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Abstract. We study controllability of a Partial Differential Equation of transport type, that4
arises in crowd models. We are interested in controlling it with a control being a vector field, repre-5
senting a perturbation of the velocity, localized on a fixed control set. We prove that, for each initial6
and final configuration, one can steer approximately one to another with Lipschitz controls when7
the uncontrolled dynamics allows to cross the control set. We also show that the exact controllabil-8
ity only holds for controls with less regularity, for which one may lose uniqueness of the associated9
solution.10
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1. Introduction. In recent years, the study of systems describing a crowd of13

interacting autonomous agents has drawn a great interest from the control community14

(see e.g. the Cucker-Smale model [22]). A better understanding of such interaction15

phenomena can have a strong impact in several key applications, such as road traffic16

and egress problems for pedestrians. For a few reviews about this topic, see e.g.17

[6, 7, 12, 21, 30, 31, 36, 40].18

Beside the description of interactions, it is now relevant to study problems of19

control of crowds, i.e. of controlling such systems by acting on few agents, or on20

the crowd localized in a small subset of the configuration space. The nature of the21

control problem relies on the model used to describe the crowd. Two main classes are22

widely used.23

In microscopic models, the position of each agent is clearly identified; the crowd24

dynamics is described by a large dimensional ordinary differential equation, in which25

couplings of terms represent interactions. For control of such models, a large literature26

is available from the control community, under the generic name of networked control27

(see e.g. [11, 32, 33]). There are several control applications to pedestrian crowds28

[26, 34] and road traffic [13, 29].29

In macroscopic models, instead, the idea is to represent the crowd by the30

spatial density of agents; in this setting, the evolution of the density solves a partial31

differential equation of transport type. Nonlocal terms (such as convolution) model32

the interactions between the agents. In this article, we focus on this second approach,33

i.e. macroscopic models. To our knowledge, there exist few studies of control of34

this family of equations. In [38], the authors provide approximate alignment of a35

crowd described by the macroscopic Cucker-Smale model [22]. The control is the36
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2 M. DUPREZ, M. MORANCEY, F. ROSSI

acceleration, and it is localized in a control region ω which moves in time. In a similar37

situation, a stabilization strategy has been established in [14, 15], by generalizing38

the Jurdjevic-Quinn method to partial differential equations. Other forms of control39

of transport equations with non-local terms have been described in [19, 20] with40

boundary control. In [17] the authors study optimal control of transport equations41

with non-local terms in which the control is the non-local term itself.42

A different approach is given by mean-field type control, i.e. control of mean-field43

equations and of mean-field games modeling crowds. See e.g. [1, 2, 16, 27]. In this44

case, problems are often of optimization nature, i.e. the goal is to find a control45

minimizing a given cost. In this article, we are mainly interested in controllability46

problems, for which mean-field type control approaches seem not adapted.47

In this article, we study a macroscopic model, thus the crowd is represented by48

its density, that is a time-evolving measure µptq defined for positive times t on the49

space Rd (d ě 1). The natural (uncontrolled) velocity field for the measure is denoted50

by v : Rd Ñ Rd, being a vector field assumed Lipschitz and uniformly bounded.51

The control acts on the velocity field in a fixed portion ω of the space, which will52

be a nonempty open bounded connected subset of Rd. The admissible controls53

are thus functions of the form 1ωu : RdˆR` Ñ Rd which support in the space variable54

is included inside ω. We will discuss later the regularity of such control: nevertheless,55

in the classical approach such control is a Lipschitz function with respect to the space56

variable in the whole space Rd.57

We then consider the following linear transport equation58

(1.1)

#

Btµ`∇ ¨ ppv ` 1ωuqµq “ 0 in Rd ˆ R`,
µp0q “ µ0 in Rd,

59

where µ0 is the initial data (initial configuration of the crowd) and the function u60

is an admissible control. The function v ` 1ωu represents the velocity field acting61

on µ. System (1.1) is a first simple approximation for crowd modelling, since the62

uncontrolled vector field v is given, and it does not describe interactions between63

agents. Nevertheless, it is necessary to understand controllability properties for such64

simple equation as a first step, before dealing with velocity fields depending on the65

crowd itself. Thus, in a future work, we will study controllability of crowd models66

with a nonlocal term vrµs, based on the linear results presented here.67

Even though System (1.1) is linear, the control acts on the velocity, thus the68

control problem is nonlinear, which is one of the main difficulties in this study.69

The problem presented here has been already studied in very particular cases,70

when the control acts everywhere. For example, in [35], the author studies the prob-71

lem of finding a homeomorphism sending a volume form (in our language, a measure72

that is absolutely continuous with respect to the Lebesgue measure with C8 density)73

to another. In [23], the authors study the same problem on a manifold with boundary,74

searching for a homeomorphism sending a volume form to another keeping the points75

on the boundary. Finally, in [9], a parabolic equation is studied: beside the uncon-76

trolled Laplacian term, a transport term is added. The presence of the Laplacian77

introduces more regularity with respect to our problem, that indeed allows to use so-78

lutions of stochastic ODEs instead of classical ones. For this reason, this article is the79

first characterizing controllability properties of the transport equation with localized80

controls on the velocity field in presence of an uncontrolled vector field v acting as a81

drift.82

The goal of this work is to study the control properties of System (1.1). We now83
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CONTROLLABILITY OF THE CONTINUITY EQUATION 3

recall the notion of approximate controllability and exact controllability for System84

(1.1). We say that System (1.1) is approximately controllable from µ0 to µ1 on the85

time interval r0, T s if we can steer the solution to System (1.1) at time T as close to86

µ1 as we want with an appropriate control 1ωu. Similarly, we say that System (1.1)87

is exactly controllable from µ0 to µ1 on the time interval r0, T s if we can steer the88

solution to System (1.1) at time T exactly to µ1 with an appropriate control 1ωu.89

In Definition 2.10 below, we give a formal definition of the notion of approximate90

controllability in terms of Wasserstein distance.91

The main results of this article show that approximate and exact controllability92

depend on two main aspects: first, from a geometric point of view, the uncontrolled93

vector field v needs to send the support of µ0 to ω forward in time and the support94

of µ1 to ω backward in time. This idea is formulated in the following condition:95

Condition 1.1 (Geometric Condition). Let µ0, µ1 be two probability measures96

on Rd satisfying:97

(i) For each x0 P supppµ0q, there exists t0 ą 0 such that Φvt0px
0q P ω, where Φvt98

is the flow associated to v, i.e. the solution to the Cauchy problem99

#

9xptq “ vpxptqq for a.e. t ą 0,

xp0q “ x0.
100

(ii) For each x1 P supppµ1q, there exists t1 ą 0 such that Φv
´t1px

1q P ω.101

This geometric aspect is illustrated in Figure 1.

supppµ0q
ω supppµ1q

v

Fig. 1. Geometric Condition 1.1.

102

Remark 1.2. Condition 1.1 is the minimal one that we can expect to steer any103

initial condition to any target. Indeed, if there exists a point x0 of the interior of104

supppµ0q for which the first item of the Geometrical Condition 1.1 is not satisfied,105

then there exists a part of the population of the measure µ0 that never intersects the106

control region, thus we cannot act on it.107

The second aspect that we want to highlight is the following: The measures µ0108

and µ1 need to be sufficiently regular with respect to the flow generated by v ` 1ωu.109

Three cases are particularly relevant:110

a) Controllability with Lipschitz controls111

If we impose the classical Carathéodory condition of 1ωu being Lipschitz in space,112

measurable in time and uniformly bounded, then the flow Φv`1ωu
t is an homeomor-113

phism (see [10, Th. 2.1.1]). As a result, one can expect approximate controllability114
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4 M. DUPREZ, M. MORANCEY, F. ROSSI

only, since for general measures there exists no homeomorphism sending one to an-115

other. For more details, see Section 4.1. We then have the following result:116

Theorem 1.3 (Main result - Controllability with Lipschitz control). Let µ0, µ1117

be two probability measures on Rd compactly supported, absolutely continuous with118

respect to the Lebesgue measure and satisfying Condition 1.1. Then there exists T119

such that System (1.1) is approximately controllable on the time interval r0, T s120

from µ0 to µ1 with a control 1ωu : Rd ˆ R` Ñ Rd uniformly bounded, Lipschitz in121

space and measurable in time.122

We give a proof of Theorem 1.3 in Section 3. This proof is a constructive one and123

strongly uses the fact that the velocity vector field v is autonomous, i.e. not dependent124

on time. Moreover, it is clear that the extension of our work to time dependent velocity125

vector fields should require a non-trivial modification of the Geometric Condition126

1.1. For the initial measure µ0 (forward trajectory) the modification is simply the127

replacement of the flow of the autonomous vector field with the flow of the non-128

autonomous one, starting from t “ 0. Instead, for the final measure µ1 (backward129

trajectories) one needs to consider the non-autonomous vector field starting from the130

final time T , which is an unknown of the problem.131

Remark 1.4. Due to the finite speed of propagation outside of ω, approximate132

controllability cannot hold at arbitrary small time. The study of this minimal con-133

trollability time is carried on in the forthcoming paper [25].134

Remark 1.5. If one removes the assumption of boundedness of v, replacing it with135

other conditions ensuring boundedness of the flow for each time (e.g. by imposing136

sub-linear growth), then the results presented here still hold. Indeed, it is sufficient137

to observe that we mainly deal with properties of the flow, that are preserved in this138

case.139

If one instead removes the assumption of boundedness of the supports of µ0, µ1140

keeping boundedness of v, it is clear that controllability does not hold in general.141

Indeed, one needs an infinite time to steer the whole mass of µ0 to the mass of µ1.142

Finally, if one removes both boundedness of the supports and boundedness of143

the velocity v, it is possible to find examples of approximate controllability in finite144

time. For example, in R` with ω “ R`, consider the vector field vpxq “ x2, for145

which the flow is Φvt px0q “
x0

1´tx0
, defined only for t ă x´1

0 . Thus, one can verify146

that µ0 “ 1r0,1s is sent to µ1 “ 1
px`1q21r0,`8q at time T “ 1. Nevertheless, the147

problem under such less restrictive hypotheses seems harder to study in its generality,148

even though adaptations of the method presented here seem possible. Moreover, our149

applications to crowd modeling and control always assume finite speed of propagation150

and measures with bounded support.151

b) Controllability with vector fields inducing maximal regular flows152

To hope to obtain exact controllability of System (1.1) at least for absolutely153

continuous measures, it is then necessary to search among controls 1ωu with less154

regularity. A weaker condition on the regularity of the velocity field for the well-155

posedness of System (1.1) has been recently introduced by Ambrosio-Colombo-Figalli156

in [4], extending previous results by Ambrosio [3] and DiPerna-Lions [24]. Examples of157

vector fields satisfying such condition are Sobolev vector fields [24], and BV (bounded158

variation) vector fields with locally integrable divergence [3]. Thus, if we choose the159

admissible controls satisfying the setting of [4], it is not necessary that there exists160

an homeomorphism between µ0 and µ1.161
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CONTROLLABILITY OF THE CONTINUITY EQUATION 5

For all such theories, given a vector field w, a suitable concept of flow Φwt is162

introduced, such as the maximal regular flow [4], generalizing the regular Lagrangian163

flow of [3]. Even though such flow does not enjoy all the properties of flows of Lipschitz164

vector fields, a common requirement is that the Lebesgue measure L restricted to an165

open bounded set A is transported to a measure bounded from above by a multiple166

of the Lebesgue measure itself. In other terms, there exists of a constant C ą 0 such167

that for all t P r0, T s it holds168

(1.2) Φwt #L|A ď CL169

We will show in Section 4.1 that this condition implies the non-existence of con-170

trols exactly steering one absolutely continuous measure to another, for specific choices171

of µ0, µ1. Thus, even this setting does not allow to yield exact controllability.172

It is also interesting to observe that Property (1.2) is often required as a nec-173

essary condition for a reasonable generalization of the standard theory of Ordinary174

Differential Equations. Indeed, for Lipschitz vector fields w, the constant C is given175

by eLippwqt. Then, in DiPerna-Lions such condition is required in [24, Eq. (7)] on both176

sides, while in Ambrosio it is required in [3, Eq (6.1)]. In this sense, the non-exact177

controllability seems a drawback of a desired condition for an even very general theory178

of Ordinary Differential Equations, rather than a goal to be reached.179

c) Controllability with L2 controls180

We then consider an even larger class of controls, that are general Borel vector181

fields. In this setting, we have exact controllability under the Geometric Condition182

1.1 for any pairs of measures, even not absolutely continuous. Moreover, we prove183

that one can restrict the set of admissible controls to those that are L2 with respect184

to the measure itself, i.e. to controls satisfying185

(1.3)

ż 1

0

ż

Rd

|uptq|2dµptqdt ă 8.186

The main drawback is that, in this less regular setting, System (1.1) is not nec-187

essarily well-posed. In particular, one has not necessarily uniqueness of the solution.188

For this reason, one needs to describe solutions to System (1.1) as pairs p1ωu, µq,189

where µ is one among the admissible solutions with control 1ωu.190

Theorem 1.6 (Main result - Controllability with L2 control). Let µ0, µ1 be two191

probability measures on Rd compactly supported and satisfying Condition 1.1. Then,192

there exists T ą 0 such that System (1.1) is exactly controllable on the time interval193

r0, T s from µ0 to µ1 in the following sense: there exists a couple p1ωu, µq composed194

of a L2 vector field 1ωu : Rd ˆ R` Ñ Rd and a time-evolving measure µ being weak195

solution to System (1.1) (see Definition 2.6) and satisfying196

µpT q “ µ1.197

A proof of Theorem 1.6 is given in Section 4.198

We now resume the main results of the article in the following table.199
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6 M. DUPREZ, M. MORANCEY, F. ROSSI

If µ0, µ1 satisfy the Geometric Condition 1.1, then

µ0, µ1

absolutely
continuous

‚ approx. controllability with Lipschitz control
‚ NO exact controllability with control inducing

maximal regular flows

µ0, µ1

general measures
exact controllability with L2 control

200

This paper is organised as follows. In Section 2, we recall basic properties of the201

Wasserstein distance and the continuity equation. Section 3 is devoted to the proof202

of Theorem 1.3, i.e. the approximate controllability of System (1.1) with a Lipschitz203

localized vector field. Finally, in Section 4, we first show that exact controllability204

does not hold for Lipschitz controls or even vector fields inducing a maximal regular205

flow; we also prove Theorem 1.6, i.e. exact controllability of System (1.1) with a L2206

localized vector field.207

2. The Wasserstein distance and the continuity equation. In this section,208

we recall the definition and some properties of the Wasserstein distance and the conti-209

nuity equation, which will be used all along this paper. We denote by PcpRdq the space210

of probability measures in Rd with compact support and for µ, ν P PcpRdq. We also211

introduce the classical partial ordering of measures: µ ď ν if A being ν-measurable212

implies A being µ-measurable and µpAq ď νpAq.213

We denote by Πpµ, νq the set of transference plans from µ to ν, i.e. the probability214

measures on Rd ˆ Rd satisfying215

ż

Rd

dπpx, ¨q “ dµpxq and

ż

Rd

dπp¨, yq “ dνpyq.216

Definition 2.1. Let p P r1,8q and µ, ν P PcpRdq. Define217

(2.1) Wppµ, νq “ inf
πPΠpµ,νq

$

’

’

&

’

’

%

¨

˚

˝

ĳ

RdˆRd

|x´ y|pdπ

˛

‹

‚

1{p
,

/

/

.

/

/

-

.218

The quantity is called the Wasserstein distance.219

This is the idea of optimal transportation, consisting in finding the optimal way to220

transport mass from a given measure to another. For a thorough introduction, see221

e.g. [41].222

We denote by Γ the set of Borel maps γ : Rd Ñ Rd. We now recall the definition223

of the push-forward of a measure:224

Definition 2.2. For a γ P Γ, we define the push-forward γ#µ of a measure µ of225

Rd as follows:226

pγ#µqpEq :“ µpγ´1pEqq,227

for every subset E such that γ´1pEq is µ-measurable.228

We denote by “AC measures” the measures which are absolutely continuous with229

respect to the Lebesgue measure and by Pacc pRdq the subset of PcpRdq of AC measures.230

On Pacc pRdq, the Wasserstein distance can be reformulated as follows:231
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CONTROLLABILITY OF THE CONTINUITY EQUATION 7

Property 2.3 (see [41, Chap. 7]). Let p P r1,8q and µ, ν P Pacc pRdq. It holds232

(2.2) Wppµ, νq “ inf
γPΓ

#

ˆ
ż

Rd

|γpxq ´ x|pdµ

˙1{p

: γ#µ “ ν

+

.233

The Wasserstein distance satisfies some useful properties:234

Property 2.4 (see [41, Chap. 7]). Let p P r1,8q.235

(i) The Wasserstein distance Wp is a distance on PcpRdq.236

(ii) The topology induced by the Wasserstein distance Wp on PcpRdq coincides237

with the weak topology.238

(iii) For all µ, ν P Pacc pRdq, the infimum in (2.2) is achieved by at least one min-239

imizer.240

The Wasserstein distance can be extended to all pairs of measures µ, ν compactly
supported with the same total mass µpRdq “ νpRdq ‰ 0, by the formula

Wppµ, νq “ µpRdq1{pWp

ˆ

µ

µpRdq
,

ν

νpRdq

˙

.

In the rest of the paper, the following properties of the Wasserstein distance will241

be also helpful:242

Property 2.5 (see [37, 41]). Let µ, ρ, ν, η be four positive measures compactly243

supported satisfying µpRdq “ νpRdq and ρpRdq “ ηpRdq.244

(i) For each p P r1,8q, it holds245

(2.3) W p
p pµ` ρ, ν ` ηq ďW p

p pµ, νq `W
p
p pρ, ηq.246

(ii) For each p1, p2 P r1,8q with p1 ď p2, it holds247

(2.4)

#

Wp1pµ, νq ďWp2pµ, νq,

Wp2pµ, νq ď diampXq1´p1{p2W
p1{p2
p1 pµ, νq,

248

where X contains the supports of µ and ν.249

We now recall the definition of the continuity equation and the associated notion250

of weak solutions:251

Definition 2.6. Let T ą 0 and µ0 be a measure in Rd. We said that a pair252

pµ,wq composed with a measure µ in Rdˆr0, T s and a vector field w : RdˆR` Ñ Rd253

satisfying254
ż T

0

ż

Rd

|wptq| dµptqdt ă 8255

is a weak solution to the system, called the continuity equation,256

(2.5)

#

Btµ`∇ ¨ pwµq “ 0 in Rd ˆ r0, T s,
µp0q “ µ0 in Rd,

257

if for every continuous bounded function ξ : Rd Ñ R, the function t ÞÑ
ş

Rd ξ dµptq is258

absolutely continuous with respect to t and for all ψ P C8c pRdq, it holds259

d

dt

ż

Rd

ψ dµptq “

ż

Rd

x∇ψ,wptqy dµptq260

for a.e. t and µp0q “ µ0.261
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8 M. DUPREZ, M. MORANCEY, F. ROSSI

Note that t ÞÑ µptq is continuous for the weak convergence, it then make sense to262

impose the initial condition µp0q “ µ0 pointwisely in time. Before stating a result of263

existence and uniqueness of solutions for the continuity equation, we first recall the264

definition of the flow associated to a vector field.265

Definition 2.7. Let w : RdˆR` Ñ Rd be a vector field being uniformly bounded,266

Lipschitz in space and measurable in time. We define the flow associated to the vector267

field w as the application px0, tq ÞÑ Φwt px
0q such that, for all x0 P Rd, t ÞÑ Φwt px

0q is268

the solution to the Cauchy problem269
#

9xptq “ wpxptq, tq for a.e. t ě 0,

xp0q “ x0.
270

The following property of the flow will be useful all along the present paper:271

Property 2.8 (see [37]). Let µ, ν P PcpRdq and w : Rd ˆ R Ñ Rd be a vector272

field uniformly bounded, Lipschitz in space and measurable in time with a Lipschitz273

constant equal to L. For each t P R and p P r1,8q, it holds274

(2.6) WppΦ
w
t #µ,Φwt #νq ď e

pp`1q
p L|t|Wppµ, νq.275

Similarly, let µ P Pacc pRdq and w1, w2 : RdˆRÑ Rd be two vector fields uniformly276

bounded, Lipschitz in space with a Lipschitz constant equal to L and measurable in277

time. Then, for each t P R and p P r1,`8q, it holds278

(2.7) WppΦ
w1
t #µ,Φw2

t #µq ď eL|t|{p
eL|t| ´ 1

L
}w1 ´ w2}C0 .279

We now recall a standard result for the continuity equation:280

Theorem 2.9 (see [41, Th. 5.34]). Let T ą 0, µ0 P PcpRdq and w a vector field281

uniformly bounded, Lipschitz in space and measurable in time. Then, System (2.5)282

admits a unique solution µ in C0pr0, T s;PcpRdqq, where PcpRdq is equipped with the283

weak topology. Moreover:284

(i) If µ0 P Pacc pRdq, then the solution µ to (2.5) belongs to C0pr0, T s;Pacc pRdqq.285

(ii) We have µptq “ Φwt #µ0 for all t P r0, T s.286

We now recall the precise notions of approximate controllability and exact con-287

trollability for System (1.1):288

Definition 2.10. We say that:289

‚ System (1.1) is approximately controllable from µ0 to µ1 on the time290

interval r0, T s if for each ε ą 0 there exists a control 1ωu such that the291

corresponding solutions µ to System (1.1) satisfies292

(2.8) Wppµ
1, µpT qq ď ε.293

‚ System (1.1) is exactly controllable from µ0 to µ1 on the time interval294

r0, T s if there exists a control 1ωu such that the corresponding solution to295

System (1.1) is equal to µ1 at time T .296

It is interesting to remark that, by using properties (2.4) of the Wasserstein distance,297

estimate (2.8) can be replaced by:298

W1pµ
1, µpT qq ď ε.299

Thus, in this work, we study approximate controllability by considering the distance300

W1 only.301
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CONTROLLABILITY OF THE CONTINUITY EQUATION 9

Remark 2.11. One can be interested in proving approximate controllability for a302

smaller set of controls, for example of class Ck in the space variable with some k ě 1.303

Due to the estimate (2.7), the result of Theorem 1.3 still holds in this case, by density304

of Ck functions in the space of Lipschitz function with respect to the C0 norm. Higher305

regularity in the time variable can be achieved too with the same techniques.306

A careful inspection of our proof shows that controls ensuring approximate con-307

trollability are not only measurable in time, but they have a finite number of disconti-308

nuities in time, that can be smoothened in a small interval of size τ . The introduced309

error can be arbitrarily small, by using the fact that limτÑ0 e
Lτ{ppeLτ ´ 1q “ 0.310

3. Approximate controllability with a localized Lipschitz control. In311

this section, we study approximate controllability of System (1.1) with localized Lip-312

schitz controls. More precisely, in Sections 3.1, we consider the case where the open313

connected control subset ω contains the support of both µ0 and µ1. We then prove314

Theorem 1.3 in Section 3.2.315

3.1. Approximate controllability with a Lipschitz control. In this section,316

we prove approximate controllability of System (1.1) with a Lipschitz control, when317

the open connected control subset ω contains the support of both µ0 and µ1. Without318

loss of generality, we can assume that the vector field v is identically zero by replacing319

u with u´ v in the control set ω.320

We then study approximate controllability of system321

(3.1)

#

Btµ` divpuµq “ 0 in Rd ˆ R`,
µp0q “ µ0 in Rd.

322

Proposition 3.1. Let µ0, µ1 P Pacc pRdq compactly supported in ω. Then, for all
T ą 0, System (3.1) is approximately controllable on the time interval r0, T s from µ0

to µ1 with a control u : Rd ˆ R` Ñ Rd uniformly bounded, Lipschitz in space and
measurable in time. Moreover, the solution µ to System (3.1) satisfies

supppµptqq Ă ω,

for all t P r0, T s.323

Proof of Proposition 3.1. We assume that d :“ 2, but the reader will see that the324

proof can be clearly adapted to dimension one or to any other space dimension. In view325

to simplify the computations, we suppose that T :“ 1 and supppµiq Ă p0, 1q2 ĂĂ ω326

for i “ 1, 2.327

We first partition p0, 1q2. Let n P N˚, consider a0 :“ 0, b0 :“ 0 and define the328

points ai, bi for all i P t1, ..., nu by induction as follows: suppose that for a given329

i P t0, ..., n ´ 1u the points ai and bi are defined, then the points ai`1 and bi`1 are330

the smallest values such that331

ż

pai,ai`1qˆR
dµ0 “

1

n
and

ż

pbi,bi`1qˆR
dµ1 “

1

n
.332

Again, for each i P t0, ..., n ´ 1u, we consider ai,0 :“ 0, bi,0 :“ 0 and supposing that333

for a given j P t0, ..., n ´ 1u the points ai,j and bi,j are already defined, ai,j`1 and334

bi,j`1 are the smallest values such that335

ż

Aij

dµ0 “
1

n2
and

ż

Bij

dµ1 “
1

n2
,336

This manuscript is for review purposes only.



10 M. DUPREZ, M. MORANCEY, F. ROSSI

where Aij :“ pai, ai`1q ˆ paij , aipj`1qq and Bij :“ pbi, bi`1q ˆ pbij , bipj`1qq. Since337

µ0 and µ1 have a mass equal to 1 and are supported in p0, 1q2, then an, bn ď 1 and338

ai,n, bi,n ď 1 for all i P t0, ..., n´1u. We give in Figure 2 an example of such partition.339

x2

x1
a0 a1

a01

a02

...
...

a0pn´2q

a0pn´1q

a0n

a2

a11

a12

...

a1pn´2q

a1pn´1q

1

n

¨ ¨ ¨

¨ ¨ ¨

ai

ai1

...

aij

aipj`1q

...

1{n2

aipn´1q

ai`1 ¨ ¨ ¨

¨ ¨ ¨

an´2

apn´2q1

apn´2q2

...

apn´2qpn´2q

apn´2qpn´1q

an´1

apn´1q1

apn´1q2

...

apn´1qpn´2q

apn´1qpn´1q

an

Fig. 2. Example of a partition for µ0.

340

If one aims to define a vector field sending each Aij to Bij , then some shear stress341

is naturally introduced, as described in Remark 3.2. To overcome this problem, we342

first define sets rAij ĂĂ Aij and rBij ĂĂ Bij for all i, j P t0, ..., n´ 1u. We then send343

the mass of µ0 from each rAij to rBij , while we do not control the mass contained344

in Aijz rAij . More precisely, for all i, j P t0, ..., n ´ 1u, we define, as in Figure 3,345

a´i , a
`
i , a

´
ij , a

`
ij the smallest values such that346

ż

pai,a
´
i qˆpaij ,aipj`1qq

dµ0 “

ż

pa`i ,ai`1qˆpaij ,aipj`1qq

dµ0 “
1

n3
347

and348

ż

pa´i ,a
`
i qˆpaij ,a

´
ijq

dµ0 “

ż

pa´i ,a
`
i qˆpa

`
ij ,aipj`1qq

dµ0 “
1

n
ˆ

ˆ

1

n2
´

2

n3

˙

.349

We similarly define b`i , b
´
i , b

`
ij , b

´
ij and finally define

rAij :“ pa´i , a
`
i q ˆ pa

´
ij , a

`
ijq and rBij :“ pb´i , b

`
i q ˆ pb

´
ij , b

`
ijq.

The goal is to build a solution to System (3.1) such that the corresponding flow350
Φut satisfies351

(3.2) ΦuT p
rAijq “ rBij ,352

for all i, j P t0, ..., n´1u. We observe that we do not take into account the displacement353

of the mass contained in Aijz rAij . We will show that the mass of the corresponding354
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1
n ˆ

`

1
n2 ´

2
n3

˘

1

n3

ai a´i a`i ai`1
aij

a´ij

a`ij

aipj`1q

rAij

Fig. 3. Example of cell.

term tends to zero when n goes to infinity. The rest of the proof is divided into two355

steps. In a first step, we build a flow satisfying (3.2), then the corresponding vector356

field. In a second step, we compute the Wasserstein distance between µ1 and µpT q,357

showing that it converges to zero when n goes to infinity. Step 1: We first build a358

flow satisfying (3.2). We recall that T :“ 1. For each i P t0, ..., n´ 1u, we denote by359

c´i and c`i the linear functions equal to a´i and a`i at time t “ 0 and equal to b´i and360

b`i at time t “ T “ 1, respectively, i.e. the functions defined for all t P r0, T s by:361

c´i ptq “ pb
´
i ´ a

´
i qt` a

´
i and c`i ptq “ pb

`
i ´ a

`
i qt` a

`
i .362

Similarly, for all i, j P t0, ..., n´1u, we denote by c´ij and c`ij the linear functions equal363

to a´ij and a`ij at time t “ 0 and equal to b´ij and b`ij at time t “ T “ 1, respectively,364

i.e. the functions defined for all t P r0, T s by:365

c´ijptq “ pb
´
ij ´ a

´
ijqt` a

´
ij and c`ijptq “ pb

`
ij ´ a

`
ijqt` a

`
ij .366

Consider the application being the following linear combination of c´i , c
`
i and c´ij , c

`
ij367

on rAij , i.e.368

(3.3) xpx0, tq :“

ˆ

x1px
0, tq

x2px
0, tq

˙

“

¨

˚

˚

˚

˝

a`i ´ x
0
1

a`i ´ a
´
i

c´i ptq `
x0

1 ´ a
´
i

a`i ´ a
´
i

c`i ptq

a`ij ´ x
0
2

a`ij ´ a
´
ij

c´ijptq `
x0

2 ´ a
´
ij

a`ij ´ a
´
ij

c`ijptq

˛

‹

‹

‹

‚

,369

where x0 “ px0
1, x

0
2q P

rAij . Let us prove that an extension of the application px0, tq ÞÑ370

xpx0, tq is a flow associated to a vector field u. After some computations, we obtain371

$

’

&

’

%

dx1

dt
px0, tq “ αiptqx1px

0, tq ` βiptq @t P r0, T s,

dx2

dt
px0, tq “ αijptqx2px

0, tq ` βijptq @t P r0, T s,

372

where for all t P r0, T s,373

$

’

’

’

&

’

’

’

%

αiptq “
b`i ´ b

´
i ` a

´
i ´ a

`
i

c`i ptq ´ c
´
i ptq

, βiptq “
a`i b

´
i ´ a

´
i b
`
i

c`i ptq ´ c
´
i ptq

,

αijptq “
b`ij ´ b

´
ij ` a

´
ij ´ a

`
ij

c`ijptq ´ c
´
ijptq

, βijptq “
a`ijb

´
ij ´ a

´
ijb
`
ij

c`ijptq ´ c
´
ijptq

.

374
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The last quantities are well defined since for all i, j P t0, ..., n´ 1u and t P r0, T s375

"

|c`i ptq ´ c
´
i ptq| ě maxt|a`i ´ a

´
i |, |b

`
i ´ b

´
i |u,

|c`ijptq ´ c
´
ijptq| ě maxt|a`ij ´ a

´
ij |, |b

`
ij ´ b

´
ij |u.

376

For all t P r0, T s, consider the set377

rCijptq :“ pc´i ptq, c
`
i ptqq ˆ pc

´
ijptq, c

`
ijptqq.378

We remark that rCijp0q “ rAij and rCijpT q “ rBij . On

rCij :“ tpx, tq : t P r0, T s, x P rCijptqu,

we then define the vector field u by379

"

u1px, tq “ αiptqx1 ` βiptq,
u2px, tq “ αijptqx2 ` βijptq,

380

for all px, tq P rCij (x “ px1, x2q). Notice that the sets rCij do not intersect. Thus, we381

extend u by a uniform bounded C8 function outside Yij rCij , then u is a C8 function382

and it satisfies supppuq Ă ω.383

Then, System (1.1) admits an unique solution and the flow on rCij is given by384

(3.3).385

Step 2: We now prove that the refinement of the grid provides convergence to386

the target µ1, i.e.387

W1pµ
1, µpT qq ÝÑ

nÑ8
0.388

We remark that389

ż

rBij

dµpT q “

ż

rBij

dµ1 “
1

n2
´

2

n3
´

2

n

ˆ

1

n2
´

2

n3

˙

“
pn´ 2q2

n4
.390

Hence, by defining

R :“ p0, 1q2 z
ď

ij

rBij ,

we also have391

ż

R

dµpT q “

ż

R

dµ1 “ 1´
pn´ 2q2

n2
.392

Using (2.3), it holds393

(3.4) W1pµ
1, µpT qq ď

n
ř

i,j“1

W1pµ
1
| rBij

, µpT q
| rBij
q `W1pµ

1
|R, µpT q|Rq.394

We now estimate each term in the right-hand side of (3.4). Since we deal with AC395

measures, using Properties 2.4,396
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there exist measurable maps γij : R2 Ñ R2, for all i, j P t0, ..., n ´ 1u, and397

γ : R2 Ñ R2 such that398

$

’

’

’

’

&

’

’

’

’

%

γij#pµ
1
| rBij
q “ µpT q

| rBij
,

W1pµ
1
| rBij

, µpT q
| rBij
q

“

ż

rBij

|x´ γijpxq|dµ
1pxq

and

$

’

’

’

&

’

’

’

%

γ#pµ1
|Rq “ µpT q|R,

W1pµ
1
|R, µpT q|Rq

“

ż

R

|x´ γpxq|dµ1pxq.

399

In the first term in the right hand side of (3.4), observe that γij moves masses inside400

rBij only. Thus, for all i, j P t0, ..., n´ 1u, using the triangle inequality,401

(3.5)

W1pµ
1
| rBij

, µpT q
| rBij
q “

ż

rBij

|x´ γijpxq|dµ
1pxq

ď rpb`i ´ b
´
i q ` pb

`
ij ´ b

´
ijqs

ż

rBij

dµ1pxq ď pb`i ´ b
´
i ` b

`
ij ´ b

´
ijq
pn´ 2q2

n4
.

402

For the second term in the right-hand side of (3.4), observe that γ moves a small mass403

in the bounded set p0, 1q. Thus it holds404

(3.6) W1pµ
1
|R, µpT q|Rq “

ż

R

|x´ γpxq|dµ1pxq ď 2

ˆ

1´
pn´ 2q2

n2

˙

“ 8
n´ 1

n2
.405

Combining (3.4), (3.5) and (3.6), we obtain406

W1pµ
1, µpT qq ď

˜

n
ř

i,j“1

pb`i ´ b
´
i ` b

`
ij ´ b

´
ijq
pn´ 2q2

n4

¸

` 8
n´ 1

n2

ď 2n
pn´ 2q2

n4
` 8

n´ 1

n2
ÝÑ
nÑ8

0.

407

408

Remark 3.2. It is not possible in general to build a Lipschitz vector field sending409

directly each Aij to Bij using the strategy developed in the proof of Proposition 3.1.410

Indeed, we would obtain discontinuous velocities on the lines ci. Figure 4 illustrates411

this phenomenon in the case n “ 2.412

a0 a1 a2

a00 “ a10

a11

a01

a02 “ a12

b0 b1 b2
b00 “ b10

b11

b01

b02 “ b12

Fig. 4. Shear stress (left: µ0, right: µ1)

3.2. Approximate controllability with a localized regular control. This413

section is devoted to prove Theorem 1.3: we aim to prove approximate controllability414
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of System (1.1) with a Lipschitz localized control. This means that we remove the415

constraints supppµ0q Ă ω, supppµ1q Ă ω and v :“ 0, that we used in Section 3.1. On416

the other side, we impose Condition 1.1. Before the main proof, we need three useful417

results. First of all, we give a consequence of Condition 1.1:418

Condition 3.3. There exist two real numbers T˚0 , T˚1 ą 0 and a nonempty open419

set ω0 ĂĂ ω such that420

(i) For each x0 P supppµ0q, there exists t0 P r0, T˚0 s such that Φvt0px
0q P ω0, where421

Φvt is the flow associated to v.422

(ii) For each x1 P supppµ1q, there exists t1 P r0, T˚1 s such that Φv
´t1px

1q P ω0.423

Lemma 3.4. If Condition 1.1 is satisfied for µ0, µ1 P PcpRdq, then Condition 3.3424

is satisfied too.425

Proof. We use a compactness argument. Let µ0 P PcpRdq and assume that Con-
dition 1.1 holds. Let x0 P supppµ0q. Using Condition 1.1, there exists t0px0q ą 0 such
that Φvt0px0q

px0q P ω. Choose rpx0q ą 0 such that Brpx0qpΦ
v
t0px0q

px0qq ĂĂ ω, where

Brpx
0q denotes the open ball of radius r ą 0 centered at point x0 in Rd. Such rpx0q

exists, since ω is open. By continuity of the application x1 ÞÑ Φvt0px0q
px1q (see [10,

Th. 2.1.1]), there exists r̂px0q such that

x1 P Br̂px0qpx
0q ñ Φvt0px0qpx

1q P Brpx0qpΦ
v
t0px0qpx

0qq.

Since µ0 is compactly supported, we can find a set tx0
1, ..., x

0
N0
u Ă supppµ0q such that

supppµ0q Ă

N0
ď

i“1

Br̂px0
i q
px0
i q.

We similarly build a set tx1
1, ..., x

1
N1
u Ă supppµ1q. Thus Condition 3.3 is satisfied for

T˚k :“ maxttkpxki q : i P t1, ..., Nkuu,

with k “ 0, 1 and

ω0 :“

˜

N0
ď

i“1

Brpx0
i q
pΦvt0px0

i q
px0
i qq

¸

ď

˜

N1
ď

i“1

Brpx1
i q
pΦv
´t1px1

i q
px1
i qq

¸

ĂĂ ω.

426

The second useful result is the following proposition, showing that we can store a427

large part of the mass of µ0 in ω, under Condition 3.3.428

Proposition 3.5. Let µ0 P Pacc pRdq satisfying the first item of Condition 3.3.429

Then, for all ε ą 0, there exists a space-dependent vector field 1ωu Lipschitz and430

uniformly bounded and a Borel set A Ă Rd such that431

(3.7) µ0pAq “ ε and supppΦv`1ωu

T˚0
#µ0

|Acq Ă ω.432

Proof. For each k P N˚, we denote by ωk the closed set defined by433

ωk :“ tx0 P Rd : dpx0, ωc0q ě 1{ku434

and a cutoff function θk P C8pRdq satisfying435

$

&

%

0 ď θk ď 1,
θk “ 1 in ωc0,
θk “ 0 in ωk.

436
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For all x0 P supppµ0q, we define

t0px
0q :“ inftt P R` : Φvt px

0q P ω0u and tkpx
0q :“ inftt P R` : Φvt px

0q P ωku.

For all k P N˚, we consider437

(3.8) uk :“ pθk ´ 1qv438

and
Sk :“ tx0 P supppµ0qzω0 : Ds P pt0px

0q, tkpx
0qq, s.t. Φvspx

0q P ωc0u.

The rest of the proof is divided into three steps:439

‚ In Step 1, we prove that the range of the flow associated to x0 with the control440

uk is included in the range of the flow associated to x0 without control, i.e.441

tΦv`uk
t px0q : t ě 0u Ă tΦvt px

0q : t ě 0u.442

‚ In Step 2, we show that Sk is a Borel set for all k P N˚.443

‚ In Step 3, we prove that for a K large enough we have444

(3.9) µ0pωzωKq ` µ
0pSKq ď ε.445

Step 1: Consider the flow yptq :“ Φvt px
0q associated to x0 without control, i.e. the446

solution to447

#

9yptq “ vpyptqq, t ě 0,

yp0q “ x0
448

and the flow zkptq :“ Φv`uk
t px0q associated to x0 with the control uk given in (3.8),449

i.e. the solution to450

(3.10)

#

9zkptq “ pv ` ukqpzkptqq “ θkpzkptqq ˆ vpzkptqq, t ě 0,

zkp0q “ x0.
451

We use the time change γk defined as the solution to the following system452

(3.11)

#

9γkptq “ θkpypγkptqqq, t ě 0,

γkp0q “ 0.
453

Since θk and y are Lipschitz, then System (3.11) admits a solution defined for all454

times. We remark that ξk :“ y ˝ γk is solution to System (3.10). Indeed, for all t ě 0455

it holds456

#

9ξkptq “ 9γkptq ˆ 9ypγkptqq “ θkpξkptqq ˆ vpξkptqq, t ě 0,

ξkp0q “ ypγkp0qq “ yp0q.
457

By uniqueness of the solution to System (3.10), we obtain458

ypγkptqq “ zkptq for all t ě 0.459

Using the fact that 0 ď θ ď 1 and the definition of γk, we have
$

&

%

γk increasing,
γkptq ď t @t P r0, tkpx

0qs,
γkptq ď tkpx

0q @t ě tkpx
0q.
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We deduce that, for all x0 P supppµ0q, it holds

tzkptq : t ě 0u Ă typsq : s P r0, tkpx
0qsu.

Step 2: We now prove that Sk is a Borel set by showing that the set

Rk :“ tx0 P Rd : t0px
0q ă 8 and Ds P pt0px

0q, tkpx
0qq s.t. Φvspx

0q P ωc0u

is open. Let k P N˚, x0 be an element of Rk and search rpx0q ą 0 such that460

Brpx0qpx
0q Ă Rk.461

There exists s P pt0px
0q, tkpx

0qq such that Φvspx
0q P ωc0. Since ωc0 is open, for a

β ą 0, we have BβpΦ
v
spx

0qq Ă ωc0. By continuity of the application x1 ÞÑ Φvspx
1q,

there exists rpx0q ą 0 such that

x1 P Brpx0qpx
0q ñ Φvspx

1q P BβpΦ
v
spx

0qq.

Thus, for all k P N˚, Rk is open. As Sk “ Rk X supppµ0q X ωc0, Sk is a Borel set.462

Step 3: We now prove that (3.9) holds for a K large enough. Since we deal with
we AC measure, there exists K0 P N˚ such that for all k ě K0

µ0pω0zωkq ď ε{2.

Argue now by contradiction to prove that there exists K1 ě K0 such that463

µ0pSK1
q ď ε{2.464

Assume that µ0pSkq ą ε{2 for all k ě K0. Using the inclusion Sk`1 Ă Sk, we deduce
that

µ0

˜

č

kPN˚
Sk

¸

ě ε{2.

Since µ0 is absolute continuous with respect to λ (the Lebesgue measure), there exists
α ą 0 such that

λ

˜

č

kPN˚
Sk

¸

ě α.

We deduce that the intersection of the set Sk is nonempty. Let x0 P supppµ0qzω0 be465

an element of this intersection. By definition of Sk, for all k ě K0, there exists sk466

satisfying467

(3.12)

"

sk P pt0px
0q, tkpx

0qq,
Φvskpx

0q P ωc0.
468

Moreover, the convergence of tkpx
0q to t0px

0q, implies that469

(3.13) sk Ñ t0px
0q.470

Using the continuity of x1 ÞÑ Φvt px
1q and the definition of t0px

0q, there exists β ą 0471

such that472

(3.14) Φvt px
0q P ω0 for all t P pt0, t0 ` βq.473

We deduce that (3.14) contradicts (3.12) and (3.13). Thus there exists K P N˚ such
that

µ0pSKq ` µ
0pωzωKq ď ε.
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Since we deal with AC measures, we add a Borel set to have the equality in (3.7), i.e.
there exists a Borel set S such that

µ0pSK Y ωzωK Y Sq “ ε.

We conclude that, for u defined by474

uptq :“ u1 :“ uK for all t P r0, T˚0 s,475

and A :“ SK Y ωzωK Y S, Properties (3.7) are satisfied.476

The third useful result for the proof of Theorem 1.3 allows to approximately steer477

a measure contained in ω to a measure contained in an open hypercube S ĂĂ ω.478

Proposition 3.6. Let µ0 P Pacc pRdq satisfying supppµ0q Ă ω. Define an open
hypercube S strictly included in ωz supppµ0q and choose δ ą 0. Then, for all ε ą 0,
there exists a vector field 1ωu, Lipschitz and uniformly bounded and a Borel set A
such that

µ0pAq “ ε and supppΦv`1ωu
δ #µ0

|Acq Ă S.

Proof. Consider S0 a nonempty open set of Rd of class C8 strictly included in S
and rω an open set of Rd of class C8 satisfying

supppµ0q Y S ĂĂ rω ĂĂ ω.

An example is given in Figure 5. From [28, Lemma 1.1, Chap. 1] (see also [18, Lemma

ω
rω

S

S0supppµ0q

Fig. 5. Construction of rω

479
2.68, Chap. 2]), there exists a function η P C2prωq satisfying480

(3.15) κ0 ď |∇η| ď κ1 in rωzS0, η ą 0 in rω and η “ 0 on Brω,481

with κ0, κ1 ą 0. Let k P N˚. Consider uk : Rd Ñ Rd Lipschitz and uniformly bounded482

satisfying483

uk :“

"

k∇η ´ v in rω,
0 in ωc.

484
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Let x0 P supppµ0q. Consider the flow zkptq “ Φv`uk
t px0q associated to x0 with485

the control uk, i.e. the solution to system486

(3.16)

#

9zkptq “ vpzkptqq ` ukpzkptqq, t ě 0,

zkp0q “ x0.
487

The different conditions in (3.15) imply that488

(3.17) n ¨∇η ă C ă 0 on Brω,489

where n represents the outward unit normal to Brω. Since supppµ0q Ă rω, it holds490

zkptq P rω for all t ě 0, otherwise, by taking the scalar product of (3.16) and n on Brω,491

we obtain a contradiction with (3.17). We now prove that there exists Kpx0q P N˚492

such that for all k ě Kpx0q there exists tkpx
0q P p0, δq such that zkptkpx

0qq belongs to493

S0. By contradiction, assume that there exists a sequences tknunPN˚ Ă N˚ such that494

for all t P p0, δq495

(3.18) zknptq P S
c
0.496

Consider the function fn defined for all t P r0, δs by497

(3.19) fnptq :“ knηpzknptqq.498

Its time derivative is given for all t P r0, δs by499

9fnptq “ kn 9zknptq ¨∇ηpzknptqq “ k2
n|∇ηpzknptqq|2500

Then, using (3.18), properties (3.15) of η and definition (3.19) of fn, it holds501

fnpδq ě k2
nκ

2
0δ and fnpδq ď kn}η}8.502

We observe that the two last inequalities are in contradiction for n large enough.503

Then there exists Kpx0q P N˚ such that for all k ě Kpx0q there exists tkpx
0q P p0, δq504

such that zkptkpx
0qq belongs to S0. By continuity, there exists rpx0q ą 0 such that505

Φ
v`uKpx0q

tKpx0qpx
0q
px1q belongs to S0 for all x1 P Brpx0qpx

0q. Since v`uk is linear with respect506

to k in rω, then, using the same argument as in Step 1 of the proof of Proposition 3.5,507

the range of the flow Φv`uk
¨ is independent of k. Thus, for all k ě Kpx0q there exists508

t0kpx
0q P p0, δq such that Φv`uk

t0kpx
0q
px1q P S0 for all x1 P Brpx0qpx

0q. By compactness,509

there exists tx0
1, ..., x

0
N0
u such that510

supppµ0q Ă

N0
ď

i“1

Brpx0
i q
px0
i q.511

We deduce that for K :“ maxitKpx
0
i qu, for all x0 P supppµ0q there exists t0px0q512

for which Φv`uK

t0px0q
px0q belongs to S0. We remark that the first item of Condition 3.3513

holds replacing ω, ω0 and T˚0 by S, S0 and δ, respectively. We conclude applying514

Proposition 3.5 replacing ω, ω0, T˚0 and v by S, S0, δ and v ` uK , respectively.515

Remark 3.7. An alternative method to prove Proposition 3.6 involves building an516

explicit flow composed with straight lines as in the proof of Proposition 3.1. However,517

for such method we need to assume that ω is convex, contrarily to the more general518

approach developed in the proof of Proposition 3.6.519

We now have all the tools to prove Theorem 1.3.520

Proof of Theorem 1.3. Consider µ0, µ1 satisfying Condition 1.1. By Lemma 3.4,521

there exist T˚0 , T
˚
1 , ω0 for which µ0, µ1 satisfy Condition 3.3. Let δ, ε ą 0 and522
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T :“ T˚0 `T
˚
1 `δ. We now prove that we can construct a Lipschitz uniformly bounded523

and control 1ωu such that the corresponding solution µ to System (1.1) satisfies524

W1pµpT q, µ
1q ď ε.525

Denote by T0 :“ 0, T1 :“ T˚0 , T2 :“ T˚0 ` δ{3, T3 :“ T˚0 ` 2δ{3, T4 :“ T˚0 ` δ
and T5 :“ T˚0 ` T

˚
1 ` δ. Also fix an open hypercube S ĂĂ ωzω0. There exists R ą 0

such that the supports of µ0 and µ1 are strictly included in a hypercube with edges
of length R. Define

R :“ R` T ˆ sup
Rd

|v|.

Applying Proposition 3.5 on rT0, T1sYrT4, T5s and Proposition 3.6 on rT1, T2sYrT3, T4s,
we can construct some space-dependent controls u1, u2, u4, u5 Lipschitz and uni-
formly bounded, with supppuiq Ă ω, and two Borel sets A0 and A1 such that

µ0pA0q “ µ1pA1q “
ε

2dR
,

the solution forward in time to526

$

’

&

’

%

Btρ0 `∇ ¨ ppv ` 1ωu
1qρ0q “ 0 in Rd ˆ rT0, T1s,

Btρ0 `∇ ¨ ppv ` 1ωu
2qρ0q “ 0 in Rd ˆ rT1, T2s,

ρ0pT0q “ µ0
|Ac

0
in Rd

527

and the solution backward in time to528

$

’

&

’

%

Btρ1 `∇ ¨ ppv ` 1ωu
5qρ1q “ 0 in Rd ˆ rT4, T5s,

Btρ1 `∇ ¨ ppv ` 1ωu
4qρ1q “ 0 in Rd ˆ rT3, T4s,

ρ1pT5q “ µ1
|Ac

1
in Rd

529

satisfy supppρ0pT2qq Ă S and supppρ1pT3qq Ă S. By conservation of the mass, we530

remark that |ρ0pT2q| “ |ρ1pT3q| “ 1 ´ ε{2dR. We now apply Proposition 3.1 to531

approximately steer ρ0pT2q to ρ1pT3q inside S as follows: we find a control u3 on the532

time interval rT2, T3s satisfying supppu3q Ă S such that the solution ρ to533

#

Btρ`∇ ¨ ppv ` 1ωu
3qρq “ 0 in Rd ˆ rT2, T3s,

ρpT2q “ ρ0pT2q in Rd
534

satisfies
W1pρpT3q, ρ1pT3qq ď

ε

2e2LpT5´T3q
,

where L is the uniform Lipschitz constant for u4 and u5. Thus, denoting by u the535

concatenation of u1, u2, u3, u4, u5 on the time interval r0, T s, we approximately steer536

µ0
|Ac

0
to µ1

|Ac
1
, since by (2.6) the solution µ to537

#

Btµ`∇ ¨ ppv ` 1ωu
iqµq “ 0 in Rd ˆ rTi´1, Tis, i P t1, ..., 5u,

µp0q “ µ0
|Ac

0
in Rd538

satisfies539

(3.20) W1pΦ
v`u
T #µ0

|Ac
0
, µ1
|Ac

0
q “W1pµpT5q, µ

1
|Ac

1
q ď e2LpT5´T3q

ε

2e2LpT5´T3q
“
ε

2
.540
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Since we deal with AC measures, using Properties 2.4, there exists a measurable map541

γ : Rd Ñ Rd such that542

$

&

%

γ#µ1
|A1
“ Φv`uT #µ0

|A0
,

W1pΦ
v`u
T #µ0

|A0
, µ1
|A1
q “

ż

Rd

|x´ γpxq|dµ1
|A1
pxq.

543

We deduce that544

(3.21) W1pΦ
v`u
T #µ0

|A0
, µ1
|A1
q “

ż

Rd

|x´ γpxq|dµ1
|A1
pxq ď dRˆ

ε

2dR
“
ε

2
.545

Inequalities (2.3), (3.20) and (3.21) leads to the conclusion:

W1pΦ
v`u
T #µ0, µ1q ďW1pΦ

v`u
T #µ0

|Ac
0
, µ1
|Ac

1
q `W1pΦ

v`u
T #µ0

|A0
, µ1
|A1
q ď ε.

546

4. Exact controllability. In this section, we study exact controllability for547

System (1.1). In Section 4.1, we show that exact controllability of System (1.1) does548

not hold for Lipschitz or controls inducing maximal regular flows. In Section 4.2,549

we prove Theorem 1.6, i.e. exact controllability of System (1.1) with a L2 localized550

control under some geometric conditions.551

4.1. Negative results for exact controllability. In this section, we show that552

exact controllability does not hold in general for Lipschitz controls or even vector fields553

inducing a maximal regular flow. We will see that topological aspects play a crucial554

role at this level.555

a) Non exact controllability with Lipschitz controls556

As explained in the introduction, if we impose the classical Carathéodory condition of557

1ωu : Rd ˆR` Ñ Rd being uniformly bounded, Lipschitz in space and measurable in558

time, then the flow Φv`1ωu
t is a homeomorphism (see [10, Th. 2.1.1]). More precisely,559

the flow and its inverse are locally Lipschitz. This implies that the support of µ0 and560

µpT q are homeomorphic. Thus, if the support of µ0 and µ1 are not homeomorphic,561

then exact controllability does not hold with Lipschitz controls. In particular, we562

cannot steer a measure which support is connected to a measure which support is563

composed of two connected components with Lipschitz controls and conversely.564

b) Non exact controllability with vector fields inducing maximal regular565

flows566

To hope to obtain exact controllability of System (1.1) at least for AC measures, it567

is then necessary to search for a control with less regularity. A weaker condition568

on the regularity of the vector field for the well-posedness of System (1.1) has been569

given in [4], generalizing previous conditions in [3, 24]. We first briefly recall the main570

definitions and results of such theory. We then prove that, in such setting, exact571

controllability between some pairs of AC measures µ0, µ1 does not hold, even when572

the Geometric Condition 1.1 is satisfied.573

We first recall the definition of maximal regular field in [4, Def. 4.4], and the574

corresponding existence result [4, Thm. 5.7]. In our setting, we aim to find a flow575

that is defined on the whole space Rd for all times r0, T s. Then, we present a simplified576

version of maximal regular flows, with no hitting time or blow-up of trajectories. The577

notation is then simplified too.578
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Definition 4.1. Let w : Rd ˆ p0, T q Ñ Rd be a Borel vector field. We say that a579

Borel map Φwt is a maximal regular flow relative to w if it satisfies:580

1. for almost every x P Rd, the function Φwt pxq is absolutely continuous with581

respect to t and it solves the ordinary differential equation 9x “ wpt, xptqq with582

initial condition Φwt pxq “ x;583

2. for any open bounded set A Ă Rd, there exists a compressibility constant CpAq584

such that for all t P r0, T s, it holds585

(4.1) Φwt #L|A ď CpAqL.586

Theorem 4.2. Let w : Rd ˆ p0, T q Ñ Rd be a Borel vector field satisfying the587

following conditions:588

a)
şT

0

ş

A
|wpt, xq| dx dt ă 8 for any open bounded set A Ă Rd;589

b) for any non-negative ρ̄ P L8` pRdq with compact support and any closed interval
ra, bs Ă p0, T q, the continuity equation

Btρt `∇ ¨ pwρtq “ 0 in Rd ˆ pa, bq

admits at most one weakly˚ continuous solution for t P ra, bs:

t ÞÑ ρt P L8pra, bs;L8` pRdqq X tf s.t. supppfq compact subset of Rd ˆ ra, bsu

with ρa “ ρ̄.590

c) for any open bounded set A Ă Rd it holds591

(4.2) divpwpt, .qq ě mptq in A, with LpAq :“

ż T

0

|mptq| dt ă 8.592

Then, the maximal regular flow Φwt relative to w exists and is unique. Moreover, for593

any open compact set A, the compressibility constant CpAq in (4.1) can be chosen as594

eLpAq.595

For simplicity, we will study two examples of non-controllability in the 1-D setting596

only. It is then easy to observe that maximal regular flows preserve the order with597

respect to the initial data, as Lipschitz flows.598

Proposition 4.3. Let w be a Borel vector field satisfying conditions of Theorem
4.2, and Φwt be the associated maximal regular flow. It then holds

x ď y ñ Φwt pxq ď Φwt pyq for almost every pair x, y P R.

Proof. Following the proof of [4, Thm. 5.2], build a family of mollified vector599

fields wε for w: they are all Lipschitz, then they preserve the order x ď y ñ Φwε
t pxq ď600

Φwε
t pyq for all x, y P R, as a classical property of Lipschitz vector fields in R. By letting601

wε á w weakly in L1pp0, T q ˆ Aq for all A open bounded, and observing that other602

hypotheses of the Stability Theorem 6.2 in [4] are satisfied, one has the result.603

We are now ready to present two examples of pairs of AC measures µ0, µ1 in R for604

which exact controllability does not hold with vector fields inducing maximal regular605

flows.606

Example 4.4. For simplicity, we choose v ” 0 and ω “ p´2, 2q from now on.607

For the first example, we define µ0 “ 1r0,1sL and µ1pxq “ 1
2x
´ 1

21p0,1qL. It is clear608

that the Geometric Condition 1.1 is satisfied. Assume now that a Borel control u609
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satisfying conditions of Theorem 4.2 steering µ0 to µ1 at a given time T ą 0 exists.610

Then, the associated maximal regular flow both satisfies µ1 “ ΦuT#µ0 and there exists611

C “ Cpp0, 1qq such that ΦuT#µ0 ď CL. Thus, we deduce that µ1 ď CL, which is in612

contradiction with the definition of µ1.613

Example 4.5. It is clear that the previous example is based on the fact that there
exists measures that are absolutely continuous with respect to L and such that their
Radon-Nikodym density are L1 functions that are not L8. One can then be interested
in proving exact controllability between measures of the form ρpxqL with ρpxq P
L8pRq. Also in this case, one has examples of non exact controllability. Indeed,
consider again v ” 0 and ω “ p´2, 2q. Define ν0pxq “ 2x1r0,1sL and ν1 “ 1r0,1sL.
We prove now that also in this case, there exists no control inducing maximal regular
flows and realizing exact controllability. By contradiction, assume that such control
w exists; thus, the associated flow Φut satisfies ΦuT#ν0 “ ν1. Then

ż 1

0

1ts : Φu
T psqďΦu

T pxqu
2s ds “

ż 1

0

1tsďΦu
T pxqu

ds,

Recall now that the flow preserves the ordering, then it necessarily holds

ż x

0

2s ds “

ż Φu
T pxq

0

1 ds,

i.e. ΦuT pxq “ x2. If such a flow exists, then one can apply it to µ0 in the first example.614

It then holds
şx

0
1 ds “

şΦu
T pxq

0
1
2s
´ 1

2 ds, i.e. ΦuT#µ0 “ µ1. Thus, ΦuT realizes the exact615

control from µ0 to µ1. Contradiction. Then, there exist no control inducing maximal616

regular flows and exactly steering ν0 to ν1.617

Example 4.6. One can be interested in finding counterexamples to exact control-618

lability in Rd with d ą 1. The Example 4.4 for non exact controllability can be619

adapted to this setting, by considering µ0 “ LpB1p0qq
´11B1p0qL and µ1 “ ρ1pxqL620

with ρ1 being a L1 but not L8 function. The counterexample in Example 4.5 can621

be adapted too, even though computations cannot be carried out easily by applying622

useful monotony properties.623

4.2. Exact controllability with L2 controls. In this section, we prove Theo-624

rem 1.6, i.e. exact controllability of System (1.1) in the following sense: there exists625

a couple p1ωu, µq solution to System (1.1) satisfying µpT q “ µ1. Before proving The-626

orem 1.6, we need three useful results. The first one is the following proposition,627

showing that we can store the whole mass of µ0 in ω, under Condition 3.3. It is the628

analogue of Proposition 3.5. In this case, we control the whole mass, but we do not629

have necessarily uniqueness of the solution to System (1.1).630

Proposition 4.7. Let µ0 P PcpRdq satisfying the first item of Condition 3.3.631

Then there exists a couple p1ωu, µq composed of a L2 vector field 1ωu : RdˆR` Ñ Rd632

and a time-evolving measure µ being weak solution to System (1.1) and satisfying633

supppµpT˚0 qq Ă ω.634

Proof. For each x0 P Rd, we denote by

rt0px0q :“ inftt ě 0 : Φvt px
0q P ω0u
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and consider the application Ψ¨px
0q defined for all t ě 0 by

Ψtpx
0q “

#

Φvt px
0q if t ď rt0px0q,

Φv
rt0px0q

px0q otherwise.

For all t ě 0, the application Ψt is a Borel map. Consider µ defined for all t ě 0 by

µptq :“ Ψt#µ
0.

We remark that, for all t, s P r0, T˚0 s such that t ě s,635

(4.3) µptq “ Ψt´s#µpsq.636

Since Φv¨ px
0q is Lipschitz, for all x0 P Rd and t P r0, T˚0 s, it holds637

(4.4) |Ψtpx
0q ´ x0| ď C mintt, t0px0qu ď Ct.638

Combining (4.3) and (4.4), we deduce for all t, s P r0, T˚0 s with s ď t639

W 2
2 pµpsq, µptqq ď

ż

Rd

|Ψt´spxq ´ x|
2 dµpsq ď sup

xPRd

|Ψt´spxq ´ x|
2 ď C|t´ s|2.640

We deduce that the metric derivative |µ1| of µ defined for all t P r0, T˚0 s by641

(4.5) |µ1|ptq :“ lim
sÑt

W2pµptq, µpsqq

|t´ s|
642

is uniformly bounded on r0, T˚0 s. Then µ is an absolute continuous curve on PcpRdq
(see [5, Def. 1.1.1]). Using [5, Th. 8.3.1], there exists a Borel vector w : Rdˆp0, T˚0 q Ñ
Rd satisfying

}wptq}L2pµptq;Rdq ď |µ
1|ptq a.e. t P r0, T˚0 s

and the couple pw, µq is a weak solution to643

(4.6)

#

Btµ`∇ ¨ pwµq “ 0 in Rd ˆ r0, T˚0 s,
µp0q “ µ0 in Rd.

644

By the uniform bound on the metric derivative, it holds that w is a L2 vector field.
Moreover, for all t P r0, T˚0 s, it holds

wptq P TanµptqpPcpRdqq :“ t∇ϕ : ϕ P C8c pRdqu
L2
pµptq;Rd

q

(see [5, Def. 8.4.1]). Consider an open set ω1 of class C8 satisfying ω0 ĂĂ ω1 ĂĂ ω.645

We now prove that wptq coincides with vptq in supppµptqqzω1 a.e. t P r0, T˚0 s, i.e. we646

can choose u “ 0 outside ω. Fix t P r0, T˚0 s and consider x P supppµptqq X ωc1. There647

necessarily exists x0 P supppµ0q such that Φvt px
0q “ x, otherwise x P Bω0. Moreover648

for a B :“ Brpx
0q with r ą 0 ΦvspBq ĂĂ ωc0 for all s P r0, ts, otherwise there exists649

s P r0, ts for which Φvspx
0q P Bω0. Thus650

(4.7) Φvt “ Ψt in B.651

We denote by A :“ Φvt pBq. We now prove that652

(4.8) Ψ´1
t pAq “ pΦ

v
t q
´1pAq.653
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Consider x P pΦvt q
´1pAq. Equality (4.7) implies Φvt pxq “ Ψtpxq. Then x P Ψ´1

t pAq.
Consider now x P Ψ´1

t pAq, which means Ψtpxq P A. Using the fact that AX ω0 ‰ 0,
t ă rx0pxq. Then Ψtpxq “ Φvt pxq and x P pΦvt q

´1pAq. Thus (4.8) holds. By definition
of the push forward,

µ|Aptq “ Ψt#pµ
0
|Ψ´1

t pAq
q and pΦvt#µ

0q|A “ Φvt#pµ
0
|Φ´1

t pAq
q.

Since Ψt “ Φvt on the set B “ pΦvt q
´1pAq “ Ψ´1

t pAq, this implies

µ|Aptq “ Φvt#µ
0
|A.

By compactness of supppµptqq X ωc1, it holds

µptq|ωc
1
“ pΦvt#µ

0q|ωc
1
.

We deduce that, for all ϕ P C8c pRdq such that supppϕq ĂĂ ωc1,

d

dt

ż

Rd

ϕ dµptq “

ż

Rd

x∇ϕ,wy dµptq and
d

dt

ż

Rd

ϕ dµptq “

ż

Rd

x∇ϕ, vy dµptq.

If it holds v P TanµptqpPcpRdqq, then wptq “ v, µptq a.e. in ω1
c, and we conclude by

taking u :“ w ´ v which is supported in ω and is L2. If now v R TanµptqpPcpRdqq, we

can write v “ v1 ` v2 with v1 P TanµptqpPcpRdqq and v2 P TanµptqpPcpRdqqK, where

TanµptqpPcpRdqqK “ tν P L2pµptq : Rdq : ∇ ¨ pνµptqq “ 0u

(see for instance [5, Prop. 8.4.3]). In other terms, v2 plays no role in the weak654

formulation of the continuity equation. Thus, with the same argument, we can prove655

that wptq “ v1, µptq a.e. in ω1
c and we conclude by tacking u :“ w ´ v1.656

The second useful result for the proof of Theorem 1.6 allows to exactly steer a657

measure contained in ω to a nonempty open convex set S ĂĂ ω. It is the analogue658

of Proposition 3.6. In this case, as in Proposition 4.7, we control the whole mass, but659

we do not have necessarily uniqueness of the solution to System (1.1).660

Proposition 4.8. Let µ0 P PcpRdq satisfying supppµ0q Ă ω. Define a nonempty661

open convex set S strictly included in ωz supppµ0q and choose δ ą 0. Then there662

exists a couple p1ωu, µq composed of a L2 vector field 1ωu : Rd ˆ R` Ñ Rd and a663

time-evolving measure µ being weak solution to System (1.1) satisfying664

supppµpδqq Ă S.665

Proof. Consider S0 a nonempty open set of Rd of class C8 strictly included in S666

and ω1 an open set of Rd of class C8 satisfying667

supppµ0q Y S ĂĂ ω1 ĂĂ ω.668

An example is given in Figure 5. Consider η P C2pω1q defined in the proof of Propo-669

sition 3.6 satisfying (3.15). For all k P N˚, we consider a Lipschitz vector field vk670

satisfying671

vk :“

"

k∇η in ω1,
v in ωc.

672

We denote by
rt0kpx

0q :“ inftt ě 0 : Φvkt px
0q P S0u.
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For all x0 P Rd and all k P N˚, consider the application Ψk,¨px
0q defined for all t ě 0

by

Ψk,tpx
0q “

#

Φvkt px
0q if t ď rt0kpx

0q,

Φvk
rt0kpx

0q
px0q otherwise.

Using the same argument as in the proof of Proposition 3.6, for K large enough,673

ΨK,δpx
0q belongs to S for all x0 P supppµ0q. Consider µ defined for all t P p0, δq by674

µptq :“ ΨK,t#µ
0. As in the proof of Proposition 4.7, there exists a vector field uK675

such that puK , µq is a weak solution to System (4.6). Moreover uKptq “ vK , µptq676

a.e. in S
c

and a.e. t P r0, δs. Thus, we conclude that p1ωpuK ´ vKq, µq is solution to677

System (1.1) and supppµpδqq Ă S.678

The third useful result for the proof of Theorem 1.6 allows to exactly steer a measure679

contained in a nonempty open convex set S ĂĂ ω to a given measure contained in S.680

It is the analogue of Proposition 3.1. In this situation, we obtain exact controllability681

of System (1.1), but, again, we do not have necessarily uniqueness of the solution to682

System (1.1).683

Proposition 4.9. Let µ0, µ1 P PcpRdq satisfying supppµ0q Ă S and supppµ1q Ă684

S for a nonempty open convex set S strictly included in ω. Choose δ ą 0. Then there685

exists a couple p1ωu, µq composed of a L2 vector field 1ωu : Rd ˆ R` Ñ Rd and a686

time-evolving measure µ being weak solution to System (1.1) and satisfying687

supppµq Ă S and µpδq “ µ1.688

Remark 4.10. The proof of Proposition 4.9 can be obtain thanks to the general-689

ized Benamou-Brenier formula (see [8] for the original work and [39, Th. 5.28] for the690

generalization). For the sake of completeness, we give below a proof of Proposition 4.9691

closely related to the proof of [39, Th. 5.28].692

Proof of Proposition 4.9. Let π be the optimal plan given in (2.1) associated to
the Wasserstein distance between µ0 and µ1. For i P t1, 2u, we denote by pi : Rd ˆ
Rd Ñ Rd the projection operator defined by

pi : px1, x2q ÞÑ xi.

Consider the time-evolving measure µ defined for all t P r0, δs by693

(4.9) µptq :“
1

δ
rpδ ´ tqp1 ` tp2s#π.694

Using [5, Th. 7.2.2], µ is a constant speed geodesic connecting µ0 and µ1 in PcpRdq,695

i.e. for all s, t P r0, δs696

W2pµptq, µpsqq “
pt´ sq

δ
W2pµ

0, µ1q.697

We deduce that the metric derivative |µ1| of µ (see (4.5)) is uniformly bounded on
r0, δs. Then µ is an absolute continuous curve on PcpRdq (see [5, Def. 1.1.1]). Thus,
using [5, Th. 8.3.1], there exists a Borel vector field w : Rd ˆ p0, δq Ñ Rd such that

}wptq}L2pµptq;Rdq ď |µ
1|ptq a.e. t P r0, δs

and the couple pw, µq is a weak solution to698

#

Btµ`∇ ¨ pwµq “ 0 in Rd ˆ r0, δs,
µp0q “ µ0 in Rd.

699

This manuscript is for review purposes only.



26 M. DUPREZ, M. MORANCEY, F. ROSSI

By the uniform bound on the metric derivative, it holds that w is an L2 vector field.700

Consider θ P C8c pRdq such that701

0 ď θ ď 1, θ “ 1 in S and θ “ 0 in ωc.702

We remark that µ is supported in S, then the couple p1ωu, µq with703

u :“ θ ˆ pw ´ vq704

is solution to705
#

Btµ`∇ ¨ ppv ` 1ωuqµq “ 0 in Rd ˆ r0, δs,
µp0q “ µ0 in Rd.

706

707

We now have all the tools to prove Theorem 1.6.708

Proof of Theorem 1.6. Consider µ0 and µ1 satisfying Condition 1.1. Applying709

Lemma 3.4, Condition 3.3 holds for some ω0, T˚0 and T˚1 . Let T :“ T˚0 ` T˚1 ` δ710

with δ ą 0 and T0, T1, T2, T3, T4, T5 be the times given in the proof of Theorem711

1.3. Using Proposition 4.7 on rT0, T1s Y rT4, T5s, there exist ρ1 P C0prT0, T1s,PcpRdqq,712

ρ5 P C0prT4, T5s,PcpRdqq and some space-dependent L2 controls u1, u5 with713

supppu1q Y supppu5q Ă ω714

such that p1ωu
1, ρ1q is a weak solution forward in time to715
#

Btρ1 `∇ ¨ ppv ` 1ωu
1qρ1q “ 0 in Rd ˆ rT0, T1s,

ρ1pT0q “ µ0 in Rd
716

and p1ωu
5, ρ5q is a weak solution backward in time to717

#

Btρ5 `∇ ¨ ppv ` 1ωu
5qρ5q “ 0 in Rd ˆ rT4, T5s,

ρ5pT5q “ µ1 in Rd.
718

Moreover supppρ1pT1qq Ă ω and supppρ5pT4qq Ă ω. Consider a nonempty open convex
set S strictly included in ωzω0. Using Proposition 4.8 on rT1, T2s Y rT3, T4s, there
exist ρ2 P C0prT1, T2s,PcpRdqq, ρ4 P C0prT3, T4s,PcpRdqq and some space-dependent
L2 controls u2, u4 with

supppu2q Y supppu4q Ă ω

such that p1ωu
2, ρ2q is a weak solution forward in time to719
#

Btρ2 `∇ ¨ ppv ` 1ωu
2qρ2q “ 0 in Rd ˆ rT1, T2s,

ρ2pT1q “ ρ1pT1q in Rd
720

and p1ωu
4, ρ4q is a weak solution backward in time to721

#

Btρ4 `∇ ¨ ppv ` 1ωu
4qρ4q “ 0 in Rd ˆ rT3, T4s,

ρ4pT4q “ ρ5pT4q in Rd.
722

Moreover supppρ2pT2qq Ă S and supppρ4pT3qq Ă S. Using Proposition 4.9 on rT2, T3s,
there exist ρ3 P C0prT2, T3s,PcpRdqq satisfying supppρ3q Ă S and a L2 control u3 with

supppu3q Ă ω

such that p1ωu
3, ρ3q is a weak solution forward in time to723

#

Btρ3 `∇ ¨ ppv ` 1ωu
3qρ3q “ 0 in Rd ˆ rT2, T3s,

ρ3pT2q “ ρ2pT2q in Rd
724
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and satisfies ρ3pT3q “ ρ4pT3q. Thus the couple p1ωu, µq defined by725

p1ωu, µq “ p1ωu
i, ρiq in Rd ˆ rTi´1, Tiq, i P t1, ..., 5u726

is a weak solution to System (1.1) and satisfies µpT q “ µ1.727
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