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Extensions of “Padé Discretization for Linear Systems With Polyhedral Lyapunov
Functions” for generalised Jordan structures
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Abstract—Recently, we showed that certain types of polyhedral
Lyapunov functions for linear time-invariant systems, are pre-
served by diagonal Padé approximations, under the assumption
that the continuous-time system matrix Ac has distinct eigenval-
ues. In this paper we show that this result also holds true in the
case that Ac has non-trivial Jordan blocks.

Index Terms—Polyhedral Lyapunov functions, Preservation of
Lyapunov functions, Discretization, Padé approximations, Non-
trivial Jordan blocks.

I. INTRODUCTION

RECENTLY, we showed that certain types of polyhedral
Lyapunov functions for linear time-invariant systems,

are preserved by diagonal Padé approximations, under the
assumption that the continuous-time system matrix Ac has
distinct eigenvalues [1]. This result follows by making explicit
use of the fact that the diagonal Padé approximation preserves
the Jordan structure of a matrix Ac if the matrix has distinct
eigenvalues. Unfortunately, this fact no longer holds when Ac
has non-trivial Jordan blocks, and the purpose of this paper is
therefore to extend the results of [1] to the case of non-trivial
Jordan blocks.

Polyhedral Lyapunov functions are known to be
nonconservative in the analysis of stability under arbitrary
switching for polytopic and switched systems, when compared
to quadratic Lyapunov functions [2]. The motivation for
wondering whether there exists a polyhedral LF that is
shared under discretization is discussed in [1]. Recall that
the investigation of the preservation of properties of linear
systems when passing from the continuous-time analysis to
the discrete-time one has been the subject of great interest
in the control theory community [3]. This investigation for
linear time-invariant systems is mature. On the other hand,
the theory of switched linear systems on the other hand, is a
relatively new field of research where the knowledge of the
shared properties between continuous-time and discrete-time
systems is nearly absent. In particular, in studying systems
that involve switching control engineers are interested in
developing discretisation methods that yield discrete-time
approximations that inherit some of the qualitative properties
of the original system. Stability is one such property and
it is in this context that polyhedral Lyapunov functions
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arise; recall, the converse theorems tell us that (roughly
speaking), exponential stability and polyhedral stability are
interchangeable concepts even for switched linear systems
[4]. The question as to which discretisation methods preserve
polyhedral Lyapunov functions is thus of fundamental interest.
The present paper completes the work started in [1] as it
extends the given results even to the case where the system
matrix has non-trivial Jordan blocks.

Notation: The notation R is used to denote the set of real
numbers. In this paper we consider the∞-measure of a square
matrix X defined as µ∞(X) = maxi

(
Xii +

∑
j 6=i |Xij |

)
and the∞-norm as ‖X‖∞ = maxi

∑
j |Xij |, where the terms

Xij are the entries of X .

II. PROBLEM STATEMENT

Consider a continuous-time linear time-invariant (LTI) system

ẋ(t) = Acx(t), (1)

where x ∈ Rn and the matrix Ac ∈ Rm×m. We are interested
in the discrete time approximation to this system with a
positive sampling time h ∈ R given by

x(k + 1) = Adx(k) (2)

where Ad is obtained via the diagonal Padé approximation to
eAch.

Definition 1: [8] Let n be a positive integer, then the nth

order diagonal Padé approximation to the exponential function
ez is the rational function P[n/n] defined by P[n/n](z) =
Zn(z)
Zn(−z) where

Zn(z) =

n∑
k=0

ckz
i and ci =

(2n−i)!n!

(2n)!i!(n−i)!
. (3)

Thus the nth order diagonal Padé approximation to eAch, the
matrix exponential with sampling time h, is given by

Ad = P[n/n](Ach) = Zn(Ach)Z−1
n (−Ach) (4)

where Zn(Ach) =
∑n
k=0 ck(Ach)k. An important property of

diagonal Padé approximation is that, roots of the polynomial
Zn(−z) (poles of P[n/n](z)) lie in the open right half plane
[8]. Thus P[n/n](z) is analytic on the closed left half plane.
Furthermore, diagonal Padé approximations map the closed
left half plane into the closed unit circle, hence the eigenvalues
of Ad lie inside the unit circle [8] whenever Ac is Hurwitz.
We assume that all the continuous time system matrices Ac
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are Hurwitz. Consider now a piecewise linear (polyhedral),
candidate Lyapunov function V (x) given by

V (x) = ‖Wx‖∞ (5)

where W ∈ RN×m is full rank matrix and x is state vector
given by equations (1) or (2).

Definition 2: [5] Consider V (x) given by (5), then
(i) V (x) is polyhedral Lyapunov function for (1) if and only

if

lim
τ→0+

‖W (I + τAc)x‖∞ − ‖Wx‖∞
τ

< 0 for all x 6= 0.

(6)
(ii) V (x) is polyhedral Lyapunov function for (2) if and only

if
‖WAdx‖∞ − ‖Wx‖∞ < 0 for all x 6= 0. (7)

Now we present necessary and sufficient conditions under
which conditions (6) and (7) are satisfied for functions
‖Wcx‖∞ and ‖Wdx‖∞ respectively [5].

Lemma 3: Given a full column rank matrix Wc ∈ RN×m,
N ≥ m, the function Vc(x) := ‖Wcx‖∞ is a Lyapunov
function for the continuous-time system ẋ = Acx if there
exists Qc ∈ RN×N such that

WcAc = QcWc, µ∞(Qc) < 0.

Lemma 4: Given a full column rank matrix Wd ∈ RN×m,
N ≥ m, the function Vd(x) := ‖Wdx‖∞ is a Lyapunov
function for the discrete-time system x(k + 1) = Adx(k) if
there exists Qd ∈ RN×N such that

WdAd = QdWd, ‖Qd‖∞ < 1.

In this paper we are interested in the preservation of polyhe-
dral Lyapunov functions under diagonal Padé approximation.
Recall in [1], we have proved the following fundamental result:

Theorem 5: Consider a Hurwitz stable matrix Ac of di-
mension N and its diagonal Padé discretization Ad of order n.
Assume that all eigenvalues of Ac are distinct. Let Nr be the
number of real negative eigenvalues, and 2Nc be the number
of pairs of complex eigenvalues σi ± jτi, i = 1, 2, · · · , Nc.
For each pair of complex eigenvalues, let ki be an integer
greater than one such that σi ± jτi belongs to the sector
Sc(ki) := {λ = σ + jτ : σ < 0, |τ | <

sin( πki
)

1−cos( πki ) |σ|}.

Then there exist W ∈ RN ′×N , with N ′ =
∑k
i=1 ki+Nr with

W =


W1 0 · · · 0 0
0 W2 · · · 0 0
...

...
. . .

...
...

0 0 · · · WNc 0
0 0 · · · 0 I

Tc, (8)

where Wi =


1 0

cos( π
ki

) sin( π
ki

)

cos( 2π
ki

) sin( 2π
ki

)
...

...
cos( (ki−1)π

ki
) sin( (ki−1)π

ki
)

 ,

and Tc is the Modal matrix for Ac, such that V (x) :=
‖Wx‖∞ is a Lyapunov function both for Ac and Ad.

The geometrical meaning of sectors Sc(k) is explained in
detail in [1]. In this article, we prove the same result when
Ac has non-trivial Jordan blocks. Given Ac a square matrix,
we consider its real Jordan form Jc = T−1

c AcTc:

Jc =


J0
c 0 . . . 0
0 J1

c . . . 0
...
0 . . . 0 J lc

 , (9)

where J1
c , . . . , J

l
c are all the blocks either of the form
λ 1 0 . . . 0
0 λ 1 . . . 0
0 0 λ . . . 0
...

...
. . .

. . .
...

0 0 0 . . . λ

 (10)

with λ < 0 (real eigenvalues), or of the form:
Λ I 0 . . . 0
0 Λ I . . . 0
...

...
. . .

. . .
...

0 0 . . . Λ I
0 0 . . . . . . Λ

 (11)

where Λ =

(
σ τ
−τ σ

)
, σ < 0, τ > 0, I is the identity

matrix of dimension 2 and 0 is the null matrix of dimension
2. The first block J0

c has the following structure

J0
c =



λ1 . . . 0 0 0 . . . 0 0
...
0 . . . λn0 0 0 . . . 0 0
0
0

. . .
0
0

Λ1 . . .
0 0
0 0

...
0
0

. . .
0
0

0 0
0 0

. . . Λm0


with Λi =

(
αi βi
−βi αi

)
. In other words, J0

c contains

the real eigenvalues λi (eventually coinciding) such that the
corresponding line and column in the real Jordan form are
0 except on the diagonal itself, and the complex eigenvalues
blocks Λi such that the corresponding lines and columns are
0 except on the block itself.

We now state our main result:

Theorem 6: Let Ac be a Hurwitz matrix. Then, there
exists a matrix W such that for all h > 0 and any order n of
approximation, the systems (1) and (2) with Ad = P[n/n](Ach)
share the polyhedral Lyapunov function ‖Wx‖∞. We have
W = W̃Tc where Tc is the modal matrix for Ac and the
precise structure of W̃ is given in Lemmas 7 and 9.

We shall prove this theorem in Section V. The proof is based
on the study of each block of the matrix Jc, the real-Jordan
form for Ac. For this reason, we first study the two following
special cases: the real case, in which Ac is given by (10); and
the complex case, in which Ac is given (11). These cases are
presented in the two following sections.
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III. THE REAL CASE

In this section, we consider Ac of the form (10). We denote
its dimension with m. Then

Ad = P[n/n](Ach) =


f0 f1 f2 . . . fm−1

0 f0 f1 . . . fm−2

0 0 f0 . . . fm−3

...
...

...
. . .

...
0 0 0 . . . f0

 , (12)

with fi := P
(i)
[n/n](λh)h

i

i! . The index (i) denotes the i-th
derivative of P[n/n](x) with respect to x. This formula
can be easily proved by writing P[n/n](x) =

∑∞
i=0 aix

i

and studying the expression of the powers Aic; see [7] for
details. As a consequence, terms on the upper diagonal
have series expressions coinciding with derivatives of the
series

∑∞
i=0 aix

i. The convergence of the series for Ac
Hurwitz is given by the fact that Padé approximation and
its derivatives have poles in the open right-half plane only
[8].The formula (12) indicates the primary motivation for
extending the results obtained in [1]. It can be observed that
the function of a matrix with non-trivial Jordan blocks is
not in its Jordan form, hence the modal matrices for Ac and
P[n/n](Ach) are not the same. However, the results in [1]
are based on the assumption that Ac has distinct eigenvalues
leading to the same modal matrices for Ac and P[n/n](Ach).
This observation motivates this paper to extend the results
from [1] for a more general case with matrix Ac having
non-trivial Jordan blocks. We now prove the following lemma.

Lemma 7: Consider the Hurwitz matrix Ac of the form
(10) and denote its dimension with m. Then, there exists a
positive α > − 1

λ such that for all h > 0 and any order n of
approximation, the matrices Ac and Ad = P[n/n](Ach) share
the common Lyapunov function

V (x) = ‖Dx‖∞. (13)

with D = diag{1, α . . . , αm−1}.

Proof : We first prove that (13) is a Lyapunov func-
tion for Ac using the conditions from Lemma 3. Since
D is invertible, we transform DAc = QcD to Qc =

DAcD
−1 =


λ 1

α
0 . . . 0

0 λ 1
α

. . . 0
...

...
. . .

. . .
...

0 0 . . . λ 1
α

0 0 . . . . . . λ

 . Under the con-

dition α > − 1
λ , we have that µ∞(Qc) = λ +

1
α < 0. Thus V (x) = ‖Dx‖∞ is a Lyapunov func-
tion for Ac. Since Ad = P[n/n](Ach) is given by
(12), we can compute Qd = DP[n/n](Ach)D−1, that is

Qd =


f0

f1
α

f2
α2 . . .

fm−1

αm−1

0 f0
f1
α

. . .
fm−2

αm−2

0 0 f0 . . .
fm−3

αm−3

...
...

...
. . .

...
0 0 0 . . . f0

. To show that (13) is

a Lyapunov function for Ad we need to prove ‖Qd‖∞ < 1

(see Lemma 4), which is further equivalent to prove that

|f0|+
|f1|
α

+
|f2|
α2

+ . . .+
|fm−1|
αm−1

< 1 (14)

Take now any h̄ > 0. We compute α such that (14) is
satisfied for all h < h̄. For each i = 1, . . . ,m − 1, compute
M i = maxh∈[0,h̄] |P

(i)
[n/n](λh)| and M = maxi=1,...,m−1M

i.

Remark that each M i is finite, since the derivatives P
(i)
[n/n]

are always finite for non-positive numbers, since Padé
approximations and their derivatives have poles with real
part that is strictly positive. Hence, M exists, since it is
the maximum over a finite set. Then, we bound (14) with
|P[n/n](λh)|+M

(
h
α + . . .+ hm−1

(m−1)!αm−1

)
< 1. Since λ < 0,

we have |P[n/n](λh)| < 1, hence we can always find α such
that

(
h̄
α + . . .+ h̄m−1

(m−1)!αm−1

)
<

1−|P[n/n](λh)|
M . This latter

fact follows from the fact that |P[n/n](λh)| is always bounded
away from 1. Thus, for all h < h̄, condition (14) are verified.

We now study the limiting case as h → ∞. First, define the
new variable1 x := − 1

λh and the function g0(x) := f0 =
P[n/n](−1/x), that is defined for x ≥ 0. In particular, at x = 0
we have g0(0) = limh→∞ f0 = ±1, since |P[n/n](∞)| = 1.
Moreover, |P[n/n]| < 1 for all h > 0, that implies |g0(x)| < 1
for x > 0. Its Taylor expansion in 0 (for x > 0 only) is thus
g0(x) = d0 + d1x + o(x) with |d0| = 1 and2 d0d1 < 0. By
substitution, we have f0 = d0 + d1

λh + o(1/h). Differentiating
this series i times with respect to h, we have

P
(i)
[n/n](λh) = (−1)i

d1i!

λi+1hi+1
+ o(1/hi+1),

thus |fi| = |d1|
|λ|i+1h + o(1/h). Since β = |λ|α > 1, we have

|fi|
αi = |d1|

βi−1|λ|2αh + o(1/h) ≤ |d1|
|λ|2αh + o(1/h) for all i ≥ 1.

Thus

‖Qd‖∞ = |f0|+
|f1|
α

+
|f2|
α2

+ . . .+
|fm−1|
αm−1

≤ 1− |d1|
|λ|h

+
|d1|
|λ|2αh

(m− 1) + o(1/h).

Take α > m−1
|λ| . Then one has ‖Qd‖∞ ≤ 1 − δ

h + o(1/h)

with δ positive. Take now h∗ such that |o(1/h)| < δ/(2h) for
all h > h∗, that exists by definition of o(1/h). Then, for all
h > h∗ one has ‖Qd‖∞ < 1− δ

2h < 1.

We now merge the two cases. First use the limit case: take
α1 > m−1

|λ| and the corresponding h∗ so that ‖Qd‖∞ < 1
holds for all h > h∗. Use now the first part of the proof:
choose any h̄ > h∗ and find the corresponding α2 such that

1This process coincides with the Taylor expansion of P[n/n] at∞: given a
function f(x), define the function g(x) := f(1/x) and compute its 1st order
Taylor expansion at 0, that is g(x) = a0 + a1x + o(x). By inverting such
formula, one has f(x) = b0 + b1/x + o(1/x), that describes the behavior
of f(x) around x =∞. The same idea can be used for higher order Taylor
expansions.

2For d0 = 1, one needs d1 < 0 to have g decreasing; and the opposite
for d0 = −1. More precisely, g0 decreasing with d0 = 1 implies d1 < 0
or d1 = d2 = 0 and d3 < 0, or d1 = d2 = d3 = d4 = 0 and d5 < 0,...
For simplicity of notation, we study the case d1 6= 0; the same proof can be
adapted to the other cases too.
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(14) holds for all h < h̄. Finally choose α∗ = max{α1, α2}
and observe that (14) holds for all h. �

Remark 8: As apparent from the proof of the previous
theorem, there exists a value ᾱ of α that ensures that V (x) =
‖Dx‖∞ is a Lyapunov function for both Ac in (10) and Ad
in (12), for all α > ᾱ. Taking again into account the fact that
α|λ| > 1, an upper bound value of ᾱ can be found from (14),
i.e.

1

|λ| < ᾱ ≤ sup
h>0

m−1∑
i=1

|fi||λ|i−1

(1− |f0|)

IV. THE COMPLEX CASE

In this section, we consider Ac of the form (11). We denote
its dimension with 2m. Then

Ad = P[n/n](Ach) =


F0 F1 F2 . . . Fm−1

0 F0 F1 . . . Fm−2

0 0 F0 . . . Fm−3

...
...

...
. . .

...
0 0 0 . . . F0

 , (15)

with Fi := P
(i)
[n/n](Λh)h

i

i! . As in the previous Section,
derivative notation should be interpreted as the rational
functions that are derivatives of the rational function
P[n/n](x). The proof of this formula is as for the real case.
The only detail to be careful with is that, in this case, the
product of matrices only involves Λ and I , for which the
product is commutative.

Let k be a natural number such that σ + jτ ∈ Sc(k)

and let W̃ =


1 0

cos(π
k

) sin(π
k

)
cos( 2π

k
) sin( 2π

k
)

...
...

cos( (k−1)π
k

) sin( (k−1)π
k

)

 . This matrix

defines a Lyapunov function ‖W̃x‖∞ both for the block

Λ =

(
σ τ
−τ σ

)
and P[n/n](Λh) for all h > 0, as proved in

[5]. We now use this fact to compute the Lyapunov function
for Ac and Ad, and consequently prove the following lemma.

Lemma 9: Consider the Hurwitz matrix Ac of the form
(11) and denote its dimension with 2m. Then there exists an
α > 1

−σ−τ
1−cos(π

k
)

sin(π
k

)

such that for all h > 0 and order n of

approximation, the matrices Ac and Ad = P[n/n](Ach) share
the common Lyapunov function

V (x) = ‖Wx‖∞ (16)

with W =


W̃ 0 0 . . . 0

0 W̃α 0 . . . 0

0 0 W̃α2 . . . 0
...

...
...

. . .
...

0 0 0 . . . W̃αm−1

.

Proof : Using the conditions from Lemma 3 we first prove
that (16) is a Lyapunov function for Ac. We already know that
there exists a certain Q̃c with µ∞(Q̃c) < 0 satisfying W̃Λ =

Q̃cW̃ . Moreover, µ∞(Q̃c) = |σ|− |τ |cos(
π
k )

sin(πk ) + |τ |
sin(πk ) < 0. See

details in [1], [5]. Thus WAc = QcW is satisfied, with

Qc =


Q̃c I/α 0 . . . 0

0 Q̃c I/α . . . 0
...

. . .
. . .

. . .
...

0 0 0 . . . Q̃c


We have µ∞(Qc) = µ∞(Q̃c) + 1

α < 0 due to the condition
on α. Remark that such α exists, since σ + jτ ∈ Sc(k) is
equivalent to 1

−σ−τ
1−cos(π

k
)

sin(π
k

)

> 0. Thus V (x) = ‖Wx‖∞ is a

Lyapunov function for Ac.

Compute now Ad = P[n/n](Ach), that is given by (15). We
have to find Qd satisfying WAd = QdW and ‖Qd‖∞ < 1
(see Lemma 4). As a candidate, we look for

Qd :=


Q0 Q1/α Q2/α

2 . . . Qm−1/α
m−1

0 Q0 Q1/α . . . Qm−2/α
m−2

0 0 Q0 . . . Qm−3/α
m−3

...
...

. . .
. . .

...
0 0 0 . . . Q0


with Q0, Q1, . . . Qm−1 to be found. The explicit computation

of WAd = QdW gives the following conditions

W̃F0 = Q0W̃ , W̃Fi = QiW̃ , i = 1, . . . ,m− 1 (17)

Since Λ =

(
σ τ
−τ σ

)
, then the eigenvalues of

F0 = P[n/n](Λh) lie in Pol(k) := int conv
{
ej

pπ
m

}2m−1

p=0
, as

we proved in [1]. As a consequence, for each h > 0 there
exists Q0 such that W̃F0 = Q0W̃ and ‖Q0‖∞ < 1, see [6].

For each other Fi, observe that its entries are all bounded
functions of h > 0, and consequently its eigenvalues are
bounded too. Thus, one can choose a ρ > 1 sufficiently
big to have the eigenvalues of Fi

ρi
as small as wished. In

particular, one can always have the eigenvalues of Fi
ρi

with
norm less than Rk, the radius of a ball centered in 0 and
completely contained in Pol(k). As a consequence, there exists
Q̃i satisfying W̃ Fi

ρi
= Q̃iW̃ and ‖Q̃i‖∞ < 1; see again

[6]. Then the conditions in (17) are all verified by taking
Qi = Q̃iρi. Hence, recalling that α > 1

µ∞(Qc)
we have

‖Qd‖∞ ≤ ‖Q0‖∞ + ‖Q1/α‖∞ + . . .+ ‖Qm−1/α
m−1‖∞

≤ ‖Q0‖∞ +
1

α

m−1∑
i=1

‖Qi‖∞µ∞(Qc)
i−1

Similarly to the real case, one has to study the limit case
h → ∞. By developing the ∞-norm of the Qi around ∞,
one finds expressions similar to fi in the real case, and the
result follows. Notice in fact that ‖Q0‖∞, as a function of
h > 0, can be written as ‖Q0‖∞ = 1− φ(h) with φ a strictly
positive function of h > 0. In conclusion ‖Qd‖∞ < 1 if

α > suph>0

m−1∑
i=1

‖Qi‖∞µ∞(Qc)
i−1

1−‖Q0‖∞ . �
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Remark 10: Also for the case of multiple complex eigen-
values, we can conclude that there exists a value ᾱ of α that
ensures that V (x) = ‖Wx‖∞ is a Lyapunov function for both
Ac in (11) and Ad in (15), for all α > ᾱ. An upper bound
value of ᾱ can be found computed in the following way, i.e.

1

|µ∞(Qc)|
< ᾱ ≤ sup

h>0

m−1∑
i=1

‖Qi‖∞µ∞(Qc)
i−1

1− ‖Q0‖∞

V. PROOF OF THEOREM 6

In this section, we now prove Theorem 6. We use Lemmas
7 and 9, as well as our result in the previous paper, Theorem
5. The basic idea is to show that we can deal with each
Jordan block independently.

Take Ac a Hurwitz matrix, and Jc = T−1
c AcTc its real Jordan

form (9). The fundamental observation for the following is that
Ad = P[n/n](Ach) = T−1

c P[n/n](Jch)Tc with P[n/n](Jch) =


P[n/n](J

0
c h) 0 . . . 0

0 P[n/n](J
1
c h) . . . 0

...
...

. . .
...

0 . . . 0 P[n/n](J
l
ch)

 .

This is a standard property of the Padé approximation,
since it is a rational function of matrices. As already re-
marked, P[n/n](Jch) is not the real Jordan form of Ad, since
P[n/n](J

i
ch) are not real or complex blocks for i > 0. We now

define W,Qc, Qd satisfying

WAc = QcW, WAd = QdW, (18)
µ∞(Qc) < 0, ‖Qd‖∞ < 1, (19)

that ensures that V (x) = ‖Wx‖∞ is a Lyapunov function
both for (1) and (2) with Ad = P[n/n](Ach). First of all, we
find W i, Qic, Q

i
d for each J ic. For the block J0

c , use Theorem
5, that gives W 0 and the corresponding Q0

c , Q
0
d. For blocks

J ic, either use Lemma 7 for the real case or Lemma 9 for the
complex case, that give W i and the corresponding Qic and Qid.

Define W̃ =


W 0 0 0 . . . 0
0 W 1 0 . . . 0
. . .
0 0 0 . . . W l

 and W = W̃Tc.

We prove that W defines a Lyapunov function V (x) =
‖Wx‖∞ both for (1) and (2) with Ad = P[n/n](Ach). It is
sufficient to find Qc and Qd satisfying (18)-(19). By direct
computation, one can prove that

Qc =


Q0
c 0 0 . . . 0
0 Q1

c 0 . . . 0
. . .
0 0 0 . . . Qlc

 (20)

and Qd =


Q0
d 0 0 . . . 0
0 Q1

d 0 . . . 0
. . .
0 0 0 . . . Qld



satisfy these conditions, since WAc = W̃TcAc = W̃JcTc

=


W 0J0

c 0 0 . . . 0
0 W 1J1

c 0 . . . 0
. . .
0 0 0 . . . W lJ lc

Tc = QcW̃Tc = QcW.

The same holds for WAd. Moreover, µ∞(Qc) =
maxi=0,...,l µ∞(Qic) < 0 and ‖Qd‖∞ =
maxi=0,...,l ‖Qid‖∞ < 1.

VI. NUMERICAL EXAMPLES

Example 1: We now illustrate the result indicated in
Lemma 7 using a numerical example. In particular, we show
by construction the existence of a Lyapunov function that is
preserved by diagonal Padé approximations of any step size
and order. To this end, consider a Hurwitz matrix Ac of the
form (10) with λ = −3 and m = 3. Then, it is easily verified
that a Lyapunov function for the continuous time matrix
Ac given by V (x) = ‖Dx‖∞. with D = diag{1, α, α2}
and α > 1

3 . Now we consider 1st order diagonal Padé
approximation Ad = P[1/1](Ach) for eAch and plot the values
of h and α (using ‘*’) where ‖Qd‖∞ = ‖DAdD−1‖∞ > 1.
It can observed from the Figure 1 that there exists a finite
limiting value of α, defining the boundary of the infeasible
values of α as h → ∞. We denote this value of α as ᾱ
and any Lyapunov function V (x) = ‖Dx‖∞ with α > ᾱ
will be preserved during discretization using diagonal Padé
approximation with any step size h and order n. A similar

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Step size (h)

a

Fig. 1: Plot showing values of h and α and L(λ)

bound was proposed in Remark 8. To compare these two

bounds, we plot L(λ) =

m−1∑
i=1

|fi||λ|i−1

(1−|f0|) w.r.t h (using ‘o’) in
Figure 1. It can observed that the bound on ᾱ, proposed in
Remark 8 is accurate but clearly more conservative.

Example 2: In some situations it is of interest to first define
the Lyapunov function by fixing α. In such situations the
pertinent problem then becomes one of estimating a minimum
h̄ for preserving the Lyapunov function. We now show how
this can be achieved for matrices with real Jordan blocks using
1st order diagonal Padé approximations. Consider a Hurwitz
matrix Ac and the Lyapunov function V (x) as defined in
Example 1. Let us choose α = α∗ = 0.34 < ᾱ (from
Example 1 ᾱ can be approximately estimated as 0.53). If goal
of discretization is to preserve this given Lyapunov function,
then we need to find values of h such that ‖Qd(α∗, h)‖∞ < 1.
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Hence we plot ‖Qd(α∗, h)‖∞ w.r.t. h in Figure 2. It can be
observed that ‖Qd(α∗, h)‖∞ decreases monotonically for a
certain range of step sizes (0, h̄) and then starts to increase
again. Our goal is to numerically evaluate this upper bound
h̄, which guarantees the preservation of Lyapunov function if
h < h̄. Note that, while this can always be done numerically,

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Step size (h)

||Q
d
||

Fig. 2: Plot showing ‖Qd(α∗, h)‖∞ w.r.t. h.

sometimes we can find an algebraic bound on h. To see this,
consider ‖Qd(α∗, h)‖∞

= ‖DP[1/1](Ach)D−1‖∞ =

2∑
j=0

∣∣∣∣P (j)
[1/1]

(λh)

j!

(
h
α∗

)j∣∣∣∣ (21)

In the case of odd-ordered Padé approximations, we know
that P[n/n](x) is absolutely monotonic for x ∈ (−rn, 0], for
a certain rn depending on n. We recall that absolute mono-
tonicity means that all derivatives are positive. For P[1/1](x)
we know that r1 = 2 (see e.g. [9]), hence if we choose h such
that λh > −2, then the series (21) has all positive terms and

then we can estimate (21) with
∑∞
j=0

P j
[1/1]

(λh)

j!

(
h
α∗

)j
= P[1/1]

(
λ1h+

h

α∗

)
≤ |P[1/1]

(
λh+

h

α∗

)
|.

Since λh + h
α∗ < 0 for our choice of α, we have

|P[1/1]

(
λh+ h

α∗

)
| < 1. Hence h̄ < r1

|λ| = 2/3. Some values
of rn, as well as an algorithm for their computation, are
given in [9].

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.7

0.8

0.9

1

1.1

Step size (h)

||Q
d
||

Fig. 3: Plot showing ‖Qd(α∗, h)‖∞ w.r.t. h ∈ [0, 5].

Example 3 (Complex case): Consider a Hurwitz matrix
Ac of the form (11) with σ = −2, τ = 3 and 2m = 4. Since
τ <

sin(πk )

1−cos(πk ) |σ| is verified for k = 3, it is easily verified that

10 20 30 40 50 60 70 80 90 100
0.997

0.998

0.999

1

1.001

Step size (h)

||Q
d
||

Fig. 4: Plot showing ‖Qd(α∗, h)‖∞ w.r.t. h ∈ [10, 100].

V (x) = ‖Wx‖∞ is a Lyapunov function for the continuous

time matrix Ac with W̃ =

 1 0
cos(π

3
) sin(π

3
)

cos( 2π
3

) sin( 2π
3

)

 and α >

1

−2−3
1−cos(π

3
)

sin(π
3

)

= 3.7321 as defined in (16). Let us choose

α∗ = 4. If goal of discretization is to preserve this given
Lyapunov function, then we need to find values of h such
that ‖Qd(α∗, h)‖∞ < 1. Hence we plot ‖Qd(α∗, h)‖∞ w.r.t.
h in Figures 3, 4. From Figure 3, it can be observed that
‖Qd(α∗, h)‖∞ decreases monotonically for a certain range of
step sizes (0, h̄) and from Figures 3, 4, it can observed that
‖Qd(α∗, h)‖∞ starts to increase again and crosses unity. For
the complex case, h̄ can be evaluated in a similar manner as

in the real case as h̄ < rn
1−cos(πk )

2|σ| = 0.25. It should also be
noted from Figure 3, that the algebraically calculated bound
h̄ is a conservative approximation.

VII. CONCLUSION

In this paper we have shown that our previous results
on polyhedral Lyapunov functions [1] extend to the case of
linear systems with non-trivial Jordan structures. Future work
will consider Padé discretisations and polynomial Lyapunov
functions.
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