adjoint and it is the in�nitesimal generator of a contraction semi-group

et∆̂
λ
H over HSλ, i.e. et∆̂

λ
HΞλ0 is the solution for t > 0 to the operator equation ∂tΞ

λ(t) = ∆̂λ
HΞλ(t)

in HSλ, with initial condition Ξλ(0) = Ξλ0 .
(iii) The hypoelliptic heat kernel is

pt(g) =

∫
Ĝ
Tr
(
et∆̂

λ
HXλ(g)

)
dP (λ), t > 0. (15)

Remark 13. As a consequence of Remark 11, it follows that ∆̂λ
H and et∆̂

λ
H can be considered as

operators on Hλ.

The following corollary gives a useful formula for the hypoelliptic heat kernel in the case in which for

all λ ∈ Ĝ each operator et∆̂
λ
H admits a convolution kernel Qλt (., .). Below by ψλ, we intend an element

of Hλ.

Corollary 14. Under the hypotheses of Theorem 12, if for all λ ∈ Ĝ we have Hλ = L2(Xλ, dθλ)
for some measure space (Xλ, dθλ) and[

et∆̂
λ
Hψλ

]
(θ) =

∫
Xλ

ψλ(θ̄)Qλt (θ, θ̄) dθ̄,
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then

pt(g) =

∫
Ĝ

∫
Xλ

Xλ(g)Qλt (θ, θ̄)
∣∣∣
θ=θ̄

dθ̄ dP (λ),

where in the last formula Xλ(g) acts on Qλt (θ, θ̄) as a function of θ.

3. Hypoelliptic heat kernels on G4 and G5

In this section we describe the groups G4 and G5 and provide their matrix and Euclidean presenta-
tions. We de�ne left-invariant sub-Riemannian structures on them and the corresponding hypoelliptic
Laplacian.

We then provide representations of the groups and compute the GFT of the hypoelliptic Laplacian.
We apply the method presented in Section 2.3.2 to compute the fundamental solution of the hypoelliptic
heat equation.

3.1. De�nitions of G4 and G5. In our paper we deal with two 3-step Lie groups. The �rst one is
the nilpotent group G4 with growth vector (2, 3, 4). Its Lie algebra is L4 = span {l1, l2, l3, l4} , whose
generators satisfy

[l1, l2] = l3, [l1, l3] = l4, [l1, l4] = [l2, l3] = [l2, l4] = [l3, l4] = 0.

The second one is the free nilpotent group G5 with growth vector (2, 3, 5). Its Lie algebra is L5 =
span {l1, l2, l3, l4, l5} , whose generators satisfy

[l1, l2] = l3, [l1, l3] = l4, [l2, l3] = l5,

[l1, l4] = [l1, l5] = [l2, l4] = [l2, l5] = [l3, l4] = [l3, l5] = [l4, l5] = 0.

Both G4 and G5 are 3-step nilpotent, as a direct consequence of the de�nition.

3.2. Hypoelliptic heat kernel on G4. In this section we �rst give the matrix and Euclidean
presentations of the Lie group G4. We then de�ne a sub-Riemannian structure on it. We give explicitly
the representations of the group, that we use at the end to compute the hypoelliptic kernel in terms
of the kernel of the quartic oscillator.

We start with the Lie algebra L4, that can be presented as the follow matrix space

L4 '




0 −a1 0 a4

0 0 −a1 a3

0 0 0 a2

0 0 0 0

 | ai ∈ R

 .

We present each li as the matrix with aj = δij . It is straightforward to prove that these matrices satisfy
the commutation rules for L4, where the bracket operation is the standard [A,B] := BA−AB.

A matrix presentation of the group G4 is thus the matrix exponential of L4:

G4 '

exp




0 −a1 0 a4

0 0 −a1 a3

0 0 0 a2

0 0 0 0


 | ai ∈ R

 =




1 −x1
x21
2 x4

0 1 −x1 x3

0 0 1 x2

0 0 0 1

 | xi ∈ R

 ,

with

x1 = a1, x2 = a2, x3 = a3 −
a1a2

2
, x4 = a4 +

a2
1a2

6
− a1a3

2
.

We now de�ne the isomorphism Π4 between G4 and R4 given by

Π4




1 −x1
x21
2 x4

0 1 −x1 x3

0 0 1 x2

0 0 0 1


 = (x1, x2, x3, x4).
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This isomorphism is a group isomorphism when R4 is endowed with the following product (see [14, p.
330]):

(x1, x2, x3, x4) · (y1, y2, y3, y4) :=

(
x1 + y1, x2 + y2, x3 + y3 − x1y2, x4 + y4 +

1

2
x2

1y2 − x1y3

)
The isomorphism Π4 induces an isomorphism of tangent spaces Tgg ' TΠ4(g)R4, that is explicitly
gli ' Xi, with Xi given by

X1(x) =
∂

∂x1
, X2(x) =

∂

∂x2
− x1

∂

∂x3
+
x2

1

2

∂

∂x4
, (16)

X3(x) =
∂

∂x3
− x1

∂

∂x4
, X4(x) =

∂

∂x4
,

where x = (x1, x2, x3, x4).

3.2.1. Left-invariant sub-Riemannian structure on G4. We endow G4 with a left-invariant sub-
Riemannian structure as presented in Section 2.2. We de�ne the sub-Riemannian manifold (G4,N,g)
where N(g) = gp with p = span {l1, l2} and gg(gli, glj) = δij with i, j = 1 or 2. For computation of
geodesics for this structure, see [3].

Since G4 is nilpotent, then it is unimodular, thus the intrinsic hypoelliptic Laplacian ∆H is the
sum of squares (see [1, Proposition 17]). In terms of the Euclidean presentation of G4, the hypoelliptic
Laplacian is thus ∆H = X2

1 +X2
2 , with the Xi given by (16).

We thus want to �nd the fundamental solution for the following heat equation:

∂tφ(t, x) = ∆Hφ(t, x). (17)

3.2.2. Representations of G4. We now recall the representations of the group G4, as computed by
Dixmier in [14, p. 333]. As stated before, we may consider only representations on the support of the
Plancherel measure.

Proposition 15. The dual space of G4 is Ĝ =
{
Xλ,µ | λ 6= 0, µ ∈ R

}
, where

Xλ,µ(x1, x2, x3, x4) :
H → H

ψ(θ) 7→ exp

(
i

(
− µ

2λ
x2 + λx4 − λx3θ +

λ

2
x2θ

2

))
ψ(θ + x1)

whose domain is H = L2(R,C), endowed with the standard product < ψ1, ψ2 >:=
∫
R ψ1(θ)ψ2(θ) dθ

where dθ is the Lebesgue measure.
The Plancherel measure on Ĝ is dP (λ, µ) = dλdµ, i.e. the Lebesgue measure on R2.

Remark 16. Notice that in this case the domain H of the representation Xλ,µ does not depend on
λ, µ.

3.2.3. The kernel of the hypoelliptic heat equation. Consider the representation Xλ,µ of G4 and let

dXλ,µi be the corresponding representations of the di�erential operators LXi with i = 1, 2. Recall that

dXλ,µi are operators on H. Again from [14, p. 333], or by explicit computation, we have[
dXλ,µ1 ψ

]
(θ) =

d

dθ
ψ(θ), [dXλ,µ2 ψ](θ) =

(
− i

2

µ

λ
+
i

2
λθ2

)
ψ(θ),

thus [
∆̂λ,µ
H ψ

]
(θ) =

(
d2

dθ2
− 1

4

(
λθ2 − µ

λ

)2
)
ψ(θ).

The GFT of the hypoelliptic heat equation is thus

∂tψ =

(
d2

dθ2
− 1

4

(
λθ2 − µ

λ

)2
)
ψ(θ). (18)

We rewrite it as

∂tψ =

(
d2

dθ2
−
(
αθ2 + β

)2)
ψ(θ), (19)
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with α = λ
2 , β = − µ

2λ .

The operator d2

dθ2
−(αθ2 +β)2 is the Laplacian with quartic potential, see e.g. [31]. As already stated,

no general explicit solutions are known for this equation. We call

Ψt

(
θ, θ̄;α, β

)
the solution of {

∂tψ(t, θ) =
(
d2

dθ2
−
(
αθ2 + β

)2)
ψ(t, θ),

ψ(0, θ) = δθ̄,

i.e. the solution of (19) evaluated in θ at time t, with initial data δθ̄ and parameters α, β.
Applying Corollary 14 and after straightforward computations, one gets the kernel of the hypoelliptic

heat equation on the group G4:

pt(x1, x2, x3, x4) =

∫
R\{0}

dλ

∫
R
dµ

∫
R
dθ ei(−

µ
2λ
x2+λx4−λx3θ+λ

2
x2θ2)Ψt

(
θ + x1, θ;

λ

2
,− µ

2λ

)
. (20)

3.3. Hypoelliptic heat kernel on G5. The Lie algebra L5 of the group G5 can be presented as
the following matrix space

L5 '
{(

M1(a1, a2, a3, a4) 04×4

04×4 M2(a1, a2, a3, a5)

)
| ai ∈ R

}
,

where

M1(a1, a2, a3, a4) =


0 −a1 0 a4

0 0 −a1 a3

0 0 0 a2

0 0 0 0

 , M2(a1, a2, a3, a5) =


0 a2 0 a5

0 0 a2 −a3

0 0 0 −a1

0 0 0 0

 .

We present each li as the matrix with aj = δij . It is straightforward to prove that these matrices
satisfy the commutation rules for L5, where the bracket operation is the standard [A,B] := BA−AB.

A matrix presentation of the group G5 is thus the matrix exponential of L5:

G5 '
{

exp

((
M1(a1, a2, a3, a4) 04×4

04×4 M2(a1, a2, a3, a5)

))
| ai ∈ R

}
=

=

{(
exp (M1(a1, a2, a3, a4)) 04×4

04×4 exp (M2(a1, a2, a3, a5))

)
| ai ∈ R

}
=

=

{(
N1(x1, x2, x3, x4) 04×4

04×4 N2(x1, x2, x3, x5)

)
| xi ∈ R

}
with

N1(x1, x2, x3, x4) =


1 −x1

x21
2 x4

0 1 −x1 x3

0 0 1 x2

0 0 0 1

 , N2(x1, x2, x3, x5) =


1 x2

x22
2 x5 −

x1x22
2

0 1 x2 −x3 − x1x2

0 0 1 −x1

0 0 0 1

 ,

x1 = a1, x2 = a2, x3 = a3 −
a1a2

2
, x4 = a4 +

a2
1a2

6
− a1a3

2
, x5 = a5 +

a1a
2
2

6
− a2a3

2
.

We now de�ne the isomorphism Π5 between G5 and R5 given by

Π4

((
N1(x1, x2, x3, x4) 04×4

04×4 N2(x1, x2, x3, x5)

))
= (x1, x2, x3, x4, x5).

This isomorphism is a group isomorphism when R5 is endowed with the following product (see [14, p.
331]):

(x1, x2, x3, x4, x5) · (y1, y2, y3, y4, y5) :=(
x1 + y1, x2 + y2, x3 + y3 − x1y2, x4 + y4 +

1

2
x2

1y2 − x1y3, x5 + y5 +
1

2
x1y

2
2 − x2y3 + x1x2y2

)
.
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The isomorphism Π5 induces an isomorphism of tangent spaces Tgg ' TΠ5(g)R5, that is explicitly
gli ' Xi, with Xi given by

X1(x) =
∂

∂x1
, X2(x) =

∂

∂x2
− x1

∂

∂x3
+
x2

1

2

∂

∂x4
+ x1x2

∂

∂x5
, (21)

X3(x) =
∂

∂x3
− x1

∂

∂x4
− x2

∂

∂x5
, X4(x) =

∂

∂x4
, X5(x) =

∂

∂x5
,

where x = (x1, x2, x3, x4, x5).
We endow G5 with a left-invariant sub-Riemannian structure as presented in Section 2.2, where

p = span {l1, l2} and gg(gli, glj) = δij with i, j = 1 or 2.
We thus want to �nd the fundamental solution for the following heat equation:

∂tφ(t, x) = ∆Hφ(t, x), (22)

with ∆H = X2
1 +X2

2 .

3.3.1. Representations of G5. We now recall the representations of the group G5, as computed by
Dixmier in [14, p. 338]. As stated before, we may consider only representations on the support of the
Plancherel measure.

Proposition 17. The dual space of G5 is Ĝ =
{
Xλ,µ,ν | λ2 + µ2 6= 0, ν ∈ R

}
, where

Xλ,µ,ν(x1, x2, x3, x4, x5) :
H → H

ψ(θ) 7→ exp
(
iKλ,µ,ν

x1,x2,x3,x4,x5(θ)
)
ψ

(
θ +

λx1 + µx2

λ2 + µ2

)
with

Kλ,µ,ν
x1,x2,x3,x4,x5(θ) = −1

2

ν

λ2 + µ2
(µx1 − λx2) + λx4 + µx5 +

− 1

6

µ

λ2 + µ2

(
λ2x3

1 + 3λµx2
1x2 + 3µ2x1x

2
2 − λµx3

2

)
+ µ2x1x2θ + λµ(x2

1 − x2
2)θ +

+
1

2

(
λ2 + µ2

)
(µx1 − λx2) θ2.

The domain of Xλ,µ,ν(x1, x2, x3, x4, x5) is H = L2(R,C), endowed with the standard product <
ψ1, ψ2 >:=

∫
R ψ1(θ)ψ2(θ) dθ where dθ is the Lebesgue measure.

The Plancherel measure on Ĝ is dP (λ, µ, ν) = dλdµdν, i.e. the Lebesgue measure on R3.

Remark 18. Notice that in this case the domain H of the representation Xλ,µ,ν does not depend on
λ, µ, ν.

3.3.2. The kernel of the hypoelliptic heat equation. Consider the representation Xλ,µ,ν of G5 and let

dXλ,µ,νi be the corresponding representations of the di�erential operators LXi with i = 1, 2. Recall that

dXλ,µ,νi are operators on H. Again from [14, p. 338], or by explicit computation, we have[
dXλ,µ,ν1 ψ

]
(θ) =

(
− i

2

µη

λ2 + µ2
+

λ

λ2 + µ2

d

dθ
− i

2
µ
(
λ2 + µ2

)
θ2

)
ψ(θ)[

dXλ,µ,ν2 ψ
]

(θ) =

(
i

2

λµ

λ2 + µ2
+

µ

λ2 + µ2

d

dθ
+
i

2
λ
(
λ2 + µ2

)
θ2

)
ψ(θ),

thus [
∆̂λ,µ,ν
H ψ

]
(θ) =

1

λ2 + µ2

d2ψ(θ)

dθ2
−
(
ν + (λ2 + µ2)2θ2

)2
4 (λ2 + µ2)

.

The GFT of the hypoelliptic heat equation is thus

∂tψ =
1

λ2 + µ2

d2ψ(θ)

dθ2
−
(
ν + (λ2 + µ2)2θ2

)2
4 (λ2 + µ2)

ψ(θ). (23)
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We rewrite it as

∂τψ =

(
d2

dθ2
−
(
αθ2 + β

)2)
ψ(θ), (24)

with τ = t
(λ2+µ2)

, α = λ2+µ2

2 , β = −ν
2 .

The operator d2

dθ2
−(αθ2 +β)2 is the Laplacian with quartic potential, see e.g. [31]. As already stated,

no general explicit solutions are known for this equation. We call

Ψτ

(
θ, θ̄;α, β

)
the solution of {

∂τψ(τ, θ) =
(
d2

dθ2
−
(
αθ2 + β

)2)
ψ(τ, θ),

ψ(0, θ) = δθ̄,

i.e. the solution of (24) evaluated in θ at time τ , with initial data δθ̄ and parameters α, β.
Applying Corollary 14 and after straightforward computations, one gets the kernel of the hypoellip-

tic heat equation on the group G5:

pt(x1, x2, x3, x4, x5) =

=

∫
λ2+µ2 6=0

dλdµdν

∫
R
dθ exp

(
iKλ,µ,ν

x1,x2,x3,x4,x5(θ)
)

Ψ t
λ2+µ2

(
θ +

λx1 + µx2

λ2 + µ2
, θ;

λ2 + µ2

2
,−ν

2

)
. (25)
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