APPROXIMATE AND EXACT CONTROLLABILITY OF THE
CONTINUITY EQUATION WITH A LOCALIZED VECTOR FIELD*

MICHEL DUPREZ', MORGAN MORANCEY?#, AND FRANCESCO ROSSI¢

Abstract. We study controllability of a Partial Differential Equation of transport type, that
arises in crowd models. We are interested in controlling it with a control being a vector field, repre-
senting a perturbation of the velocity, localized on a fixed control set. We prove that, for each initial
and final configuration, one can steer approximately one to another with Lipschitz controls when
the uncontrolled dynamics allows to cross the control set. We also show that the exact controllabil-
ity only holds for controls with less regularity, for which one may lose uniqueness of the associated
solution.
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1. Introduction. In recent years, the study of systems describing a crowd of
interacting autonomous agents has drawn a great interest from the control community
(see e.g. the Cucker-Smale model [22]). A better understanding of such interaction
phenomena can have a strong impact in several key applications, such as road traffic
and egress problems for pedestrians. For a few reviews about this topic, see e.g.
[6, 7, 12, 21, 30, 31, 36, 40].

Beside the description of interactions, it is now relevant to study problems of
control of crowds, i.e. of controlling such systems by acting on few agents, or on
the crowd localized in a small subset of the configuration space. The nature of the
control problem relies on the model used to describe the crowd. Two main classes are
widely used.

In microscopic models, the position of each agent is clearly identified; the crowd
dynamics is described by a large dimensional ordinary differential equation, in which
couplings of terms represent interactions. For control of such models, a large literature
is available from the control community, under the generic name of networked control
(see e.g. [11, 32, 33]). There are several control applications to pedestrian crowds
[26, 34] and road traffic [13, 29].

In macroscopic models, instead, the idea is to represent the crowd by the
spatial density of agents; in this setting, the evolution of the density solves a partial
differential equation of transport type. Nonlocal terms (such as convolution) model
the interactions between the agents. In this article, we focus on this second approach,
i.e. macroscopic models. To our knowledge, there exist few studies of control of
this family of equations. In [38], the authors provide approximate alignment of a
crowd described by the macroscopic Cucker-Smale model [22]. The control is the
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acceleration, and it is localized in a control region w which moves in time. In a similar
situation, a stabilization strategy has been established in [14, 15], by generalizing
the Jurdjevic-Quinn method to partial differential equations. Other forms of control
of transport equations with non-local terms have been described in [19, 20] with
boundary control. In [17] the authors study optimal control of transport equations
with non-local terms in which the control is the non-local term itself.

A different approach is given by mean-field type control, i.e. control of mean-field
equations and of mean-field games modeling crowds. See e.g. [1, 2, 16, 27]. In this
case, problems are often of optimization nature, i.e. the goal is to find a control
minimizing a given cost. In this article, we are mainly interested in controllability
problems, for which mean-field type control approaches seem not adapted.

In this article, we study a macroscopic model, thus the crowd is represented by
its density, that is a time-evolving measure u(t) defined for positive times ¢ on the
space R? (d > 1). The natural (uncontrolled) velocity field for the measure is denoted
by v : R — R%, being a vector field assumed Lipschitz and uniformly bounded.

The control acts on the velocity field in a fixed portion w of the space, which will
be a nonempty open bounded connected subset of R?. The admissible controls
are thus functions of the form 1,u : R* x R* — R? which support in the space variable
is included inside w. We will discuss later the regularity of such control: nevertheless,
in the classical approach such control is a Lipschitz function with respect to the space
variable in the whole space R%.

We then consider the following linear transport equation

(L) { O+ Vo (v+Tyu)u) =0 in R? x R,

11(0) = p° in RY,

where p° is the initial data (initial configuration of the crowd) and the function u
is an admissible control. The function v + 1,u represents the velocity field acting
on p. System (1.1) is a first simple approximation for crowd modelling, since the
uncontrolled vector field v is given, and it does not describe interactions between
agents. Nevertheless, it is necessary to understand controllability properties for such
simple equation as a first step, before dealing with velocity fields depending on the
crowd itself. Thus, in a future work, we will study controllability of crowd models
with a nonlocal term v[u], based on the linear results presented here.

Even though System (1.1) is linear, the control acts on the velocity, thus the
control problem is nonlinear, which is one of the main difficulties in this study.

The problem presented here has been already studied in very particular cases,
when the control acts everywhere. For example, in [35], the author studies the prob-
lem of finding a homeomorphism sending a volume form (in our language, a measure
that is absolutely continuous with respect to the Lebesgue measure with C*® density)
to another. In [23], the authors study the same problem on a manifold with boundary,
searching for a homeomorphism sending a volume form to another keeping the points
on the boundary. Finally, in [9], a parabolic equation is studied: beside the uncon-
trolled Laplacian term, a transport term is added. The presence of the Laplacian
introduces more regularity with respect to our problem, that indeed allows to use so-
lutions of stochastic ODEs instead of classical ones. For this reason, this article is the
first characterizing controllability properties of the transport equation with localized
controls on the velocity field in presence of an uncontrolled vector field v acting as a
drift.

The goal of this work is to study the control properties of System (1.1). We now
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CONTROLLABILITY OF THE CONTINUITY EQUATION 3

recall the notion of approximate controllability and exact controllability for System
(1.1). We say that System (1.1) is approzimately controllable from p° to u' on the
time interval [0, T'] if we can steer the solution to System (1.1) at time T as close to
u' as we want with an appropriate control 1,u. Similarly, we say that System (1.1)
is ezactly controllable from p° to p! on the time interval [0,77] if we can steer the
solution to System (1.1) at time T exactly to u' with an appropriate control 1,u.
In Definition 2.10 below, we give a formal definition of the notion of approximate
controllability in terms of Wasserstein distance.

The main results of this article show that approximate and exact controllability
depend on two main aspects: first, from a geometric point of view, the uncontrolled
vector field v needs to send the support of ;° to w forward in time and the support
of u! to w backward in time. This idea is formulated in the following condition:

Condition 1.1 (Geometric Condition). Let u° u' be two probability measures
on R? satisfying:
(i) For each 2° € supp(p°), there exists t® > 0 such that ®% (2°) € w, where &}
is the flow associated to v, i.e. the solution to the Cauchy problem

&(t) = v(z(t)) for a.e. t > 0,
z(0) = 2V.

(ii) For each z' € supp(u'), there exists t* > 0 such that ®¥,, (z') € w.

This geometric aspect is illustrated in Figure 1.

H 1
w supp

Fic. 1. Geometric Condition 1.1.

Remark 1.2. Condition 1.1 is the minimal one that we can expect to steer any
initial condition to any target. Indeed, if there exists a point z° of the interior of
supp(p®) for which the first item of the Geometrical Condition 1.1 is not satisfied,
then there exists a part of the population of the measure u° that never intersects the
control region, thus we cannot act on it.

The second aspect that we want to highlight is the following: The measures p°
and u' need to be sufficiently regular with respect to the flow generated by v + 1,u.
Three cases are particularly relevant:

a) Controllability with Lipschitz controls

If we impose the classical Carathéodory condition of 1,,u being Lipschitz in space,
measurable in time and uniformly bounded, then the flow ®/*'““ is an homeomor-
phism (see [10, Th. 2.1.1]). As a result, one can expect approximate controllability
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4 M. DUPREZ, M. MORANCEY, F. ROSSI

only, since for general measures there exists no homeomorphism sending one to an-
other. For more details, see Section 4.1. We then have the following result:

THEOREM 1.3 (Main result - Controllability with Lipschitz control). Let u°, u!
be two probability measures on R compactly supported, absolutely continuous with
respect to the Lebesque measure and satisfying Condition 1.1. Then there exists T
such that System (1.1) is approximately controllable on the time interval [0,T]
from p° to p' with a control Tyu : R x RT — R uniformly bounded, Lipschitz in
space and measurable in time.

We give a proof of Theorem 1.3 in Section 3. This proof is a constructive one and
strongly uses the fact that the velocity vector field v is autonomous, i.e. not dependent
on time. Moreover, it is clear that the extension of our work to time dependent velocity
vector fields should require a non-trivial modification of the Geometric Condition
1.1. For the initial measure u® (forward trajectory) the modification is simply the
replacement of the flow of the autonomous vector field with the flow of the non-
autonomous one, starting from ¢ = 0. Instead, for the final measure pu!' (backward
trajectories) one needs to consider the non-autonomous vector field starting from the
final time 7', which is an unknown of the problem.

Remark 1.4. Due to the finite speed of propagation outside of w, approximate
controllability cannot hold at arbitrary small time. The study of this minimal con-
trollability time is carried on in the forthcoming paper [25].

Remark 1.5. If one removes the assumption of boundedness of v, replacing it with
other conditions ensuring boundedness of the flow for each time (e.g. by imposing
sub-linear growth), then the results presented here still hold. Indeed, it is sufficient
to observe that we mainly deal with properties of the flow, that are preserved in this
case.

If one instead removes the assumption of boundedness of the supports of u°, u'
keeping boundedness of v, it is clear that controllability does not hold in general.
Indeed, one needs an infinite time to steer the whole mass of u” to the mass of pu!.

Finally, if one removes both boundedness of the supports and boundedness of
the velocity v, it is possible to find examples of approximate controllability in finite
time. For example, in Rt with w = R, consider the vector field v(x) = 22, for
which the flow is ®}(z0) = -, defined only for ¢ < z; ! Thus, one can verify
that pu° = Ljo,1) is sent to ut o= ﬁﬂ[o,-roo) at time T = 1. Nevertheless, the
problem under such less restrictive hypotheses seems harder to study in its generality,
even though adaptations of the method presented here seem possible. Moreover, our
applications to crowd modeling and control always assume finite speed of propagation
and measures with bounded support.

b) Controllability with vector fields inducing maximal regular flows

To hope to obtain exact controllability of System (1.1) at least for absolutely
continuous measures, it is then necessary to search among controls 1,u with less
regularity. A weaker condition on the regularity of the velocity field for the well-
posedness of System (1.1) has been recently introduced by Ambrosio-Colombo-Figalli
in [4], extending previous results by Ambrosio [3] and DiPerna-Lions [24]. Examples of
vector fields satisfying such condition are Sobolev vector fields [24], and BV (bounded
variation) vector fields with locally integrable divergence [3]. Thus, if we choose the
admissible controls satisfying the setting of [4], it is not necessary that there exists
an homeomorphism between p° and p'.
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CONTROLLABILITY OF THE CONTINUITY EQUATION 5

For all such theories, given a vector field w, a suitable concept of flow ®}’ is
introduced, such as the maximal regular flow [4], generalizing the regular Lagrangian
flow of [3]. Even though such flow does not enjoy all the properties of flows of Lipschitz
vector fields, a common requirement is that the Lebesgue measure L restricted to an
open bounded set A is transported to a measure bounded from above by a multiple
of the Lebesgue measure itself. In other terms, there exists of a constant C' > 0 such
that for all ¢ € [0,T] it holds

(1.2) DUHL| A < COL

We will show in Section 4.1 that this condition implies the non-existence of con-
trols exactly steering one absolutely continuous measure to another, for specific choices
of 10, ut. Thus, even this setting does not allow to yield exact controllability.

It is also interesting to observe that Property (1.2) is often required as a nec-
essary condition for a reasonable generalization of the standard theory of Ordinary
Differential Equations. Indeed, for Lipschitz vector fields w, the constant C' is given
by eP(®)t Then, in DiPerna-Lions such condition is required in [24, Eq. (7)] on both
sides, while in Ambrosio it is required in [3, Eq (6.1)]. In this sense, the non-exact
controllability seems a drawback of a desired condition for an even very general theory
of Ordinary Differential Equations, rather than a goal to be reached.

c) Controllability with L? controls

We then consider an even larger class of controls, that are general Borel vector
fields. In this setting, we have exact controllability under the Geometric Condition
1.1 for any pairs of measures, even not absolutely continuous. Moreover, we prove
that one can restrict the set of admissible controls to those that are L? with respect
to the measure itself, i.e. to controls satisfying

(1.3) L&ﬂﬁﬁwwﬁ<w

The main drawback is that, in this less regular setting, System (1.1) is not nec-
essarily well-posed. In particular, one has not necessarily uniqueness of the solution.
For this reason, one needs to describe solutions to System (1.1) as pairs (L,u, 1),
where p is one among the admissible solutions with control 1,u.

THEOREM 1.6 (Main result - Controllability with L? control). Let u°, u! be two
probability measures on R% compactly supported and satisfying Condition 1.1. Then,
there exists T > 0 such that System (1.1) is exactly controllable on the time interval
[0,T] from p® to u' in the following sense: there exists a couple (1,u, ) composed
of a L? vector field 1,u : R? x R* — R? and a time-evolving measure pi being weak
solution to System (1.1) (see Definition 2.6) and satisfying

p(T) = p'.

A proof of Theorem 1.6 is given in Section 4.

We now resume the main results of the article in the following table.
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6 M. DUPREZ, M. MORANCEY, F. ROSSI

If 10, ! satisfy the Geometric Condition 1.1, then

10, pt e approx. controllability with Lipschitz control
absolutely e NO exact controllability with control inducing
continuous maximal regular flows

NS

general ;neasures exact controllability with L? control

This paper is organised as follows. In Section 2, we recall basic properties of the
Wasserstein distance and the continuity equation. Section 3 is devoted to the proof
of Theorem 1.3, i.e. the approximate controllability of System (1.1) with a Lipschitz
localized vector field. Finally, in Section 4, we first show that exact controllability
does not hold for Lipschitz controls or even vector fields inducing a maximal regular
flow; we also prove Theorem 1.6, i.e. exact controllability of System (1.1) with a L?
localized vector field.

2. The Wasserstein distance and the continuity equation. In this section,
we recall the definition and some properties of the Wasserstein distance and the conti-
nuity equation, which will be used all along this paper. We denote by P.(R?) the space
of probability measures in R? with compact support and for pu, v € P.(R?). We also
introduce the classical partial ordering of measures: p < v if A being v-measurable
implies A being p-measurable and p(A) < v(A4).

We denote by II(u, v) the set of transference plans from p to v, i.e. the probability
measures on R% x R satisfying

dn(a,) = du(o) and. | dn(eg) = dv(y).
R4 Rd

DEFINITION 2.1. Let p e [1,00) and u,v € P.(RY). Define

/p

1
(2.1) Wy(u,v) = inf ff | — y[Pdr
mell(p,v)
Rd xR

The quantity is called the Wasserstein distance.

This is the idea of optimal transportation, consisting in finding the optimal way to
transport mass from a given measure to another. For a thorough introduction, see
e.g. [41].

We denote by T the set of Borel maps v : R — R?. We now recall the definition
of the push-forward of a measure:

DEFINITION 2.2. For a v € T', we define the push-forward y#u of a measure p of
R? as follows:

(V#)(B) := u(v (E)),
for every subset E such that v~ *(E) is u-measurable.

We denote by “AC measures” the measures which are absolutely continuous with
respect to the Lebesgue measure and by P2¢(R¢) the subset of P.(R?) of AC measures.
On P2¢(R%), the Wasserstein distance can be reformulated as follows:
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CONTROLLABILITY OF THE CONTINUITY EQUATION 7

PROPERTY 2.3 (see [41, Chap. 7]). Let p € [1,00) and u,v € P3(R%). It holds

(2.2) W, (s, v) = inf { ( f () - xlpdu> - } .

~yell

The Wasserstein distance satisfies some useful properties:

PROPERTY 2.4 (see [41, Chap. 7]). Letpe [1,00).
(i) The Wasserstein distance W, is a distance on P.(R?).
(ii) The topology induced by the Wasserstein distance W, on P.(R?) coincides
with the weak topology.
(iii) For all p,v € P2(R?), the infimum in (2.2) is achieved by at least one min-
imizer.

The Wasserstein distance can be extended to all pairs of measures pu, v compactly
supported with the same total mass y(R?) = v(R%) # 0, by the formula

Wyla) = @ oW, ()

In the rest of the paper, the following properties of the Wasserstein distance will
be also helpful:

PROPERTY 2.5 (see [37, 41]). Let u, p, v, n be four positive measures compactly
supported satisfying p(R?) = v(R?) and p(RY) = n(R9).
(i) For each p € [1,0), it holds

(2.3) Wy (u+p,v+n) < WE(p,v) + Wi(p,n).
(i) For each p1, p2 € [1,00) with p; < pa, it holds

{ Wpl(p“a ) sz(:u“v )7

(2.4) )
WP2 (p“a V) = dla“ln()()lipl/p2 ngl b2 (luv V)y

where X contains the supports of u and v.

We now recall the definition of the continuity equation and the associated notion
of weak solutions:

DEFINITION 2.6. Let T > 0 and p° be a measure in R. We said that a pair
(p, w) composed with a measure p1 in R x [0, T] and a vector field w : RY x Rt — R?

satisfying
J- J ()] du(t)dt < oo

is a weak solution to the system, called the continuity equation,

(2.5) { du+ V- (wp) =0 inR*x [0,7],

p(0) = in RY,

if for every continuous bounded function ¢ : R* — R, the function t — ngg du(t) is
absolutely continuous with respect to t and for all 1 € C¥(R?), it holds

f v dutt) = | Ov00) dutt)
for a.e. t and p(0) =

This manuscript is for review purposes only.
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8 M. DUPREZ, M. MORANCEY, F. ROSSI

Note that ¢ — p(t) is continuous for the weak convergence, it then make sense to
impose the initial condition (0) = u® pointwisely in time. Before stating a result of
existence and uniqueness of solutions for the continuity equation, we first recall the
definition of the flow associated to a vector field.

DEFINITION 2.7. Let w : RY xR* — R? be a vector field being uniformly bounded,
Lipschitz in space and measurable in time. We define the flow associated to the vector
field w as the application (z°,t) — ®¥(x°) such that, for all 2° € R?, t s & (20) is
the solution to the Cauchy problem

z(t) = w(z(t),t) for a.e. t =0,
x(0) = 29.
The following property of the flow will be useful all along the present paper:

PROPERTY 2.8 (see [37]). Let p, v € P.(RY) and w : R x R — R? be a vector

field uniformly bounded, Lipschitz in space and measurable in time with a Lipschitz
constant equal to L. For each t € R and p € [1,00), it holds

(p+1)

(2.6) W, (D) H11, DY) < e

MW, (p,v).

Similarly, let € P(RY) and wy, ws : RTxR — R? be two vector fields uniformly
bounded, Lipschitz in space with a Lipschitz constant equal to L and measurable in
time. Then, for each t € R and p € [1,+00), it holds

Lit| _q
w w e
(2.7) Wi (P4 #p, D2 #pu) < eL‘tVPTle — ws | co.

We now recall a standard result for the continuity equation:

THEOREM 2.9 (see [41, Th. 5.34]). Let T > 0, u° € P.(R?) and w a vector field
uniformly bounded, Lipschitz in space and measurable in time. Then, System (2.5)
admits a unique solution p in C°([0,T]; P.(R?)), where P.(RY) is equipped with the
weak topology. Moreover:

(i) If u° € Pac(RY), then the solution u to (2.5) belongs to CO([0, T']; P2¢(R4)).

(ii) We have p(t) = ®¥#u’ for all t € [0,T].

We now recall the precise notions of approximate controllability and exact con-
trollability for System (1.1):

DEFINITION 2.10. We say that:
e System (1.1) is approximately controllable from u° to pu' on the time
interval [0,T] if for each € > 0 there exists a control 1,u such that the
corresponding solutions p to System (1.1) satisfies

(2.8) Wp(u!, p(T)) < e.

e System (1.1) is exactly controllable from u° to u' on the time interval
[0,T] if there exists a control 1,u such that the corresponding solution to
System (1.1) is equal to u* at time T.

It is interesting to remark that, by using properties (2.4) of the Wasserstein distance,
estimate (2.8) can be replaced by:

Wi (p!, w(T)) <e.

Thus, in this work, we study approximate controllability by considering the distance
W1 only.
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CONTROLLABILITY OF THE CONTINUITY EQUATION 9

Remark 2.11. One can be interested in proving approximate controllability for a
smaller set of controls, for example of class C* in the space variable with some k > 1.
Due to the estimate (2.7), the result of Theorem 1.3 still holds in this case, by density
of C* functions in the space of Lipschitz function with respect to the C° norm. Higher
regularity in the time variable can be achieved too with the same techniques.

A careful inspection of our proof shows that controls ensuring approximate con-
trollability are not only measurable in time, but they have a finite number of disconti-
nuities in time, that can be smoothened in a small interval of size 7 . The introduced
error can be arbitrarily small, by using the fact that lim.,_,g eLT/p(eLT —1)=0.

3. Approximate controllability with a localized Lipschitz control. In
this section, we study approximate controllability of System (1.1) with localized Lip-
schitz controls. More precisely, in Sections 3.1, we consider the case where the open
connected control subset w contains the support of both ;° and p'. We then prove
Theorem 1.3 in Section 3.2.

3.1. Approximate controllability with a Lipschitz control. In this section,
we prove approximate controllability of System (1.1) with a Lipschitz control, when
the open connected control subset w contains the support of both 1 and p!. Without
loss of generality, we can assume that the vector field v is identically zero by replacing
u with w — v in the control set w.

We then study approximate controllability of system

(3.1) { O+ div(up) =0 in R? x RT,

w(0) = u° in R9.

PROPOSITION 3.1. Let pu°, ut € Pa¢(R?) compactly supported in w. Then, for all
T > 0, System (3.1) is approzimately controllable on the time interval [0,T] from u°
to p* with a control v : R x R — R wniformly bounded, Lipschitz in space and
measurable in time. Moreover, the solution p to System (3.1) satisfies

supp(p(t)) < w,
for all t € [0,T].

Proof of Proposition 3.1. We assume that d := 2, but the reader will see that the
proof can be clearly adapted to dimension one or to any other space dimension. In view
to simplify the computations, we suppose that T := 1 and supp(u’) < (0,1)? cc w
fori=1,2.

We first partition (0,1)2. Let n € N*, consider ag := 0, by := 0 and define the
points a;,b; for all i € {1,...,n} by induction as follows: suppose that for a given
1 € {0,...,n — 1} the points a; and b; are defined, then the points a;y; and b; 41 are
the smallest values such that

f dp’ = — and J dp' = —.
(aiait1) xR n (bibiy1) xR n

Again, for each ¢ € {0,...,n — 1}, we consider a; ¢ := 0, b; o := 0 and supposing that
for a given j € {0,...,n — 1} the points a; ; and b; ; are already defined, a; ;1 and
bi j+1 are the smallest values such that

)

1 1
d,uo == and J d,u1 ==,
n B n

i i
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10 M. DUPREZ, M. MORANCEY, F. ROSSI

where Aij = (ai,ai_,_l) X (aij,ai(jﬂ)) and Bij = (bi7bi+1) X (bijybi(j+1))~ Since
u® and p! have a mass equal to 1 and are supported in (0,1)2, then a,,b, < 1 and
Qi ny bim < 1forallie{0,...,n—1}. We give in Figure 2 an example of such partition.

Z2
aon
A(n—1)(n—1)—
ap(n—1) Ai(n—1)
A1(n—1) @ (n—2)(n—1)
a1(n—2) A(n—2)(n—2)
ag(n—2) : @ (n—1)(n—2)—
1
n Ai(5+1)
; R [V
aij
ap2
a12 : A(n—1)2 —
A(n—2)2
A(p—1)1 —o
ao1 a1
ail A(n—-2)1
T
ag ay a9 cee a; Aj41 e Ap—2 Ap—1Qp

F1G. 2. Ezample of a partition for uO.

If one aims to define a vector field sending each A;; to B;;, then some shear stress
is naturally introduced, as described in Remark 3.2. To overcome this problem, we
first define sets A,; cc A;; and B;; c< B;; for all 4,5 € {0,...,n — 1}. We then send
the mass of ¥ from each fTij to éij, while we do not control the mass contained
in Aij\gij. More precisely, for all 4,5 € {0,...,n — 1}, we define, as in Figure 3,
at

a;, a; ,a;;, a;rj the smallest values such that
1
T B
(as,a; )% (aij,ai(i+1)) (af,air1)x(aij,ai(j4+1)) n
and
1 1 2
o™ S35 3)
(a7 a7) % (aij,a5;) (a7 saf)x(afai41)) TRt

We similarly define b;", b;, b;rj, b;; and finally define

Ayj = (a7 ,a) x (a;;,a;;) and Bij = (b7, b)) x (b}, b7").

ARt i i 07 15 Vig

oy S’g%llgﬁ%%al is to build a solution to System (3.1) such that the corresponding flow

(3.2) oY(A;;) = By,

foralli, j € {0,...,n—1}. We observe that we do not take into account the displacement
of the mass contained in A;;\A,;. We will show that the mass of the corresponding

This manuscript is for review purposes only.
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Qi(5+1) "
gl EEE s S
ai] 1 |
L ¥ |
o5 Ai |
_ 1 |
ST Vit sivieist detetsl et
nX n2 n3
aij — ‘+
%) a; a; Qi1

Fic. 3. Ezample of cell.

term tends to zero when n goes to infinity. The rest of the proof is divided into two
steps. In a first step, we build a flow satisfying (3.2), then the corresponding vector
field. In a second step, we compute the Wasserstein distance between u' and u(T),
showing that it converges to zero when n goes to infinity. Step 1: We first build a
flow satisfying (3.2). We recall that T := 1. For each i € {0,...,n — 1}, we denote by
c; and cf the linear functions equal to a; and a;r at time ¢ = 0 and equal to b; and
bl at time ¢t = T = 1, respectively, i.e. the functions defined for all ¢ € [0, T] by:
c; ()= (b —a;)t+a; and cf(t)= (b —af)t+af.

K2

Similarly, for all ¢, j € {0, ...,n—1}, we denote by ¢;; and cjj the linear functions equal
to a;; and a;rj at time ¢t = 0 and equal to b;j and b at time ¢t = T = 1, respectively,
i.e. the functions defined for all ¢ € [0,T] by:

ci_j(t) = (b;; — ai_j)t +a;; and e (t) = (bj; — a;;)t + a;;.

J ij
Consider the application being the following linear combination of c; c;r and ¢;;, c;rj
on Ajj, i.e.
al —af _ o) —a; |
—c; (1) —c; (1)
0 + % + ?
0 ml(a: ,t) a; —aq, a; —a,
(3.3) z(z",t) == 0 = + .0 0o_ - ;
1‘2(1‘ 7t) a‘ij Ty _ To a’zy +
() + = (1)
a;; —ag; a;; —a;

where 20 = (29, 29) € A” Let us prove that an extension of the application (2°,t) —

x(2%,t) is a flow associated to a vector field u. After some computations, we obtain

%(ﬂﬂoat) = q;(t)z1 (20, t) + Bi(t)  Vte[0,T],
%( 00t) = i (t)aa(a®,t) + Bi;(t) Ve [0,T],

where for all ¢ € [0,T7],

b —b; +a; —a aib. —a b
7 t) = 1 ) 1 1 , f t) = 1 4 ’L_ i 7
O R B S R )
() = BT 0 gy Sl
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12 M. DUPREZ, M. MORANCEY, F. ROSSI

The last quantities are well defined since for all ¢,j € {0,...,n — 1} and ¢ € [0, T

{ lei (1) :Zz

i (O] = max{la” —a;[,[b) = b7 [},
ij

)] = max{|ai+j - a;jl, |b:; - b;]|}

For all ¢t € [0,T], consider the set

we then define the vector field u by

{ ur(z,t) = a;(t)xy + Bi(t),
ug(x,t) = ayj(t)ze + Bij (1),

for all (x,t) € CN'Z-]- (x = (21,22)). Notice that the sets CN'ij do not intersect. Thus, we

extend u by a uniform bounded C* function outside uijCN’ij, then u is a C* function
and it satisfies supp(u) c w.

Then, System (1.1) admits an unique solution and the flow on @j is given by
(3.3).

Step 2: We now prove that the refinement of the grid provides convergence to
the target p!, i.e.

We remark that

1 2 2/1 2 (n—2)?
du(M)=| dpt==-=-=(=-=)=—%+.
JE;” w(T) fgw H n2 nd n<n2 n5) nt

Hence, by defining

we also have

Using (2.3), it holds

(3.4) Wiph, (™)) < X Wilus il(T)y5,,) + Wilpg, 1(T) g).

ij=1

We now estimate each term in the right-hand side of (3.4). Since we deal with AC
measures, using Properties 2.4,
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397 there exist measurable maps ~;; : R? — R?, for all 4,5 € {0,...,n — 1}, and
398 7 : R? — R? such that
. 1 — N _
vig#g,) = 1T)i5, T#(pir) = w(1)|r

Wl (u\léij’ H(T)‘Bu) Wl (/’L‘lelf"(T)H%)

~ [ o= @it @ ~ [ o=@t @)
B R

ij

399

400 In the first term in the right hand side of (3.4), observe that 7;; moves masses inside
101 Bj; only. Thus, for all ¢,j € {0, ...,n — 1}, using the triangle inequality,

Wl(/j“lgwap’(T)|§”) = J‘N |.’I,' — le(x”dul(x)

By

<[07 = b0+ 05 b)) | dut(o) < 07 — b7+ b5 - b))

ij

402 (3.5) (n—2)2
nt

403 For the second term in the right-hand side of (3.4), observe that 7 moves a small mass
404 in the bounded set (0,1). Thus it holds

105 (3.6)  Wi(plpm(T)r) = fR|x—7<x)\dM1(x)<2 (1_(71;22) )_ nn—zl.

406 Combining (3.4), (3.5) and (3.6), we obtain

Wi(u!, (1)) < ( S — b7 + by, —b;j)(" _42>2> +8”_21

407 i,j=1 ) n n

< 2" ;42) + 8”7:21 — 0.
108 a
409 Remark 3.2. Tt is not possible in general to build a Lipschitz vector field sending

410  directly each A;; to B;; using the strategy developed in the proof of Proposition 3.1.
411 Indeed, we would obtain discontinuous velocities on the lines ¢;. Figure 4 illustrates
412 this phenomenon in the case n = 2.

Qao2 = A12f boa = b12:

ao1 f-

a1l 2

app = Q10 boo = b1o =

agp ay a2

FIG. 4. Shear stress (left: u°, right: p')

413 3.2. Approximate controllability with a localized regular control. This
414 section is devoted to prove Theorem 1.3: we aim to prove approximate controllability
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14 M. DUPREZ, M. MORANCEY, F. ROSSI

of System (1.1) with a Lipschitz localized control. This means that we remove the
constraints supp(u®) < w, supp(u!) € w and v := 0, that we used in Section 3.1. On
the other side, we impose Condition 1.1. Before the main proof, we need three useful
results. First of all, we give a consequence of Condition 1.1:

Condition 3.3. There exist two real numbers T, T} > 0 and a nonempty open
set wp € w such that
(i) For each 2° € supp(u?), there exists ¢ € [0, 7] such that ®% (2°) € wp, where
®7 is the flow associated to v.
(ii) For each z' € supp(u'), there exists t* € [0, T5] such that &Y, (z') € wo.

LeEMMA 3.4. If Condition 1.1 is satisfied for u°, u' € P.(R?), then Condition 3.5
is satisfied too.

Proof. We use a Compactness argument. Let u° € P.(R?) and assume that Con-
dition 1.1 holds. Let 2° € supp(u®). Using Condition 1.1, there exists t°(z") > 0 such
that fbto(wo)(x ) € w. Choose r(z") > 0 such that B, (o )(Qto(wo)(xo)) cc w, where
B,(2°) denotes the open ball of radius r > 0 centered at point 2% in R%. Such r(z)
exists, since w is open. By continuity of the application z! @to(zo)(xl) (see [10,

Th. 2.1.1]), there exists #(z") such that
z! e B; (930)( ) = q):;o(xo)(;pl)EBT($0)(@;}0($0)(xO)).

Since u° is compactly supported, we can find a set {z9, ..., x?vo} < supp(u°) such that

0
supp(p”) < U B0y (7))
=1

We similarly build a set {z1,...,x}, } < supp(p'). Thus Condition 3.3 is satisfied for
T = max{th(zF) :ie {1,..., Ny }},
with £ = 0,1 and

No
wo 1= (U Br(x?)((bl’o(z ) U <U B,z (@ tl(rl)( ))) cC w.
i=1

d

The second useful result is the following proposition, showing that we can store a
large part of the mass of ;¥ in w, under Condition 3.3.

PROPOSITION 3.5. Let p° € P2(RY) satisfying the first item of Condition 3.5.
Then, for all € > 0, there exists a space-dependent vector field 1,u Lipschitz and
uniformly bounded and a Borel set A < R? such that

(3.7) pl(A) = ¢ and supp(@?}]l“"#u(‘)m) Cw
Proof. For each k € N*, we denote by wj, the closed set defined by
wy = {2® e RY : d(2°,w§) = 1/k}
and a cutoff function ), € C*(R?) satisfying

0<6,<1
Or = 1 in W,
(‘)k:Oinwk.
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CONTROLLABILITY OF THE CONTINUITY EQUATION 15

For all 2° € supp(u?), we define
to(z?) := inf{t e RY : ®¥(2°) € wo} and t(z") := inf{t € R": Y (2°) € wy}.
For all k € N*, we consider
(3.8) ug = (0 — 1)v
and

— {2 € supp(*)\wo : 3s € (to(a®), i (a?)), s.t. DL (a®) € ).

The rest of the proof is divided into three steps:
e In Step 1, we prove that the range of the flow associated to z° with the control
uy is included in the range of the flow associated to 20 without control, i.e.
{®yF (20) 1 t = 0} < {®Y(20) : ¢t = 0}.
e In Step 2, we show that Sy is a Borel set for all k € N*.
e In Step 3, we prove that for a K large enough we have

(3.9) pw\wi) + 1 (Sk) <e

Step 1: Consider the flow y(t) := ®?(2°) associated to x° without control, i.e. the
solution to

and the flow z;(t) := ®}**(2°) associated to z° with the control u; given in (3.8),
i.e. the solution to

{ Zp(t) = (v + uk)(2k(t) = Ok(2k(t) x v(zk(t)), t =0,

(3.10) 20(0) = 20,

We use the time change ~v; defined as the solution to the following system

{ YVi(t) = O (y(1k(t))), t =0,

(3.11) () =0

Since 6; and y are Lipschitz, then System (3.11) admits a solution defined for all
times. We remark that & := y oy is solution to System (3.10). Indeed, for all ¢t > 0
it holds

{ Ek(8) = A (1) x Gy (1)) = Ou(Er (1)) x v(Ex(t)), t >0,
&k (0) = y(7£(0)) = y(0).
By uniqueness of the solution to System (3.10), we obtain
y(vk(t)) = 2z (t) for all t = 0.
Using the fact that 0 < 6 < 1 and the definition of 7, we have
’yk 1ncreausmg7

VtE[O,tk(
<t,c 0) Wt = ty(a®

)],
).
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16 M. DUPREZ, M. MORANCEY, F. ROSSI

We deduce that, for all 2° € supp(u°), it holds
[2r(t) £ > 0} < {y(s) : s € [0, 6 (a)]}.
Step 2: We now prove that Si is a Borel set by showing that the set
Ry, := {z° e R? : t((2°) < o0 and 3s € (to(2°), tx(z0)) s.t. B () € TG

is open. Let k € N* 20 be an element of Ry and search r(z%) > 0 such that
BT(wO)(LEO) = Rk

There exists s € (to(2°),tx(2?)) such that ®?(2°) € @§. Since W is open, for a
B > 0, we have Bg(®?(2?)) = w. By continuity of the application z! — ®Y(z!),
there exists r(z") > 0 such that

xt e Br(x())(xo) = @g(xl) € Bﬁ(fbg(xo)).

Thus, for all k € N*, Ry, is open. As S, = Ry nsupp(u®) n w§, Sk is a Borel set.
Step 3: We now prove that (3.9) holds for a K large enough. Since we deal with
we AC measure, there exists Ky € N* such that for all &k > K

10 (wo\wr) < g/2.

Argue now by contradiction to prove that there exists K7 > K| such that

MO(SKl) < 5/2'

Assume that p°(Sy) > /2 for all k > K. Using the inclusion Sj,1 < Si, we deduce

that
u° < ﬂ Sk> > e/2.

keN*

Since 0 is absolute continuous with respect to A (the Lebesgue measure), there exists

« > 0 such that
A ( ﬂ Sk> = Q.

keN*

We deduce that the intersection of the set S, is nonempty. Let Z° € supp(u®)\wo be
an element of this intersection. By definition of Sk, for all £ > Ky, there exists si
satisfying

(3.12) { oy ;too)(aecol% (@)

Moreover, the convergence of t(z") to to(Z"), implies that
(3.13) sp — to(z0).

Using the continuity of 2! +— ®¥(z!) and the definition of ¢y(z?), there exists 8 > 0
such that

(3.14) Y (7°) € wy for all t € (to,to + B).

We deduce that (3.14) contradicts (3.12) and (3.13). Thus there exists K € N* such
that

p0(Sk) + 1’ (w\wk) < e.
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Since we deal with AC measures, we add a Borel set to have the equality in (3.7), i.e.
there exists a Borel set S such that

P (Skx Uw\wg U S) =e.
We conclude that, for u defined by
u(t) == u' 1= ug for all t € [0, T;f],

and A := Sk Uw\wk U S, Properties (3.7) are satisfied. 0
The third useful result for the proof of Theorem 1.3 allows to approximately steer

a measure contained in w to a measure contained in an open hypercube S cc w.

PROPOSITION 3.6. Let pu® € Pa¢(RY) satisfying supp(u’) = w. Define an open
hypercube S strictly included in w\supp(u®) and choose 6 > 0. Then, for all ¢ > 0,
there exists a vector field 1,u, Lipschitz and uniformly bounded and a Borel set A

such that
1P (A) = ¢ and supp(@}’ﬂ‘““#u?f,c) c S

Proof. Consider Sy a nonempty open set of R? of class C* strictly included in S
and & an open set of R? of class C* satisfying

supp(p’) U S cc B cc w.

An example is given in Figure 5. From [28, Lemma 1.1, Chap. 1] (see also [18, Lemma

FiG. 5. Construction of @

2.68, Chap. 2]), there exists a function n € C?(&) satisfying
(3.15) ko < |Vn| <k in@\Sy, n>0in&w and 7 =0 on dw,

with kg, k1 > 0. Let k € N*. Consider uy, : R — R? Lipschitz and uniformly bounded
satisfying

) kEVnp—v in@,
Ym0 in we.
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18 M. DUPREZ, M. MORANCEY, F. ROSSI

Let 2° € supp(u®). Consider the flow zx(t) = ®;7"*(29) associated to z° with
the control ug, i.e. the solution to system

() = v(ze (1)) + £), t>0,
(3.16) ar(t) “(Ozk( ) + un(z1(1))

2k (0) = 2.
The different conditions in (3.15) imply that
(3.17) n-Vn<C <0 on 0w,

where n represents the outward unit normal to 0&. Since supp(u®) < @, it holds
zi(t) € @ for all t = 0, otherwise, by taking the scalar product of (3.16) and n on d@,
we obtain a contradiction with (3.17). We now prove that there exists K (z2°) € N*
such that for all k > K (z) there exists t;(z") € (0,8) such that z(t,(z°)) belongs to
So. By contradiction, assume that there exists a sequences {kp}nen+ < N* such that
for all ¢ € (0,0)

(318) Zkn (t) € S(C)
Consider the function f,, defined for all ¢ € [0, ] by
(319) fn(t) = knn(zkn (t))

Its time derivative is given for all ¢ € [0, §] by

) = ki, (8) - Vn(zk, (1)) = k3 [V (2, (1)
Then, using (3.18), properties (3.15) of n and definition (3.19) of f,, it holds

fn(8) = k2kg0 and [ (6) < kn|n]co-

We observe that the two last inequalities are in contradiction for n large enough.
Then there exists K (x°) € N* such that for all k > K(2°) there exists t4(2°) € (0, 6)
such that zy(tx(2°)) belongs to Sp. By continuity, there exists r(2°) > 0 such that

V+Upe (0

tK(wo)((mg
to k in @, then, using the same argument as in Step 1 of the proof of Proposition 3.5,
the range of the flow ®¥*+“* is independent of k. Thus, for all k > K (2°) there exists

t2(z%) € (0,0) such that @:&;"g)(ml) € Sp for all ' € B,(;0)(2z"). By compactness,

there exists {27, ..., 2%, } such that

)(acl) belongs to So for all 2! € B, (y0)(2°). Since v+uy is linear with respect

No
supp(,uo) c U Br(m?)(x?)
i=1

We deduce that for K := max;{K(z?)}, for all 2° € supp(u®) there exists t°(z?)
for which @7, "x (2°) belongs to Sp. We remark that the first item of Condition 3.3

£0(20)
holds replacing w, wy and TF by S, Sy and J, respectively. We conclude applying
Proposition 3.5 replacing w, wo, T and v by S, Sy, 6 and v + ug, respectively. 0

Remark 3.7. An alternative method to prove Proposition 3.6 involves building an
explicit flow composed with straight lines as in the proof of Proposition 3.1. However,
for such method we need to assume that w is convex, contrarily to the more general
approach developed in the proof of Proposition 3.6.

We now have all the tools to prove Theorem 1.3.

Proof of Theorem 1.53. Consider u°, u' satisfying Condition 1.1. By Lemma 3.4,
there exist T¢F, Ty, wo for which p° u! satisfy Condition 3.3. Let 6, ¢ > 0 and

This manuscript is for review purposes only.



526

ot
)
3

528

529

538

CONTROLLABILITY OF THE CONTINUITY EQUATION 19

T :=T§ +17 +6. We now prove that we can construct a Lipschitz uniformly bounded
and control 1,u such that the corresponding solution p to System (1.1) satisfies

Wi(u(T), p') <e.

Denote by Ty := 0, Ty := T, To := TF +6/3, Ts := T +20/3, Ty :== T + 0
and Ty := T} + T7* + 6. Also fix an open hypercube S cc w\wg. There exists R > 0
such that the supports of ©° and p! are strictly included in a hypercube with edges
of length R. Define

R:=R+T xsup|v|.
Rd

Applying Proposition 3.5 on [Ty, T1|u[Ty, T5] and Proposition 3.6 on [T1, To]u[T5, Ty],

we can construct some space-dependent controls u', u?, u*, w® Lipschitz and uni-

formly bounded, with supp(u’) < w, and two Borel sets Ay and A; such that

9

O(Ap) = pt(A4)) = —
w(Ag) = p (A1) dR’

the solution forward in time to

Opo + V- ((v+Tout)pg) =0 in RY x [Ty, T,
Oipo + V- (v +1,u?)pg) =0 in RY x [Ty, Ty],
po(To) = iy in R

and the solution backward in time to

Oip1 + V- (v+1,u”)p1) =0 in RY x [Ty, Ts],
Oip1 + V- (v +1u*)p) =0 in RY x [T3,Ty],
p1(T5) = o] e in R?

satisfy supp(po(T2)) < S and supp(p1(73)) = S. By conservation of the mass, we
remark that |po(T2)| = |p1(T3)] = 1 — ¢/2dR. We now apply Proposition 3.1 to
approximately steer po(T2) to p1(T3) inside S as follows: we find a control u® on the
time interval [Th, T3] satisfying supp(u®) = S such that the solution p to

op+ V- (v+1,u)p) =0  inRYx [Ty, T3],
p(Ts) = po(T>) in R?

satisfies .

Wilp(T), 11(13)) < o 5em—my

4

where L is the uniform Lipschitz constant for u* and u®. Thus, denoting by u the
2,3 .4

concatenation of u!, u?, u®, u*, u® on the time interval [0, T], we approximately steer
M(\)AS to ,ullAc, since by (2.6) the solution y to
1

(3t,u +V- ((U + llwul),u) =0 in Rd X [T’i_l,Ti],i € {17 ...,5},
IU’(O) = N‘OAS in RY

satisfies

3 3

(3:20)  Wi(®F " #uiac, Hiag) = Wilp(Ts), piag) < €2L(T5_T3)m =3
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541 Since we deal with AC measures, using Properties 2.4, there exists a measurable map
542 7 :R? - R? such that

'Y#MlAl = (I)UT+u#“|OA0’
W (RF" Fply, s i]a,) = JRd @ = v(@)lduis, ().

544  We deduce that

u — 9 9
B21) W@ ) = | o=@y @) < dBx g =

ot
>
ot

Inequalities (2.3), (3.20) and (3.21) leads to the conclusion:
W5 41, 1) < W (R Hpulaes tiac) + Wi (T #uila s pia,) < e

d

ot
=

4. Exact controllability. In this section, we study exact controllability for
System (1.1). In Section 4.1, we show that exact controllability of System (1.1) does
not hold for Lipschitz or controls inducing maximal regular flows. In Section 4.2,
we prove Theorem 1.6, i.e. exact controllability of System (1.1) with a L? localized
control under some geometric conditions.

ol Ot Ut Ot ot
S O S =
o © 0

—_

[SA

4.1. Negative results for exact controllability. In this section, we show that
exact controllability does not hold in general for Lipschitz controls or even vector fields
inducing a maximal regular flow. We will see that topological aspects play a crucial
role at this level.

v Ot Ot Ot
o Or Ot
(O BTN IV )

ot

a) Non exact controllability with Lipschitz controls

As explained in the introduction, if we impose the classical Carathéodory condition of
T1,u: R x R — R being uniformly bounded, Lipschitz in space and measurable in
time, then the flow ‘I)?Hl‘”u is a homeomorphism (see [10, Th. 2.1.1]). More precisely,
the flow and its inverse are locally Lipschitz. This implies that the support of u® and
61 u(T) are homeomorphic. Thus, if the support of u° and p! are not homeomorphic,
62 then exact controllability does not hold with Lipschitz controls. In particular, we
63 cannot steer a measure which support is connected to a measure which support is
64 composed of two connected components with Lipschitz controls and conversely.

Y Ot Ot Ot C
) © o

[N, B, BN, G, G, BN, B

565 b) Non exact controllability with vector fields inducing maximal regular
566  flows

567 To hope to obtain exact controllability of System (1.1) at least for AC measures, it
568 is then necessary to search for a control with less regularity. A weaker condition
569 on the regularity of the vector field for the well-posedness of System (1.1) has been
given in [4], generalizing previous conditions in [3, 24]. We first briefly recall the main
definitions and results of such theory. We then prove that, in such setting, exact
controllability between some pairs of AC measures u°, u! does not hold, even when
the Geometric Condition 1.1 is satisfied.

We first recall the definition of maximal regular field in [4, Def. 4.4], and the
corresponding existence result [4, Thm. 5.7]. In our setting, we aim to find a flow
that is defined on the whole space R? for all times [0, 7]. Then, we present a simplified
7 version of maximal regular flows, with no hitting time or blow-up of trajectories. The
8 mnotation is then simplified too.

T W NN = O

b I A BN R BN RN B BN |

v Ov Ot Ot Ot Ot Ot Ot Ot
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DEFINITION 4.1. Let w : R? x (0,T) — R? be a Borel vector field. We say that a
Borel map @} is a mazimal reqular flow relative to w if it satisfies:
1. for almost every x € R, the function ®¥(z) is absolutely continuous with
respect to t and it solves the ordinary differential equation & = w(t, z(t)) with
ingtial condition @Y (z) = x;
2. for any open bounded set A = R?, there exists a compressibility constant C(A)
such that for all t € [0,T], it holds

(4.1) DUHL A < C(A)L.

THEOREM 4.2. Let w : R x (0,T) — R? be a Borel vector field satisfying the
following conditions:
a) Sép § 4 lw(t, )| dxdt < oo for any open bounded set A < RY;
b) for any non-negative p € L (R?) with compact support and any closed interval
[a,b] = (0,T), the continuity equation

Oepr + V- (wps) =0 inR? x (a,b)
admits at most one weakly* continuous solution for t € [a,b]:

t— py € LP([a,b]; LL(RY) A {f s.t. supp(f) compact subset of R? x [a,b]}

with pg = p.
c) for any open bounded set A = R? it holds
T
(4.2) div(w(t,.)) = m(t) in A, with L(A):= f |m ()| dt < oo.
0

Then, the mazimal regular flow @ relative to w exists and is unique. Moreover, for

any open compact set A, the compressibility constant C(A) in (4.1) can be chosen as
L(A)
e )

For simplicity, we will study two examples of non-controllability in the 1-D setting

only. It is then easy to observe that maximal regular flows preserve the order with
respect to the initial data, as Lipschitz flows.

PROPOSITION 4.3. Let w be a Borel vector field satisfying conditions of Theorem
4.2, and ® be the associated mazimal reqular flow. It then holds

r<y=0/(x) < DP(y) for almost every pair x,y € R.

Proof. Following the proof of [4, Thm. 5.2], build a family of mollified vector
fields w, for w: they are all Lipschitz, then they preserve the order x < y = &}’ (x) <
D= (y) for all ,y € R, as a classical property of Lipschitz vector fields in R. By letting
we. — w weakly in L'((0,T) x A) for all A open bounded, and observing that other
hypotheses of the Stability Theorem 6.2 in [4] are satisfied, one has the result. |

We are now ready to present two examples of pairs of AC measures p°, ! in R for
which exact controllability does not hold with vector fields inducing maximal regular
flows.

Ezample 4.4. For simplicity, we choose v = 0 and w = (—2,2) from now on.
For the first example, we define p° = 1 11£ and p'(z) = %x’%]l(o,l)/j. It is clear
that the Geometric Condition 1.1 is satisfied. Assume now that a Borel control «
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satisfying conditions of Theorem 4.2 steering u° to p! at a given time T > 0 exists.
Then, the associated maximal regular flow both satisfies u! = ®%#u° and there exists
C = C((0,1)) such that ®%#u® < CL. Thus, we deduce that u! < CL, which is in
contradiction with the definition of .

Example 4.5. Tt is clear that the previous example is based on the fact that there
exists measures that are absolutely continuous with respect to £ and such that their
Radon-Nikodym density are L' functions that are not L*. One can then be interested
in proving exact controllability between measures of the form p(z)L with p(z) €
L*(R). Also in this case, one has examples of non exact controllability. Indeed,
consider again v = 0 and w = (—2,2). Define 1%(x) = 221 ;£ and v = 1 1L
We prove now that also in this case, there exists no control inducing maximal regular
flows and realizing exact controllability. By contradiction, assume that such control
w exists; thus, the associated flow ®¥ satisfies P%#1° = v1. Then

1

1
L Lis: ou(s)<an(z)) 25 ds = L Lis<ou(a)) ds,

Recall now that the flow preserves the ordering, then it necessarily holds

z @7 ()
J 2sds = J 1ds,
0 0

i.e. ®%(x) = x?. If such a flow exists, then one can apply it to u° in the first example.
It then holds S§ lds = ;I)T(I) %s’%ds, i.e. ®L# = pt. Thus, % realizes the exact
control from p’ to ut. Contradiction. Then, there exist no control inducing maximal
regular flows and exactly steering vy to vq.

Ezxample 4.6. One can be interested in finding counterexamples to exact control-
lability in R? with d > 1. The Example 4.4 for non exact controllability can be
adapted to this setting, by considering p° = L(B1(0)) 'L, )L and p' = p1(z)L
with p; being a L' but not L® function. The counterexample in Example 4.5 can
be adapted too, even though computations cannot be carried out easily by applying
useful monotony properties.

4.2. Exact controllability with L? controls. In this section, we prove Theo-
rem 1.6, i.e. exact controllability of System (1.1) in the following sense: there exists
a couple (1,u, i) solution to System (1.1) satisfying u(T) = u'. Before proving The-
orem 1.6, we need three useful results. The first one is the following proposition,
showing that we can store the whole mass of ° in w, under Condition 3.3. It is the
analogue of Proposition 3.5. In this case, we control the whole mass, but we do not
have necessarily uniqueness of the solution to System (1.1).

PROPOSITION 4.7. Let pu° € P.(RY) satisfying the first item of Condition 3.5.
Then there exists a couple (1,u, 1) composed of a L* vector field 1,u : R x Rt — R4
and a time-evolving measure p being weak solution to System (1.1) and satisfying

supp(u(13)) = w.
Proof. For each 2° € R%, we denote by

(%) ;= inf{t > 0: &} (2°) € Do}
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and consider the application W.(z°) defined for all ¢ > 0 by

i Y (20) if t < 1°(20),
«(@7) = ‘1)§0(I0)(950) otherwise.

For all ¢ > 0, the application ¥, is a Borel map. Consider p defined for all ¢ > 0 by

p(t) = Wy Hp°.
We remark that, for all ¢, s € [0, Tf] such that ¢ > s,
(4.3) p(t) = U s#pu(s).

Since ®¥(zY) is Lipschitz, for all 2° € R? and ¢ € [0, 7], it holds
(4.4) |U;(2°) — 2°| < Cmin{t, t°(2°)} < Ct.

Combining (4.3) and (4.4), we deduce for all ¢,s € [0, 7] with s < ¢

W2 (u(s). () < j

U o(2) — 2> du(s) < sup |¥;_,(z) — 2> < Clt — s~
Rd

reRd

We deduce that the metric derivative |p/| of p defined for all ¢ € [0, T¢F] by

(4.5) 1 |(8) 1= tim 2L, ()
' T =

is uniformly bounded on [0, 7]. Then g is an absolute continuous curve on P.(R%)
(see [5, Def. 1.1.1]). Using [5, Th. 8.3.1], there exists a Borel vector w : R?x (0, T§) —
R? satisfying

W) L2 (ugeyiray < [KW|(8) ae. te [0, T5]

and the couple (w, u) is a weak solution to

(4.6) { O+ V- (wp) =0 in R x [0, T3],

w(0) = u° in R<.

By the uniform bound on the metric derivative, it holds that w is a L? vector field.
Moreover, for all ¢ € [0, 7], it holds

L2(u(t);R?)
w(t) € Tan,, @y (Po(RY) := {Vg : p € CE(RE)} "

(see [5, Def. 8.4.1]). Consider an open set w; of class C* satisfying wy cc wy cc w.
We now prove that w(t) coincides with v(¢) in supp(u(t))\w1 a.e. t € [0,TF], i.e. we
can choose u = 0 outside w. Fix ¢ € [0, 7] and consider = € supp(u(t)) N w§. There
necessarily exists z° € supp(u®) such that ®?(2°) = z, otherwise x € dwy. Moreover
for a B := B,.(2°) with r > 0 ®Y(B) cc w§ for all s € [0,t], otherwise there exists
s € [0,t] for which ®?(z°) € dwy. Thus

(4.7) $Y = U, in B.
We denote by A := ®Y(B). We now prove that

(4.8) UiH(A) = (@) (A).
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Consider z € (®V)"1(A). Equality (4.7) implies ®Y(x) = U;(2). Then 2 € U;(A).
Consider now z € ¥; *(A), which means ¥,(z) € A. Using the fact that A N @y # 0,
t < 3%x). Then Uy (x) = ®Y(x) and x € (®Y)"1(A). Thus (4.8) holds. By definition
of the push forward,

pa(t) = Vet ) and (PPp0) a0 = SE# (1 )
Since ¥; = ®Y on the set B = (®Y)"!(A) = ¥; ' (A), this implies
pwa(t) = q’f##?A-
By compactness of supp(u(t)) m w§, it holds
1) s = (PFH#1°) e
We deduce that, for all ¢ € C*(R?) such that supp(p) cc wf,

G et = | Few duty wa G| e duo = [ o duto.

dt Rd dt Rd
If it holds v € Tan,, ;) (Pe(R?)), then w(t) = v, u(t) a.e. in W1°, and we conclude by
taking u := w — v which is supported in w and is L?. If now v ¢ Tan#(t)(Pc(Rd)), we
can write v = vy + vz with vy € Tan, ) (P.(R?)) and vy € Tan,, ) (Pc(R?))*, where

Tan,, ;) (Pe(RY)) " = {v € L*(u(t) : RY) : V - (vpu(t)) = 0}

(see for instance [5, Prop. 8.4.3]). In other terms, vy plays no role in the weak
formulation of the continuity equation. Thus, with the same argument, we can prove
that w(t) = v1, p(t) a.e. in wi® and we conclude by tacking u := w — vy. |

The second useful result for the proof of Theorem 1.6 allows to exactly steer a
measure contained in w to a nonempty open convex set S cc w. It is the analogue
of Proposition 3.6. In this case, as in Proposition 4.7, we control the whole mass, but
we do not have necessarily uniqueness of the solution to System (1.1).

PROPOSITION 4.8. Let p° € P.(R?) satisfying supp(u®) < w. Define a nonempty
open conver set S strictly included in w\supp(u’) and choose § > 0. Then there
exists a couple (1 u, 1) composed of a L? vector field 1,u : R x RY — R? and a
time-evolving measure p being weak solution to System (1.1) satisfying

supp(p(d)) < S.

Proof. Consider Sy a nonempty open set of R? of class C* strictly included in S
and w; an open set of R? of class C® satisfying
supp(p’) U S cc wy cc w.

An example is given in Figure 5. Consider n € C?(wy) defined in the proof of Propo-
sition 3.6 satisfying (3.15). For all k € N*, we consider a Lipschitz vector field vy
satisfying

v in we.

- :_{ kVn in wq,

We denote by
£9(2°) ;= inf{t = 0: ®V*(2°) € So}.
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For all z° € R? and all k € N*, consider the application ¥y, .(z°) defined for all ¢ > 0
by

. B+ (20) if t < 19(20),
re(2”) = (I);jéc( 0)(500) otherwise.
k T

Using the same argument as in the proof of Proposition 3.6, for K large enough,
Vg 5(2°) belongs to S for all 2° € supp(u®). Consider p defined for all ¢ € (0,9) by
p(t) := Wi #u°. As in the proof of Proposition 4.7, there exists a vector field ux
such that (ug,p) is a weak solution to System (4.6). Moreover ug(t) = vg, p(t)
a.e. in §° and a.e. t € [0,d]. Thus, we conclude that (1,,(ux — vi), ) is solution to
System (1.1) and supp(u(d)) < S. |

The third useful result for the proof of Theorem 1.6 allows to exactly steer a measure
contained in a nonempty open convex set S € w to a given measure contained in S.
It is the analogue of Proposition 3.1. In this situation, we obtain exact controllability
of System (1.1), but, again, we do not have necessarily uniqueness of the solution to
System (1.1).

PROPOSITION 4.9. Let u°, u' e P.(R?) satisfying supp(u®) = S and supp(u') =
S for a nonempty open convex set S strictly included in w. Choose § > 0. Then there
exists a couple (1,u,u) composed of a L? vector field 1, u : R x RT — R and a
time-evolving measure p being weak solution to System (1.1) and satisfying

supp(p) © S and p(8) = p'.

Remark 4.10. The proof of Proposition 4.9 can be obtain thanks to the general-
ized Benamou-Brenier formula (see [8] for the original work and [39, Th. 5.28] for the
generalization). For the sake of completeness, we give below a proof of Proposition 4.9
closely related to the proof of [39, Th. 5.28].

Proof of Proposition 4.9. Let 7 be the optimal plan given in (2.1) associated to
the Wasserstein distance between 1® and p!. For i € {1,2}, we denote by p; : R? x
R? — R? the projection operator defined by

i (15171'2) = Z;.
Consider the time-evolving measure p defined for all ¢ € [0, ] by
1

(4.9) p(t) = 3 [(6 —t)p1 + tpa] #m.

Using [5, Th. 7.2.2], u is a constant speed geodesic connecting p® and p! in P.(R?),
i.e. for all s,t € [0, d]

Wau(t), () = 2w ).

We deduce that the metric derivative || of p (see (4.5)) is uniformly bounded on
[0,5]. Then p is an absolute continuous curve on P.(R%) (see [5, Def. 1.1.1]). Thus,
using [5, Th. 8.3.1], there exists a Borel vector field w : R? x (0,6) — R? such that

lw(t) | L2 (ugeyrey < |1](t) ace. t e [0,0]

and the couple (w, u) is a weak solution to

O+ V- (wp) =0 in R x [0, 6],
w(0) = u° in R?.
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By the uniform bound on the metric derivative, it holds that w is an L? vector field.
Consider 6 € C(R?) such that

0<0<1, #=1inS and 0 =0 in w".
We remark that p is supported in S, then the couple (1,u, p) with
u:=0x (w—wo)
is solution to
O+ V- ((v+1,u)p) =0 in R x [0,6],
w(0) = u° in R4

We now have all the tools to prove Theorem 1.6.

Proof of Theorem 1.6. Consider pu° and p' satisfying Condition 1.1. Applying
Lemma 3.4, Condition 3.3 holds for some wo, T and T7*. Let T := Tf + T7 + 0
with § > 0 and Ty, Ty, T3, T3, T4, T5 be the times given in the proof of Theorem
1.3. Using Proposition 4.7 on [T, T1] U [Ty, T5], there exist p; € CO([Ty, T ], Pe(R?)),
ps € CO([Ty, Ts], P.(R%)) and some space-dependent L? controls u', u® with

supp(u') U supp(u®) € w
such that (1,u, p1) is a weak solution forward in time to
8tp1 + V- ((U+]1wu1)p1) =0 in Rd X [To,Tl],
p1(To) = 1’ in R
and (1,u%, ps) is a weak solution backward in time to
Oips + V- (v +1,uP)ps) =0 in RY x [Ty, Ts],
p5(Ts) = p' in R,
Moreover supp(p1(71)) < w and supp(ps5(T4)) < w. Consider a nonempty open convex
set S strictly included in w\wg. Using Proposition 4.8 on [T1,Ts] v [T3,T4], there
exist p € CO([T1,To], P.(R?)), ps € CO([T3,Ty], P.(R?)) and some space-dependent
L? controls u2, u* with
supp(u?) U supp(u?) c w

such that (1,u?, p2) is a weak solution forward in time to
(%,pg + V. ((U + ]lwu2)p2) =0 in Rd X [Tl,TQ],
p2(T1) = p1(Th) in R?
and (1,u*, py) is a weak solution backward in time to
Otps + V- ((U + ]lwu4)p4) =0 inR%x [T3, T4],
pa(Ty) = ps(T4) in R,
Moreover supp(p2(T2)) < S and supp(p4(T3)) < S. Using Proposition 4.9 on [Tz, T3],
there exist pg € CO([Ty, T3], P.(R?)) satisfying supp(ps) = S and a L? control u® with
supp(u?) C w

such that (1,u3, p3) is a weak solution forward in time to

Oip3 + V- (v +1,u®)p3) =0 in RY x [Ty, T3],
p3(T2) = p2(12) in R
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and satisfies p3(T3) = p4(T3). Thus the couple (1,u, p) defined by

is a

(L, ) = (Tyul, p;) in RE x [T;_1,T;), i€ {1,...,5}
weak solution to System (1.1) and satisfies u(T) = p!. 0
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