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We consider nonlinear transport equations with non-local velocity describing the time-
evolution of a measure. Such equations often appear when considering the mean-field
limit of finite-dimensional systems modeling collective dynamics. We address the prob-
lem of controlling these equations by means of a time-varying bounded control action
localized on a time-varying control subset of small Lebesgue measure. We first define
dissipativity for nonlinear transport equations in terms of Lie derivatives of a Lyapunov
function depending on the measure. Then, assuming that the uncontrolled system is
dissipative, we provide an explicit construction of a control law steering the system to
an invariant sublevel of the Lyapunov function. The control function and the control
domain are designed in terms of the Lie derivatives of the Lyapunov function. In this
sense the construction can be seen as an infinite-dimensional analogue of the well-known
Jurdjevic–Quinn procedure. Moreover, the control law presents sparsity properties in the
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sense that the support of the control is small. Finally, we show that our result applies
to a large class of kinetic equations modeling multi-agent dynamics.

Keywords: Multi-agent systems; crowd control; control systems; networked control; dis-
tributed parameter systems; control of partial differential equations; Lyapunov methods.

AMS Subject Classification: 93B05, 35Q93, 35Q91

1. Introduction and Main Result

1.1. Context

In recent years, the study of collective behaviors in group of autonomous agents
has drawn a broad interest from scientific communities, e.g. in civil engineering
(for evacuation problems16,24), robotics (coordination of robots9,26,28,32), computer
science and sociology (social networks23), and biology (animals groups5,14,20). In
particular, it is well known how simple rules of interaction between agents can
promote formation of special patterns, or complex behaviors, like lines in ants for-
mations and migrating lobsters, or V-shaped formation in migrating birds. This
phenomenon is often referred to as self-organization.

Beside the problem of analyzing the collective behavior of a “closed” system,15 it
is interesting to understand how a behavior can be influenced by an external agent
(e.g. a policy maker). For instance, one can try to enforce creation of patterns when
they are not formed naturally, or break the formation of such patterns.11,12,19,31,25

From the mathematical point of view, the challenge in the modeling problem
is that one needs to pass from a big set of simple rules for each individual to a
model capable of catching the main features of the dynamics of the whole group.
This is usually achieved by using a so-called mean-field approach, which permits to
consider the limit of a set of ordinary differential equations (one for each agent) to
a partial differential equation representing the evolution of the whole mass. Many
kinetic equations obtained via mean-field limit are transport equations with non-
local velocity of the form

∂tµ + ∇ · (f [µ]µ) = 0, (1.1)

where µ is a probability measure on R
d representing the density of agents, ∇· is the

divergence operator, and f [µ] is a vector field depending on the measure accounting
for the interactions between agents.

Here we consider the control problem associated with (1.1). Since agents are
indistinguishable, controls can only be state-dependent and cannot focus on specific
agents. For this reason, we model the control action by means of a vector field g[µ],
and a control gain u(t, x) localized in a small control set ω(t), modeling our choice
of the gain on the vector field. Notice that the control gain u and the control set
ω are both time-dependent while the vector field g is fixed, and it depends on the
density µ. The resulting control system is given by

∂tµ + ∇ · ((f [µ] + χωug[µ])µ) = 0. (1.2)
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Here, the function χω is the indicator function of ω, defined almost everywhere by
χω(x) = 1 if x ∈ ω and χω(x) = 0 otherwise.

In the following, we assume that f [µ] and g[µ] are bounded Lipschitz vector
fields on R

d for any µ, Lipschitz with respect to the Wasserstein distance Wp,
p ∈ [1, +∞), as a function of µ. This ensures existence and uniqueness of the
solution of the associated Cauchy problem3,29 for any Lipschitz control gain u. We
recall fundamental properties for equations in the form (1.1) in Sec. 2 below and
we use those results to prove existence and uniqueness for the Cauchy problem
associated with (1.2).

Admissible controls satisfy the following continuous sparse space constraint: we
assume to act only on a small portion of the configuration space and with finite
strength. Here, given a measurable subset ω of R

d, we denote by |ω| its Lebesgue
measure.

Control Constraints (U)

Fix c > 0. For each time t ≥ 0, we have:

Sparsity space constraint: |ω(t)| ≤ c, (1.3)

Finite strength: ‖u(t, ·)‖L∞ ≤ 1. (1.4)

Control sparsity constraints have been firstly introduced in Refs. 11 and 12,
for a population with a finite number of agents. The sparsity space constraint was
introduced in Ref. 31. In the mean-field approach, this is the most natural sparsity
constraint when one wants to use space-dependent vector fields and to act on “small
sets”. A sparsity constraint limiting the fraction of the measure on which the control
may act, the sparsity population constraint, was also considered in Ref. 31. However,
we will see in Sec. 3 that the sparsity space constraint is more appropriate for the
mean-field approach. Indeed, for the sparsity space constraint, one can easily deal
both with measures that are absolutely continuous with respect to the Lebesgue
measure, and with measures containing singular (Dirac) parts. In Theorem 1.1 we
will define a control strategy that satisfies the following property: if the initial data,
at time 0, is absolutely continuous with respect to the Lebesgue measure, then it
remains absolutely continuous for any positive time. This does not prevent µ(t)
of converging to some Dirac mass as t → +∞, as this is the case for consensus
problems in multi-agent models and crowd dynamics.

In this paper, our objective is to generalize the Jurdjevic–Quinn stabilization
method27 to mean-field controlled equations, under the sparsity constraint (U)
described above. Following the Jurdjevic–Quinn approach, we assume the existence
of a Lyapunov function V for which:

• the uncontrolled dynamics f [µ] gives no increase of V ;
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• the control ug[µ] allows one to increase–decrease V, except for some specific con-
figurations of the population µ in the subset Z of the set of probability measure
on R

d with compact support defined as the set on which the Lie derivatives of V

vanish (see the precise definition in (1.13)).

We will then define a sparse control strategy, steering the population exactly
to the set Z, in complete analogy with the standard finite-dimensional Jurdjevic–
Quinn method.

1.2. Mathematical setting

We denote by Pc(Rd) the space of probability measures on R
d with compact support

and by Pac
c (Rd) the subspace of probability measures on R

d that are absolutely
continuous with respect to the Lebesgue measure. Given R > 0, B(0, R) denotes
the ball in R

d centered in 0 of radius R. We denote by Pc(B(0, R)) the space
of probability measures on R

d with support in B(0, R) and by Pac
c (B(0, R)) the

subspace of Pc(B(0, R)) of absolutely continuous measures (with respect to the
Lebesgue measure).

We consider the control system (1.2) where f, g are two vector fields on Pc(Rd).
An admissible control is a Lipschitz function u : R

d → R satisfying the constraints
(U). We denote the set of admissible controls by U . We assume that f, g : Pc(Rd) →
Lip(Rd, Rd) satisfy, for some R > 0, the following regularity assumption:

(H1) there exist L > 0, Q > 0 and p ≥ 1 such that,

|f [µ](x) − f [µ](y)| ≤ L|x − y|, |g[µ](x) − g[µ](y)| ≤ L|x − y|,
|f [µ](x) − f [ν](x)| ≤ QWp(µ, ν), |g[µ](x) − g[ν](x)| ≤ QWp(µ, ν),

(1.5)

for all µ, ν ∈ Pc(B(0, R)) and for all x, y ∈ R
d.

Thanks to Assumption (H1) Eq. (1.1) generates a semigroup, we will use the
notation etfµ0 to denote the unique solution of (1.1) at time t with initial data µ0.
Similarly we denote by etugµ0 the unique solution of the Cauchy problem associated
with

∂tµ + ∇ · (ug[µ]µ) = 0, (1.6)

with initial data µ0 and u ∈ U . We recall existence results for these equations in
Sec. 2.

Given a Lyapunov function V : Pc(Rd) → R, the vector fields f and ug defined
on the space R

d play the role of derivatives for the function V [µ], in the following
sense: the vector field f induces an infinitesimal change in V that can be estimated
as the derivative limt→0

V [etfµ]−V [µ]
t . For this limit to be well-defined we need to

impose differentiability of the function t �→ V [etfµ] for any µ ∈ Pc(Rd).

Definition 1.1. Assume that V : Pc(Rd) → R is such that t �→ V [etfµ] is of class
C1 for all µ ∈ Pc(Rd). We define the Lie derivative of V along the vector field f as
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the limit

LfV [µ] = lim
t→0

V [etfµ] − V [µ]
t

. (1.7)

Requiring the non-increase of V along the flow of f is equivalent to require
dissipativity for the system.

Definition 1.2. We say that the system (1.2) is dissipative if there exists a Lya-
punov function V : Pc(Rd) → R such that t �→ V [etfµ] is of class C1 and

LfV [µ] ≤ 0, for every µ ∈ Pc(Rd). (1.8)

In analogy with Definition 1.1 we can define the Lie derivative of V along the
vector field ug as

LugV [µ] = lim
t→0

V [etugµ] − V [µ]
t

, (1.9)

provided that the function t �→ V [etugµ] is of class C1 for all µ ∈ Pc(Rd) and u ∈ U .

Remark 1.1. The notion of solution of (1.6), of associated semigroup, and of Lie
derivative along ug can be easily extended to piecewise constant functions t �→
u(t, ·) ∈ U .

Remark 1.2. The definition of Lie derivative implies the multiplicative property

LkfV [µ] = kLfV [µ] and LkugV [µ] = kLugV [µ]. (1.10)

This continuity condition also implies additivity of Lie derivatives. Indeed, one can
easily see that et(u+u′)g = etug+o(t)etu′g, which in turn implies that

L(u+u′)gV [µ] = LugV [µ] + Lu′gV [µ].

While conditions (1.7)–(1.9) are equivalent to differentiability of V along f and
ug, we also need a kind of differentiability for V along directions of the dynamics.
By the additivity property, we can state it as follows: there exists K > 0 such that,
for all µ ∈ Pc(Rd) and u ∈ U , we have

|LugV [µ]| ≤ K‖u‖L1(µ). (1.11)

This yields a metric for the space of controls u similar to the zero-order metric in
a more general sub-Riemannian structure for metrics on the space of diffeomor-
phisms on a manifold4 (see also Ref. 1). The main difference here is that we choose
the L1-norm weighted with respect to the measure µ(t), and not with respect to
the Lebesgue measure.

While conditions (1.7)–(1.11) hold for a fixed µ ∈ Pc(Rd), we also require the
continuity of the Lie derivatives of first and second order. Namely we require the
following assumption
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(H2) Assume that V : Pc(Rd) → R is such that t �→ V [etfµ] and t �→ V [etugµ] are
of class C2 for all µ ∈ Pc(Rd) and u ∈ U . For all µi and µ ∈ Pc(Rd), with
µi ⇀ µ (weak convergence of measures), i.e. limi→+∞

∫
φdµi =

∫
φdµ for

every φ ∈ C0
c (Rd, R), one has

lim
i→+∞

LfV [µi] = LfV [µ], lim
i→+∞

L2
fV [µi] = L2

fV [µ],

lim
i→+∞

LugV [µi] = LugV [µ], lim
i→+∞

L2
ugV [µi] = L2

ugV [µ],

lim
i→+∞

LfLugV [µi] = LfLugV [µ].

(1.12)

The convergences (1.12) imply, in particular, that Lf+ugV [µ] exists and satisfies
Lf+ugV [µ] = LfV [µ] + LugV [µ], i.e. that additivity holds also for the vector field
f + ug.

Remark 1.3. Clearly, the choice of the set of admissible controls U has an impact
on the set of admissible functionals V for which (1.9)–(1.12) are satisfied. We choose
here the set of Lipschitz functions because existence is then ensured for (1.2) (see
Refs. 3 and 29).

Note that reducing the space of admissible controls to some proper subset of
Lip(Rd, R) (such as C∞

c (Rd, R)) may enlarge the set of functionals V for which the
regularity conditions (1.7)–(1.12) are satisfied. In Sec. 3, we will enforce the decrease
of the functional V by a steepest descent method on the space U , by (approximately)
solving an optimization problem in the space of Lipschitz functions.

Following the classical Lyapunov theory for finite-dimensional systems, we need
to impose some conditions ensuring compactness of trajectories. In finite dimension,
this is often imposed by requiring V to be proper, i.e. lim|x|→+∞ V(x) = +∞, hence
the fact that d

dtV (x(t)) ≤ 0 implies compactness. In the present mean-field setting,
instead, such a condition cannot be imposed by a simple evaluation of the function
V : in the case where V is the variance of the measure, one can have measures µ

with arbitrarily small variance and arbitrarily large support. For this reason, we
impose compactness of trajectories by assuming that the dynamics of the system,
i.e. the vector fields f and g, have a compact support. More precisely, we assume
that f, g : Pc(Rd) → Lip(Rd, Rd) satisfy, for some R > 0, the following compactness
assumption:

(H3) for all µ ∈ Pc(B(0, R)) f [µ](x) = g[µ](x) = 0 for all x 	∈ B(0, R).

Note that this condition implies that µ(t) ∈ Pc(B(0, R)) for any t ≥ 0.
Assumption (H3) implies that we can restrict our analysis to measures belonging

to Pc(B(0, R)).

Remark 1.4. As a consequence of assumption (H3) the results of this paper can
be stated for transport equations with non-local terms (1.2) defined on bounded
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manifolds without boundary, or on bounded manifold with no-flux boundary
condition.

Remark 1.5. The uniform Lipschitz property of f and g in (1.5) and the uniform
compactness of their support in Assumption (H3) imply that there exists M > 0
such that ‖f [µ]‖L∞ ≤ M and ‖g[µ]‖L∞ ≤ M for any µ ∈ Pc(B(0, R)). These facts
imply existence and uniqueness of the solution of the Cauchy problem for (1.2) (see,
e.g. Refs. 3 and 29).

Summing up, we make the following assumptions on the system (1.2) and on
the Lyapunov functional V :

Assumptions (H)

The vector fields f, g : Pc(Rd) → Lip(Rd, Rd) and the Lyapunov function V :
Pc(Rd) → R satisfy Assumptions (H) if the system is dissipative and there
exists R > 0 such that (H1)–(H2)–(H3) hold.

1.3. The main result

The main idea of our control strategy is to choose the controller to make V decrease
along trajectories. We will do this choice with a steepest descent method, similarly
to the finite-dimensional approach described in Refs. 11–13. The result control will
steer the system to the set Z on which the Lie derivatives of V vanish. More
precisely we have the following definition.

Definition 1.3. Assume that V : Pc(Rd) → R is such that t �→ V [etfµ] and
t �→ V [etugµ] are of class C1 for all µ ∈ Pc(Rd) and u ∈ U . We define

Z = {µ ∈ Pc(Rd) | LfV [µ] = LugV [µ] = 0 ∀u ∈ U}. (1.13)

Since the space of admissible controls χωug[µ] is infinite-dimensional, we restrict
ourselves to a finite-dimensional set by imposing the following structure. Consider
the class of Lipschitz mollified indicator functions χη

[a,b] : R → R, defined by

χη
[a,b](x) =




1 for x ∈ [a, b],

0 for x 	∈ [a − η, b + η],
x − a + η

η
for x ∈ [a − η, a],

−x + b + η

η
for x ∈ [b, b + η],

and then, consider the d-dimensional version of such functions. Given a =
(a1, . . . , ad), b = (b1, . . . , bd) and x = (x1, . . . , xd) in R

d, we define

χη
[a,b](x) = min

i=1,...,d
χη

[ai,bi](x
i). (1.14)
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Now, for any choice of the three parameters (a, b, η), we take ω = ω(a, b, η) as the
multi-interval [a1−η, b1 +η]× [a2−η, b2 +η]×· · ·× [ad −η, bd +η]. Then we reduce
the choice of the sparse control in an infinite-dimensional space of controls to the
choice of three parameters (a, b, η). In what follows, we set

U(a, b, η) = χ[a1−η,b1+η]×[a2−η,b2+η]×···×[ad−η,bd+η]χ
η
[a,b]. (1.15)

We then define the “slope function” by

st(a, b, η) = |LU(a,b,η)g[µ(t)]V [µ(t)]|,
which describes the instantaneous variation of V in µ(t) as a consequence of the
action of the control U(a, b, η). Note that (1.11) and the fact that the function
t �→ V [etugµ] is of class C1 imply the continuity of the slope function with respect
to its arguments (t, a, b, η).

We then apply a steepest descent method by choosing the control corresponding
to one of the maximizersa (a∗, b∗, η∗) of st in the space

Ωt = {(a, b, η) | |ω(a, b, η)| ≤ c and η ≥ t−1}. (1.16)

The condition |ω(a, b, η)| ≤ c in (1.16) ensures that the space constraint (1.3)
is satisfied. We will see in Lemma 4.2 that the condition η ≥ t−1 implies that
the control function is uniformly Lipschitz for any bounded time interval [0, θ],
thus ensuring that µ(t) remains absolutely continuous with respect to the Lebesgue
measure. At the same time, when t→+∞, this constraint allows to consider controls
with an arbitrarily large Lipschitz constant, since Lip(χη

[a,b]) = 1
η . This Lipschitz

constraint is somehow unavoidable if one wants to ensure regularity of the measure
µ(t) within finite time; otherwise, the steepest descent method might either generate
a non-Lipschitz vector field (for which existence for (1.2) holds for small times only)
or a time-varying Lipschitz vector field converging to a non-Lipschitz vector field
within finite time (see an example for a problem of crowd dynamics in Sec. 3).

Choosing the control as the instantaneous maximizer of st may cause chattering
(in time) phenomena, as it has been already noticed in finite dimension (see Ref. 13).
For this reason, we regularize the control by means of an hysteresis: we introduce
a parameter h ∈ (0, 1) and, given the control U(a∗, b∗, η∗), maximizer of st at time
tn, we keep it constant over an interval [tn, tn + δ] along which (st(a∗, b∗, η∗) ≥
(1 − h)st(a, b, η).

Summing up, the combination of a steepest descent method with an hysteresis
provides a control making V decrease and steering the density µ(t) to Z. Our main
result is the following.

Theorem 1.1. (Main theorem) Let f, g : Pc(Rd) → Lip(Rd, Rd) and V :
Pc(Rd) → R satisfy Assumptions (H). Consider the controlled transport equation

aThe method used to select a maximizer plays no role in the convergence of the method. One may
consider for instance the lexicographic order in R

2n+1, and choose the smallest maximizer.
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with non-local velocity

∂tµ + ∇ · ((f [µ] + χω(t,y)u(t, y)g[µ])µ
)

= 0, µ(0) = µ0, (1.17)

where µ0 ∈ Pac
c (Rd) is such that supp(µ0) ⊂ B(0, R). Fix the hysteresis parameter

h ∈ (0, 1). Fix the initial parameters n = 0 and t0 = 0. Define the following
algorithm step:

Step n: At time tn, choose one of the maximizers (a∗, b∗, η∗) of stn(a, b, η) in the
set Ωtn defined in (1.16).

Then, we have two cases :

• If either stn(a∗, b∗, η∗) < t−1
n or Ωtn is empty, then choose the zero

control

χω(t)u(t, x) ≡ 0, (1.18)

(thus, ω(t) need not be defined) and let the measure µ(t), starting
at µ(tn), evolve according to (1.17) over the time interval [tn, tn+1],
where tn+1 is the smallest time greater than tn for which there exists
(ā, b̄, η̄) ∈ Ω′

t such that stn+1(ā, b̄, η̄) ≥ 2t−1
n+1, where

Ω′
t = {(a, b, η) ∈ Ωt | η ≥ 2t−1}. (1.19)

• If stn(a∗, b∗, η∗) ≥ t−1
n , then choose the control defined by

ω(t) = [a∗1 − η∗, b∗1 + η∗] × · · · × [a∗d − η∗, b∗d + η∗],

u(t, ·) = −χη∗

[a∗,b∗]sign(LU(a,b,η)g[µ(t)]V [µ(t)]),
(1.20)

where U is given in (1.15), and let the measure µ(t), starting at µ(tn),
evolve according to (1.17) over the time interval [tn, tn+1], where tn+1 is
the smallest time greater than tn satisfying at least one of the following
conditions :

— either stn+1(a∗, b∗, η∗) ≤ t−1
n+1
2 ;

— or there exists (ā, b̄, η̄) ∈ Ω′
tn+1

such that

stn+1(a
∗, b∗, η∗) ≤ (1 − h)stn+1(ā, b̄, η̄). (1.21)

If tn+1 is finite, then go to Step (n + 1).
If tn+1 = +∞, then keep the control (1.18) or (1.20) over the time inter-
val [tn, +∞).

For this control strategy, the control χωu satisfies the control constraint (U), the
unique solution µ(t) of (1.17) is such that µ(t) ∈ Pac

c (Rd) for any t ∈ [0, +∞), and
µ(t) converges to Z ∩ Pc(B(0, R)), i.e.

• limt→+∞ inf
ν∈Z∩Pc(B(0,R))

Wp(µ(t), ν) = 0;

• or equivalently, there exists a choice ν(t) ∈ Z ∩ Pc(B(0, R)) for each t ≥ 0 such
that µ(t) ⇀ ν(t), i.e. for all φ ∈ C∞

c (Rd) it holds limt→∞
∫

φd(µ(t) − ν(t)) = 0.
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Remark 1.6. The three threshold time-dependent functions used in the definition
of control algorithm in Theorem 1.1 satisfy t−1/2 < t−1 < 2t−1. One can easily see
that they can be replaced with three positive functions satisfying φ1(t) < φ2(t) <

φ3(t) converging to 0 as t → +∞. In particular, the functions can take finite values
for t = 0, by maybe allowing one control to be active on the starting interval [0, t1].

The rest of the paper is structured as follows. In Sec. 2, we recall the main defini-
tions and results for transport partial differential equation with non-local velocities
as (1.1) and (1.2). In Sec. 3, we discuss some examples of dynamics of the form (1.2),
and we explain some differences with respect to the finite-dimensional setting. The-
orem 1.1 is proved in Sec. 4. In Sec. 5, we study a generalization of Theorem 1.1
to a system of the form (1.2) with several control potentials. Finally, in Sec. 6, we
present an application of Theorem 1.1 to the control of kinetic multi-agent systems.

2. Transport Equations with Non-Local Velocities

In this section, we recall existence and uniqueness results for (1.1) and (1.2). In
(1.1), the variable µ ∈ Pc(Rd) is a probability measure on R

d. The term f [µ] is
called the velocity field and it is a non-local term. Since the value of a measure at a
single point is not well defined, it is important to observe that f [µ] is not a function
depending on the value of µ in a given point, as it is often the case in the setting
of hyperbolic equations in which f [µ](x) = f(µ(x)). Instead, one has to consider
f as an operator taking an as input the whole measure µ and giving as an output
a global vector field f [µ] on the whole space R

d. These operators are often called
“non-local”, as they consider the density not only at a given point, but in a whole
neighborhood.

We first recall two useful definitions to deal with measures and solutions of (1.1),
namely the Wasserstein distance and the push-forward of measures (for more details
see, e.g. Ref. 34).

Definition 2.1. Given two probability measures µ and ν on R
d and p ∈ [1, +∞),

the p-Wasserstein distance between µ and ν is

Wp(µ, ν) = inf
{∫

R2d

|x − y|p dπ(x, y) | π ∈ Π(µ, ν)
}1/p

,

where Π(µ, ν) is the set of transference plans from µ to ν, i.e. of the probability
measures π on R

d × R
d such that Projx#π = µ and Projy#π = ν with Projx :

(x, y) �→ x and Projy : (x, y) �→ y.

The topology induced by Wp on the space of probability measures P(X) on a
compact space X coincides with the weak-∗ topology of measures (see Ref. 34). As
a consequence of Assumption (H3), each trajectory µ(t) of the controlled system
(1.2) is contained in the compact space Pc(B(0, R)) (compact if endowed with the
Wasserstein topology). Thus, from now on, we will state equivalently convergence
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with respect to the weak-∗ topology of measures and with respect to the Wasserstein
distance. We now define the push-forward of measures.

Definition 2.2. Given a Borel map γ : R
d → R

d, the push-forward of a measure
µ ∈ Pc(Rd) is defined by γ#µ(A) = µ(γ−1(A)) for every measurable subset A

of R
d.

We now recall an existence and uniqueness result for (1.1) (see a complete proof
in Ref. 31).

Theorem 2.1. We assume that, for every µ ∈ Pc(Rd), the velocity field f [µ] is a
function of (t, x) with the regularity

f [·] : P(Rd) → Lip(Rd) ∩ L∞(Rd),

µ �→ f [µ],

satisfying the following assumptions :

• there exist functions L(·) and M(·) in L∞
loc(R) such that

‖f [µ](t, x) − f [µ](t, y)‖ ≤ L(t)‖x − y‖, ‖f [µ](t, x)‖ ≤ M(t)(1 + ‖x‖),
for every µ ∈ Pc(Rd), every t ∈ R and all (x, y) ∈ R

d × R
d;

• for a given p ∈ [1, +∞), there exists a function K(·) in L∞
loc(R) such that

‖f [µ] − f [ν]‖L∞(R;C0(Rd)) ≤ K(t)Wp(µ, ν),

for all (µ, ν) ∈ (Pc(Rd))2.

Then, for every µ0 ∈ Pc(Rd), the Cauchy problem

∂tµ + ∇ · (f [µ]µ) = 0, µ|t=0 = µ0 (2.1)

has a unique solution µ(·) ∈ C0(R;Pc(Rd)), where Pc(Rd) is endowed with the
weak-∗ topology of measures. Moreover, t �→ µ(t) is Lipschitz in the sense of the
Wasserstein distance Wp. Moreover, if µ0 ∈ Pac

c (Rd), then µ(t) ∈ Pac
c (Rd) for every

t ∈ R.
Furthermore, for every T > 0, there exists CT > 0 such that

Wp(µ(t), ν(t)) ≤ eCT tWp(µ(0), ν(0)), (2.2)

for all solutions µ and ν of (2.1) in C0([0, T ];Pc(Rd)).
Finally, the solution µ of the Cauchy problem (2.1) can be made explicit as

follows. Let Φ(t) be the flow of diffeomorphims of R
d generated by the time-

dependent vector field f [µ], defined as the unique solution of the Cauchy problem
Φ̇(t) = f [µ(t)] ◦ Φ(t), Φ(0) = IdRd , or in other words,

∂tΦ(t, x) = f [µ(t)](t, Φ(t, x)), Φ(0, x) = x.

Then, we have

µ(t) = Φ(t)#µ0,

that is, µ(t) is the push-forward of µ0 under Φ(t).
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Theorem 2.1 can be generalized to mass-varying transport PDEs, that is, in
presence of sources (see Ref. 30). We now observe that Theorem 2.1 can be applied
to (1.2) as well, under Assumptions (H) and provided that the control u be a
Lipschitz function of the space variable for all times.

Corollary 2.1. Under Assumptions (H), if u is a uniformly Lipschitz function
of x on the time interval [0, θ], satisfying the constraint (U), then, given any
initial data µ(0) = µ0 ∈ Pc(B(0, R)), Eq. (1.2) has a unique solution µ(·) ∈
C0([0, θ],Pc(B(0, R))). Moreover, if µ0 ∈ Pac

c (B(0, R)), then µ(t) ∈ Pac
c (B(0, R))

for every t ∈ [0, θ]. Denoting by Ψ the flow of diffeomorphims of R
d generated by

the time-dependent vector field f [µ] + u(t, x)g[µ], we have µ(t) = Ψ(t)#µ0.

Proof. It suffices to check that Theorem 2.1 can be applied to the vector field f [µ]+
u(t, x)g[µ]. As already stated, the existence of a uniform bound M for ‖f + ug‖L∞

is a consequence of the uniform Lipschitz property and of the uniform boundedness
of the support of both f [µ] and g[µ], together with the bound ‖u‖L∞ ≤ 1 imposed
by (U) in (1.4). Similarly, we have a uniform bound on the Lipschitz constant
Lip(f + ug). Indeed, by (1.3),

Lip(f [µ(t)] + ug[µ(t)]) ≤ L + Lipx(u)‖g[µ(t)]‖L∞ + ‖u‖L∞Lip(g[µ(t)])

≤ 2L + Lipx(u)M. (2.3)

Finally, we have

‖f [µ] + ug[µ] − f [ν] + ug[ν]‖L∞ ≤ ‖f [µ] − f [ν]‖L∞ + ‖u‖L∞‖g[µ] − g[ν]‖L∞

≤ Wp(µ, ν) + 1 · QWp(µ, ν)

= 2QWp(µ, ν).

This proves the corollary.

We end this section with an estimate of the L∞-norm of the solution µ(t)
to (1.1), when it is absolutely continuous with respect to the Lebesgue measure.

Proposition 2.1. Let µ(·) be the unique solution of (1.1) for a given Lipschitz
vector field f with µ0 ∈ Pac

c (Rd). Then

d

dt
‖µ(t)‖L∞ ≤ ‖µ(t)‖L∞‖∇ · f‖L∞. (2.4)

Proof. The proof follows Proposition 3.1 in Ref. 22. Let ρ(t) be the density of
µ(t) with respect to the Lebesgue measure. For each p ∈ [1, +∞), by dropping the
dependence with respect to time, we write

d

dt

∫
ρp dx = −p

∫
ρp−1 ∇ · (fρ)dx = −p

∫
(ρp ∇ · f + ρp−1〈f,∇ρ〉)dx.
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Since ∇ · (fρ p) = ρ p ∇ · f + 〈f,∇(ρ p)〉 = ρ p∇ · f + pρp−1〈f,∇ρ〉, we infer that

d

dt

∫
ρp dx = −

∫
(p − 1)ρp ∇ · f dx −

∫
∇ · (fρ p)dx.

The last term is zero as a consequence of the divergence theorem. Then d
dt‖ρ‖p

Lp ≤
(p − 1)‖ρ‖p

Lp‖∇ · f‖L∞, which in turn implies (2.4) as p → +∞.

3. Steepest Descent Under Population Constraint
Induces Mass Concentration

In this section, we discuss a remarkable phenomenon for controlled equations of the
form (1.2): starting from a measure µ0 ∈ Pac

c (Rd), i.e. a measure that is absolutely
continuous with respect to the Lebesgue measure in R

d, a time-dependent choice
of the control might drive the measure outside Pac

c (Rd) in finite time, in particular
with emergence of Dirac deltas. In fact, we will show that such a phenomenon arises
when trying to minimize a Lyapunov function V, in particular when one chooses
the control u(t) as the instantaneous minimizer of the Lie derivative of V as time
evolves. This example also shows that some key ideas coming from control of finite-
dimensional systems cannot be extended straightforwardly to infinite dimension.

In this section, we discuss the interest and the drawbacks of a control constraint
different than (U), namely the following:

Alternative Control Constraints (U′)

Fix c > 0. For each time t ≥ 0 it holds:

Sparsity population constraint:
∫

ω(t)

dµ(t) ≤ c, (3.1)

Finite strength: ‖u(t, .)‖L∞ ≤ 1. (3.2)

The population constraint represents the idea of acting on a small part of the mass
itself, and not on a small part of the configuration space, as we require in the space
constraint in (U). Even though the sparse population constraint is interesting from
the theoretical point of view, it has a surprising drawback on the modeling point of
view: when a measure is extremely concentrated, the constraint (U′) implies that
the control cannot act on the whole mass anymore. This is somehow unnatural,
since a crowd that is already concentrated is the best configuration to steer. On the
other hand, the space constraint (U) permits to act on the whole measure, when
it is concentrated in a set of size c, i.e. exactly when it is concentrated.

We now show that the population constraint also induces some formal math-
ematical problems when using a sparse Jurdjevic–Quinn approach. Consider the
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following system on the real line:

∂tµ + ∂x(uµ) = 0. (3.3)

This is a particular case of (1.2) with f = 0 and g = 1. We consider the initial data
µ0 = χ[0,1], i.e. a uniform probability density on the interval [0, 1]. We consider the
Lyapunov function

V [µ] =
∫

x2 dµ(x),

i.e. the second moment with respect to zero. We have LfV =0, and we have
LugV [µ] = 0 for µ = δ0 only, i.e. Z = {δ0}. Then, minimizing V is equivalent
to steer µ(t) to the Dirac mass δ0.

We now apply a rough form of the steepest descent method to the problem of
minimizing V : given the initial measure µ0, we look for a control function u that
maximizes the descent LugV [µ], while taking into account the control constraints
(U′). An easy computation shows that no optimal choice for u exists. Indeed, for
every ε > 0, consider the C∞-function

uε(x) =



−1 for x ∈ [1 − c + ε, 1],

0 for x ∈ (−∞, 1 − c] ∪ [1 + ε, +∞),

C∞-spline with values in [−1, 0] for x ∈ [1 − c, 1 − c + ε] ∪ [1, 1 + ε].

Then, for a sufficiently small time t > 0, each particle x ∈ (1− c + ε, 1] is displaced
to x − t while each particle x ∈ [0, 1 − c] undergoes no displacement. The particles
in the small interval [1 − c, 1 − c + ε] are displaced toward 1 − c, then giving a
reduction of the value of the functional V. Then, we have

LuεgV [µ] =
d

dt |t=0

∫ 1−c+ε

1−c

(x + tu(x) + o(t))2 dµ(x) +
d

dt|t=0

∫ 1

1−c+ε

(x − t)2 dµ(x)

≤ −2
∫ 1

1−c+ε

xdµ(x).

As a consequence, by decreasing the parameter ε > 0, one can reach a larger decrease
of V . Nevertheless, the limit for ε → 0 would result in the discontinuous control
function u0 = χ[1−c,1], for which the solution to the corresponding dynamics (3.3)
does not satisfy Assumptionsb (H).

The fact that a maximizer of the steepest descent does not exist in the space of
Lipschitz functions can be overcome by fixing a value ε0 > 0 and applying the control
uε0 over a small interval of time [0, t0] with t0 < ε0. As a result, the component of
the measure µ with x ∈ [1 − c, 1] concentrates in the interval [1 − c, 1 − t0], while
its density keeps being constantly equal to 1 for x ∈ [0, 1 − c]. At time t, one can

bExistence and uniqueness for the solution of (1.2) in small times, with possibly discontinuous
controls, can be derived from results in Refs. 2 and 21. Nevertheless, it is shown in Ref. 21 that,
under such assumptions, one can have formation of singularities such as Dirac deltas in finite time.
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observe that the largest contribution to V comes anyway from the mass in the
interval [1 − c, 1 − t0], on which the control already acted. Moreover, the mass in
such interval keeps being c.

For the reasons described above, any strategy maximizing the descent of V acts
on the mass in the interval [1 − c, 1] for all times. In particular, we can choose a
sequence εi acting on the time interval [ti−1, ti], with the condition εi < c − ti for
all t ∈ [0, c). Applying the time-dependent control u(t, x) = uεi(x) for t ∈ [ti−1, ti),
the corresponding solution µ(t) of (3.3) has support in [0, 1 − t]. More precisely,
it has the following structure: the measure keeps having density 1 in the interval
[0, 1 − c], while the rest of the mass c is contained in the interval [1 − c, 1 − t].

Then, the solution µ(t) converges as t ↗ c to the singular measure

µ(c) = χ[0,1−c] + cδ1−c. (3.4)

This is not in contradiction with the fact that any solution of (1.1) with initial
data µ0 ∈ Pac

c (Rd) and Lipschitz vector field f satisfies µ(t) ∈ Pac
c (Rd). Indeed, the

condition ε(t) < c − t implies limt→c ε(t) = 0, hence the control u(t, x) converges
to a non-Lipschitz function.

Starting from the singular measure (3.4) at time t = c, one finds several problems
to steer it toward the minimizer δ0 of V . First, the main contribution to V is given
by the Dirac delta c δ1−c: then, the control set ω chosen to maximize the descent
for V would certainly contain such mass. But the condition 1− c ∈ ω together with
u(1 − c) 	= 0 would directly impose to choose ω containing a whole neighborhood
of 1 − c. This would imply

∫
ω µ(c) > c, hence the population constraint would be

automatically violated.
This would in turn enforce us to focus our control on the absolutely continuous

part, possibly leading to the formation of a new Dirac delta c δ1−2c, and so on. The
final result would be a set of Dirac deltas, not concentrated at 0, on which control
with population constraint cannot be applied.

Summing up, the steepest descent method with population constraint in (U′)
might not steer the measure to a configuration in Z, but rather to a configuration
in which the population constraint itself may not be satisfied.

4. Proof of Theorem 1.1

For the moment, we assume that the solution µ(·) of (1.17), with the control strategy
defined by Theorem 1.1, is well defined on [0, θ] with θ ∈ (0, +∞], and we establish
some lemmas describing its evolution. Recall that supp(µ0) ⊂ B(0, R).

Lemma 4.1. We have supp(µ(t)) ⊂ B(0, R) for every t ∈ [0, θ].

Proof. Since the vector field f + ug is zero outside B(0, R), the corresponding
flow φt(·) coincides with the identity in R

d\B(0, R). Since we have µ(t) = φt
#µ0 by

Theorem 2.1, we get that, for any Borel set E satisfying E ∩ B(0, R) = ∅, we have
µ(t)(E) = µ0(φ−t(E)) = µ0(E) = 0. The lemma follows.
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Recall that L is the Lipschitz constant for f [µ] and g[µ] given in (1.5), and
recall that ‖f [µ]‖L∞ ≤M and ‖g[µ]‖L∞ ≤M for every µ ∈ Pac

c (B(0, R)) (as in
Remark 1.5).

Lemma 4.2. We have ‖µ(t)‖L∞ ≤ edθ(2L+Mθ)‖µ(0)‖L∞ , for every t ∈ [0, θ].

Proof. Since the vector field f + ug satisfies (2.3), and since Lipx(u(t, ·)) ≤ 1
η ≤

t ≤ θ, the lemma follows from Proposition 2.1.

Lemma 4.3. The function (t, a, b, η) �→ st(a, b, η) is continuous with respect to t,

and uniformly Lipschitz with respect to (a, b, η) on ∪{Ωt, t ∈ [0, θ]}.

Proof. Let us first establish the Lipschitz property for (a, b, η) ∈ ∪{Ωt, t ∈ [tn,

tn+1] ∩ [0, θ]}. Note that the condition |ω(a, b, η)| ≤ c implies that η≤ c
2 . Besides,

we have η ≥ t−1 ≥ θ−1. By definition of U(a, b, η) in (1.15), with simple geometric
arguments, it is clear that in the 1D case we have

‖U(a, b, η) − U(a′, b′, η′)‖L1(dx) ≤ ‖U(a, b, η) − U(a, b, η′)‖L1(dx)

+ ‖U(a, b, η′) − U(a′, b′, η′)‖L1(dx)

≤ |η − η′| + |a − a′| + |b − b′|,

where dx is the standard Lebesgue measure on R. By applying the estimate compo-
nentwise, the same result follows in dimension d. By Lemma 4.2, there exists P > 0
such that ‖µ(t)‖L∞ ≤ M for every t ∈ [0, θ], hence

‖U(a, b, η) − U(a′, b′, η′)‖L1(µ(t)) ≤ P (|a − a′| + |b − b′| + |η − η′|),

and thus (1.11) implies that st(a, b, η) is Lipschitz with respect to (a, b, η), with
Lipschitz constant KP .

The function st(a, b, η) is continuous with respect to t, as a consequence of the
continuity of LugV given by (1.12).

Lemma 4.4. Assume that µ(tn) ∈ Pac
c (Rd). If Ωtn is nonempty then stn(a, b, η)

has a maximizer in Ωtn .

Proof. It suffices to observe that Ωtn can be considered as being compact: indeed,
each choice (a, b, η) ∈ Ωtn can be replaced by an equivalent choice (a′, b′, η) with
a, b ∈ B0(R + 2c) since ‖U(a, b, η) − U(a′, b′, η)‖L1(µ) = 0, since µ has zero mass
outside of B(0, R). In other terms, one can restrict the choice of the parameters
a, b to a compact set. Similarly, we have η ∈ [t−1

n , c
2 ]. Since, by Lemma 4.3, stn is a

continuous function of its arguments, then it admits a maximizer.
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We are now in a position to prove Theorem 1.1. We split the proof into three
steps:

Step 1. For each time tn, the nth step of the algorithm univocally determines a
control satisfying the constraint (U), the corresponding solution of (1.2)
and a time tn+1 > tn.

Step 2. We have tn → +∞.
Step 3. We have limt→+∞ Lf+ugV [µ(t)] = 0. This fact, together with the choice of

maximizing controls and of the hysteresis, provides convergence to the sets
in which the maximizers of st(a, b, η) give zero control. Since the constraint
η ≥ t−1 is negligible for t → +∞, the strategy provides convergence of
µ(t) to Z.

Proof of Step 1. Let us prove that the algorithm of Theorem 1.1 univocally
defines a control strategy, by induction. We have t0 = 0 and µ(0) = µ0 ∈ Pac

c (Rd).
Let us prove that, for a given time tn, the time tn+1 is well defined and satisfies
tn+1 > tn.

We first observe that the control χωu is a well-defined function, Lipschitz with
respect to x. Setting t̃ = 1

2

(
c

|B0(1)|
)1/d, we note that Ωt = ∅ for every t ∈ [0, t̃) since

any function of the form χη
[a,b] has a support of size larger than (2η)d|B0(1)|. For

t ≥ t̃, the set Ωt is nonempty and Lemma 4.4 yields the existence of a maximizer
(a∗, b∗, η∗) in Ωt. We thus have two cases:

• If stn(a∗, b∗, η∗) < t−1
n or Ωt empty, then the control χωu = 0 is well defined and

is Lipschitz.
• If stn(a∗, b∗, η∗) ≥ t−1

n , then the control χωu = U(a∗, b∗, η∗) is well defined and
is Lipschitz, as a consequence of the Lipschitz property in (1.14).

Let us now prove that there exists a unique minimum tn+1 defined by the algorithm,
and that it satisfies tn+1 > tn. For t ∈ [0, t̃), there is nothing to prove, since t1 ≥ t̃.
For t ≥ t̃, we have two cases:

• If stn(a∗, b∗, η∗) < t−1
n , then the set

A = {t ≥ tn | st(a, b, η) ≥ t−1 for some (a, b, η) ∈ Ω′
t}

is closed or empty. If it is nonempty, there exists a minimal element tn+1 ≥ tn.
Moreover, tn+1 	= tn, since stn(a, b, η) ≤ stn(a∗, b∗, η∗) < t−1

n for all (a, b, η) ∈
Ωtn . If A is empty then +∞ = tn+1 > tn.

• If stn(a∗, b∗, η∗) ≥ t−1
n , then, similarly to the previous case, since the function

st(a∗, b∗, η∗) is continuous with respect to the time t, the set

A′ =
{

t ≥ tn | st(a∗, b∗, η∗) ≤ t−1
n

2

}
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is closed or empty, and it does not contain tn. We now consider the set

B′ =

{
t ≥ tn such that there exists (ā, b̄, η̄) ∈ Ω′

t for which

st(ā, b̄, η̄) ≥ (1 − h)−1st(a∗, b∗, η∗) ≥ (1 − h)−1 t−1

2

}
.

Let us prove that it is closed and that tn 	∈ B′. Take a sequence (ti, ai, bi, ηi)
such that ti ∈ B′ is a sequence converging to some t̂, and (ai, bi, ηi) satisfy

sti(ai, bi, ηi) ≥ (1 − h)−1sti(a∗, b∗, η∗) ≥ τ(ti)
2 . Observing that the compact set

Ω′
t varies smoothly with respect to time, we can restrict ourselves to a sequence

(ai, bi, ηi) converging to some (ā, b̄, η̄) ∈ Ω′̄
t. Then, by continuity of st, we have

st̄(ā, b̄, η̄) ≥ (1 − h)−1st̄(a∗, b∗, η∗), hence t̄ ∈ B′. Moreover, t̄ 	= tn, otherwise
(a∗, b∗, η∗) would not be a maximizer of stn .

Since both A′ and B′ are closed or empty, not containing tn, then A′ ∪ B′ is
closed or empty and does not contain tn. If it is closed, then it admits a minimal
element tn+1 > tn; if it is empty, then we have +∞ = tn+1 > tn.

Proof of Step 2. We now prove that the sequence tn of times given by the algo-
rithm converges to +∞. Since tn is increasing, it has a limit T . By contradiction, if
T < +∞, then µ(t) is defined for every t ∈ [0, T ]. Indeed, since ‖f + ug‖L∞ ≤ 2M ,
the curve t �→ µ(t) is Lipschitz, and thus µ(T ) is well defined.

If we have stn(a∗, b∗, η∗) < t−1
n at time tn, then at the next time tn+1 we must

have stn+1(ā, b̄, η̄) ≥ t−1
n+1 for some (ā, b̄, η̄) ∈ Ωtn+1, by definition of the algorithm

itself. As a consequence, the sequence tn converging to T contains an infinite number
of times tni such that stni

(ai, bi, ηi) ≥ t−1
ni

, where (ai, bi, ηi) is a maximizer of stni

in Ωtni
.

The sequence (ai, bi, ηi) is bounded, and its converging subsequences have their
limit in ΩT . Indeed, we can restrict ourselves to (ai, bi) ∈ B0(R + 2c), and we
have ηi ≥ T−1 and ηi ≤ c

2 . Hence, taking a subsequence if necessary, we have the
existence of a limit (â, b̂, η̂) ∈ ΩT .

Observe now that, at time tni+1, one of the two conditions leading to switching
of the control holds. Since the sequence tni+1 has an infinite number of terms, at
least one of the conditions holds for an infinite subsequence (that we do not relabel).
We show now that this is in contradiction with the fact that tn converges to a finite
time T . We have two cases:

• If stni
(ai, bi, ηi) ≥ t−1

ni
and stni+1(ai, bi, ηi) ≤ t−1

ni

2 , then, taking a subsequence
converging to (â, b̂, η̂) ∈ ΩT , we have a contradiction with the continuity of sT in
(â, b̂, η̂). Indeed, we have

sT (â, b̂, η̂) = lim
i→+∞

stni
(ai, bi, ηi) ≥ t−1

ni
>

t−1
ni

2

≥ lim
i→+∞

stni
+1(ai, bi, ηi) = sT (â, b̂, η̂).
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• If there exists (āi, b̄i, η̄i) ∈ Ω′
tni+1

such that

stni+1(a
i, bi, ηi) ≤ (1 − h)stni+1(ā

i, b̄i, η̄i), (4.1)

then, for ni → +∞, we have Ω′
tni+1

⊂ Ωtni
, since 2t−1

ni+1 ≥ t−1
ni

, as a consequence
of the fact that limi→+∞(tni+1 − tni) = 0. Since (ai, bi, ηi) is a maximizer of stni

in Ωtni+1 , we have

stni
(āi, b̄i, η̄i) ≤ stni

(ai, bi, ηi). (4.2)

One can take a converging subsequence of (āi, b̄i, η̄i), for the same reasons given
above for the sequence (ai, bi, ηi). Denoting by (ā∗, b̄∗, η̄∗) and (a∗, b∗, η∗) the two
limits, and using continuity of st(a, b, η) with respect to all its arguments, we get
from (4.1)–(4.2) that

sT (a∗, b∗, η∗) ≤ (1 − h)sT (ā∗, b̄∗, η̄∗) ≤ (1 − h)sT (a∗, b∗, η∗),

which is in contradiction with sT (a∗, b∗, η∗) ≥ T−1 > 0.

Then tn cannot converge to a finite value T . Therefore either tn → +∞ or there
exists a tn such that tn+1 = +∞. In both cases, the control strategy is defined for
every t ∈ [0, +∞).

Proof of Step 3. It remains to prove that µ(t) converges to Z. This is the hardest
part of the proof, in which the choice of the admissible controls in Ωt plays a crucial
role.

Thanks to Step 2, we have, for every time, µ(t) ∈ Pc(B(0, R)), that is compact
with respect to the weak topology, which coincides with the topology of the Wasser-
stein distance. Then Assumptions (H) imply that V is a continuous function and
thus is bounded below.

We now prove that the function V(t) = V [µ(t)] is differentiable for almost every

t, and that it satisfies V̇(t) = limt→0
V [et(f+ug)µ]−V [µ]

t ≤ 0. Differentiability on the

open time interval (tn, tn+1) follows from the fact that V̇(t) = Lf+ugV [µ(t)] is
continuous, as a consequence of Assumptions (H). Clearly, the set of times tn on
which differentiability is not ensured is countable, hence V(t) is differentiable for
almost every t.

For t ∈ (tn, tn+1), we have V̇ = Lf+ugV [µ] = LfV [µ] + LugV [µ]. If at time tn
the algorithm defines the control χωu ≡ 0, then clearly

V̇ = LfV [µ] ≤ 0, (4.3)

for every t ∈ (tn, tn+1). If instead the control given by the algorithm is χωu in
(1.20), we have

V̇ = LfV [µ] + LχωugV [µ]

≤ −sign(LU(a∗,b∗,η∗)g[µ(tn)]V [µtn ])(LU(a∗,b∗,η∗)g[µ(t)]V [µt]). (4.4)
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It is clear that, at the beginning of the interval, we have

lim
t→t+n

sign(LU(a∗,b∗,η∗)g[µ(tn)]V [µtn ])(LU(a∗,b∗,η∗)g[µ(tn)]V [µtn ]) ≥ stn(a∗, b∗, η∗)

≥ τ(tn) > 0,

and hence V̇(t+n )< 0. Since V̇(t) is a continuous function, we either have V̇(t)< 0
for every t ∈ (tn, tn+1), or there exists t ∈ (tn, tn+1) such that LU(a∗,b∗,η∗)g[µ(t)] ×
V [µ(t)] = 0. This is equivalent to state that st(a∗, b∗, η∗) = 0, which is in contra-
diction with st(a∗, b∗, η∗) > τ(t)

2 > 0 for every t ∈ (tn, tn+1), by definition of the
time tn+1.

We now prove that limt→∞ µ(t) ∈ Z. Since Pc(B(0, R)) is compact, all sequences
have limits. Consider a sequence tj → ∞ such that limj→∞ µ(tj) = µ∗. We are going
to prove that µ∗ ∈ Z.

Since V is continuous, bounded below and V̇(t) ≤ 0 for almost every t, we have
limt→+∞ V(t) = V ∗ for some V ∗. The existence and continuity of the second-order
derivatives Lf+ugLf+ugV [µ] on the compact space Pc(B(0, R)) implies the exis-
tence of a uniform bound on V̈ . As a consequence, we have limt→∞ V̇(t) = 0. Since
V̇ ≤ LfV ≤ 0 by either (4.3) or (4.4), this in turn implies limj→∞ LfV [µ(tj)] = 0,
hence LfV [µ∗] = 0 by continuity of LfV .

We now prove that LugV [µ∗] = 0 for all u ∈ U . By contradiction, assume that
there exists u∗ ∈ U such that |Lu∗gV [µ∗]| 	= 0. Without loss of generality, by using
(1.10), we assume that ‖u∗‖L∞ = 1. Similarly, by decomposing u∗ = u+ − u− with
u+, u− non-negative Lipschitz functions, and using additivity of the Lie derivative,
we can replace u∗ with either u+ or u− and assume that it is non-negative and that
|Lu∗gV [µ∗]| = C∗ 	= 0. Finally, by observing that µ∗ has compact support, we can
replace u∗ with a non-negative Lipschitz function with compact support.

We now approximate u∗ in L∞ by a family of functions of the form∑I
i=1 kiχη

[ai,bi], where the number I of terms depends on the approximation error,

but not on the (sufficiently small) parameter η.
For simplicity, we only give the construction in the 1D case.
Since u∗ is Lipschitz with bounded support, it is Riemann integrable. In par-

ticular, by using an approximation of u∗ from below, we have the following: take a
grid step ∆x and define the rectangles kiχ[ãi,b̃i] with b̃i − ãi = ∆x, for which

I∑
i=1

kiχ[ãi,b̃i] ≤ u∗ and

∥∥∥∥∥u∗ −
I∑

i=1

kiχ[ãi,b̃i]

∥∥∥∥∥
L∞

≤ ε, (4.5)

for some ε. The Riemann integrability of u∗ implies that, for any ε > 0 there exists
∆x such that (4.5) is satisfied. Note that ‖u∗‖L∞ = 1 also implies ki ≤ 1.

We now prove that we can replace kiχ[ãi,b̃i] with their mollified version kiχη
[ai,bi]

(see Fig. 1) for any sufficiently small η, while keeping (4.5) satisfied. We provide
here the explicit construction. First denote with L′ the Lipschitz constant of u∗. To
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Fig. 1. Construction of the approximation kiχη

[ai,bi]
.

replace kiχ[ãi,b̃i] with kiχη
[ai,bi], we have two cases:

• If b̃i−1 < ãi, then keep both bi−1 = b̃i−1 and ai = ãi, and choose η ≤ min{ ãi−b̃i−1

2 ,
ki−1

L′ , ki

L′ }.
• If b̃i−1 = ãi, then choose η ≤ min{ki−1

L′ , ki

L′ }. If ki−1 > ki, then define bi−1 = b̃i

and ai = ãi + η. Otherwise, take bi−1 = b̃i − η and ai = ãi.

Note that the constraints imposed on η are higher bounds, and they are in finite
number. Then, η can be chosen in a whole interval (0, η′], where η′ depends on ε

only. By construction, we have
∑I

i=1 kiχ[ãi,b̃i] ≤ ∑I
i=1 kiχη

[ai,bi] ≤ u∗, thus both

conditions in (4.5) are satisfied. Note that this construction depends only on u∗

and not on µ∗. We denote this new function by uη =
∑I

i=1 kiχη
[ai,bi].

Consider now the sequence of measures µ(tj) converging to µ∗. If tj is a switch-
ing time tn for the algorithm, replace it with a slightly larger time. Then we can
assume that µ(tj) keeps converging to µ∗, with no switching times. By continuity of
Lu∗gV [µ] given by (1.12), we have |Lu∗gV [µ(tj)]| ≥ C∗

2 for sufficiently large indices.
Note that

|L(u∗−uη)gV [µ(tj)]| ≤ K‖u − uη‖L1(µ(tj)) ≤ K‖u − uη‖L∞ ≤ Kε.

Then, choose a sufficiently small ε ≤ C∗
2K and a corresponding ∆x > 0 such that (4.5)

is satisfied. If ∆x ≥ c
2 , then replace it with c

2 : by integrability of u∗, (4.5) is still
satisfied when refining the grid. Then, the previous construction shows that there
exists η′ such that uη satisfies (4.5) for every η ∈ (0, η′]. Choose then η∗ ∈ (0, η′].
For a sufficiently large j, we have |Luη∗gV [µ(tj)]| ≥ C∗

2 .
Note now that uη∗

is a sum of I terms of the form kiχη∗

[ai,bi]. Then, for each j

there exists at least one term such that∣∣∣∣Lχη∗
[ai,bi]

g
V [µ(tj)]

∣∣∣∣ ≥
∣∣∣∣Lkiχη∗

[ai,bi]
g
V [µ(tj)]

∣∣∣∣ ≥ C∗

2I
,

where we have used that ki ≤ 1 and that the number I does not depend
on the parameter η∗. Observe now that, for a sufficiently large T , we have
(ai, bi, η∗) ∈ Ω′

t for every t ≥ T . Similarly, taking a larger T if necessary, we have
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stj (ai, bi, η∗) ≥ C∗
2I ≥ t−1

j . As a consequence, the control algorithm provides a

maximizer (aj , bj , ηj) ∈ Ω′
tj of stj , for which

stj (aj , bj , ηj) ≥ (1 − h)stj (ai, bi, η∗) ≥ (1 − h)
C∗

2I
.

The corresponding derivative satisfies

V̇ (tj) = Lf+U(aj ,bj ,ηj)gV [µ(tj)] ≤ 0 − (1 − h)
C∗

2I
.

In particular, this is in contradiction with the fact that limt→∞ V̇(t)= 0. The
theorem is proved.

5. Generalization to Several Controls

The control algorithm and the convergence result of Theorem 1.1 can be easily
adapted to the case in which there are several controlled vector fields and several
control gains. Consider m + 1 vector fields f, g1, . . . , gm, for some integer m ≥ 1,
and

∂tµ + ∇ ·
((

f [µ] +
m∑

i=1

χωiuigi[µ]

)
µ

)
= 0. (5.1)

We say that the vector fields f, g1, . . . , gm and the Lyapunov function V satisfy
Assumption (H) if every triple of f, gi with Lyapunov function V satisfy Assump-
tions (H), for every i = 1, . . . , m. In this setting admissible controls are χωiui

satisfying the control constraint (U) with the following additional constraint.

Componentwise Sparsity Constraint (C)

For every t ∈ [0, +∞), there exists at most one index i such that ui(t, ·) is not
identically zero.

This sparsity constraint was first considered in the finite-dimensional setting for
multi-agent models in Refs. 11 and 12. We recently generalized the Jurdjevic–Quinn
stabilization method with this additional constraint in Ref. 13. In this framework
we will prove convergence to

Z = {µ ∈ Pc(Rd) | LfV [µ] = LugiV [µ] = 0 ∀ i = 1, . . . , m, and ∀u ∈ U}
and, more precisely, Theorem 1.1 reads as follows.

Corollary 5.1. Let f, g1 : Pc(Rd) → Lip(Rd, Rd) and V : Pc(Rd) → R sat-
isfy Assumptions (H). Consider the controlled transport equation with non-local
velocity (5.1) with initial data µ0 ∈ Pac

c (Rd) such that supp(µ0) ⊂ B(0, R). Fix the
hysteresis parameter h ∈ (0, 1). Fix the initial parameters n = 0 and t0 = 0. Define
the following algorithm step:
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Step n: At time tn, choose the maximizer (a∗, b∗, η∗, i∗) of |LU(a,b,η)gi
V [µ(tn)]| in

the space Ωtn × {1, . . . , m}.
Then, we have two cases :

• If |LU(a∗,b∗,η∗)gi∗V [µ(tn)]|< t−1
n or if Ωtn is empty, then choose the zero

control

χωu(t, x) ≡ 0

and let the measure µ(t), starting at µ(tn), evolve according to (5.1)
over the time interval [tn, tn+1], where tn+1 is the smallest time greater
than tn such that there exists (ā, b̄, η̄, ī) ∈ Ω′

tn+1
× {1, . . . , m} for which

|LU(ā,b̄,η̄)gī
V [µ(tn+1)]| ≥ 2t−1.

• If |LU(a∗,b∗,η∗)gi∗ V [µ(tn)]| ≥ t−1
n , then choose the control

χωu(t, ·) = −U(a∗, b∗, η∗) sign(LU(a∗,b∗,η∗)gi∗ [µ(t)]V [µ(t)])

and let the measure µ(t), starting at µ(tn), evolve according to (5.1)
over the time interval [tn, tn+1], where tn+1 is the smallest time greater
than tn satisfying at least one of the following conditions :

— either |LU(a∗,b∗,η∗)gi∗ [µ(tn+1)]| ≤ t−1
n+1
2 ;

— or there exists (ā, b̄, η̄, ī) ∈ Ω′
tn+1

× {1, . . . , m} such that

|LU(a∗,b∗,η∗)gi∗[µ(tn+1)]| ≤ (1 − h)|LU(ā,b̄,η̄)gī
[µ(tn+1)]|.

For this control strategy, the control satisfies the control constraints (U) compon-
entwise and (C), the unique solution µ(t) of (5.1) is such that µ(t) ∈ Pac

c (Rd) for
any t ∈ [0, +∞), and µ(t) converges to Z ∩ Pc(B(0, R)), i.e.:

• limt→+∞ infν∈Z∩Pc(B(0,R)) Wp(µ(t), ν) = 0,

• or equivalently, there exists a choice ν(t) ∈ Z ∩ Pc(B(0, R)) for each t ≥ 0 such
that µ(t) ⇀ ν(t), i.e. for all φ ∈ C∞

c (Rd) it holds limt→∞
∫

φd(µ(t) − ν(t)) = 0.

The proof of convergence of µ(t) to Z is a simple combination of the proof of
Theorem 1.1 in Sec. 4 with the proof of the finite-dimensional sparse Jurdjevic–
Quinn stabilization method with hysteresis given in Ref. 13. Note that the control
strategy is the same as in Theorem 1.1 and we only added the index i in the
maximization process.

6. Application to Kinetic Multi-Agent Models

In this section, we give some relevant models to which Theorem 1.1 can be applied.
Control problems for equations of the form (1.17) arise naturally when studying
large crowds of interacting agents. Consider a system of N interacting agents in
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which the dynamics of the state xi ∈ R
d of the ith agent are influenced by the state

of the other N − 1 agents, according to the time evolution

ẋi =
1
N

∑
j �=i

F (xi, xj), i = 1, . . . , N, (6.1)

where F ∈ Lip(Rd × R
d, Rd) represents interaction rules, that are the same for

any pair of agents. When the number N of agents is large, it is often convenient
to describe the evolution of the system as a mean-field equation. In the mean-
field limit, when N →+∞, the evolution of the mass of the agents µ ∈ Pc(Rd) is
described by (1.1) with

f [µ](x) =
∫

F (x, y)dµ(y). (6.2)

Indeed, to derive the mean-field model (1.1) from the finite-dimensional multi-agent
models (6.1), it suffices to consider the empirical measure µ(t) = 1

N

∑N
i=1 δxi(t).

We consider then the controlled version of the multi-agent system (6.1), given by

ẋi =
1
N

∑
j �=i

F (xi, xj) + uigi(x1, . . . , xN ), i = 1, . . . , N, (6.3)

for some Lipschitz vector field (g1, . . . , gN ) on (Rd)N and controls (u1, . . . , uN) in
some subset of (Rd)N . In the case in which the control vector field is defined, for
every agent i, only via the interaction between the other agents and the action of
the control is the same on any agent, namely if there exists an interaction kernel
G ∈ Lip(Rd × R

d, Rd) such that

gi(x1, . . . , xN ) =
1
N

∑
j �=i

G(xi, xj),

for every i = 1, . . . , N , and if ui = uj for all i, j ∈ {1, . . . , N}, then we can consider
the limit of (6.3) as N → +∞, which gives the mean-field equation (1.2) with (6.2)
and

g[µ](x) =
∫

G(x, y)dµ(y). (6.4)

The controllability problem is then the following: given an initial measure µ0 and
a final measure µ1, find a suitable control function (t, x) �→ u(t, x) steering the
system (1.2) from µ0 to µ1. We refer to Ref. 31 for a first result on the control of a
mean-field equation of the form (1.2) with constraint (U) and (U′). In particular
the paper focuses on the controlled version of the kinetic Cucker–Smale system
introduced in Ref. 22 with constant g, and the existence of a control steering the
system to a neighborhood of a Dirac measure is proved.

Existence and uniqueness for the mean-field equation (1.2) when the vector fields
are given by (6.2) and (6.4) are ensured by Theorem 2.1 provided that F (x, y) and
G(x, y) have compact support. Indeed if F (x, y) and G(x, y) have compact support,
then the vector fields f [µ] and g[µ] satisfy Assumptions (H).



May 26, 2017 13:21 WSPC/103-M3AS 1740014

Mean-field sparse Jurdjevic–Quinn control 1247

Multi-agent models with a compactly supported interaction potential are some-
times called “bounded confidence” or homophilous models. The idea is that the
agents interact only with the ones having closer states. This kind of interaction is
used, for instance, to model opinion formation in first-order systems. One of the
most influential models in opinion formation is, indeed, the Bounded Confidence
Model by Hegselmann and Krause23 (see also Ref. 7). The main feature of this
model is that the interaction is zero when the distance between two opinions is
larger than a certain threshold:

F (xi, xj) =

{
(xj − xi) if |xi − xj | ≤ 1,

0 otherwise.

It has been proved7 that, for almost every initial configuration, the opinions con-
verge asymptotically to clusters. In particular, the system does not reach global
consensus in general. Since the right-hand side is discontinuous with respect to the
state variable, for some configurations, the system has no unique solution, hence
we consider the more general first-order consensus model

ẋi =
1
N

∑
j �=i

φ(xj − xi)(xj − xi), i = 1, . . . , N, (6.5)

where the function φ is defined by

φ(x) =




1 if |x| < 1,

−|x|
ε

+ 1 +
1
ε

if |x| ∈ [1, 1 + ε],

0 if |x| > 1 + ε,

(6.6)

for some small ε > 0. This is a variant of the Hegselmann–Krause model, in which
the Lipschitz property of φ ensures existence and uniqueness of solutions of (6.5).
Therefore the associated vector field for the mean-field equation (1.2) is

f [µ](x) =
∫

φ(y − x)(y − x)dµ(y). (6.7)

The kinetic version of the Hegselmann–Krause model has been first studied in
Ref. 10 for discrete-time dynamics. Existence of solutions has been first proved in
Ref. 6 for a general bounded decreasing φ(x) such that |xφ′(x)| ≤ φ(x). Moreover, if
φ(x) is everywhere nonzero, then the system converges unconditionally to consensus,
meaning that for every µ0 the solution µ(t) converges asymptotically to a Dirac
mass. If φ(x) is compactly supported, as in our case, however, then the large time
behavior of the dynamics is not yet completely understood and a precise description
of the asymptotic dynamics is, in general, a hard task. As in the finite-dimensional
analogue, generically the solution µ(t) converges to a finite sum of Dirac deltas,
representing the clusters of opinion, but sufficient conditions for global consensus
are still unknown. Theorem 1.1 provides then a useful tool to establish convergence
to global consensus.
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Here, we consider the controlled kinetic Hegselmann–Krause model in dimension
d = 1 with drift vector field given by (6.7), control vector field g = 1. We aim to
enforce consensus of the whole group toward a unique value; thus, we choose the
variance as Lyapunov function

V [µ] =
∫

x2 dµ(x) −
(∫

xdµ(x)
)2

.

It is easy to prove that LugV [µ] = 0 for every u ∈ U ⇔ µ = δx for some x ∈ R.
Since Lf [δx] = 0, it follows that Z = {δx |x ∈ R}.

We are now left to prove that LfV [µ]≤ 0. For the sake of readability, we prove
that, if µ = 1

2 (δx + δy) for some x, y ∈ R, then LfV [µ] ≤ 0. Then, by standard
properties of the variance, the same statement keeps being valid for the Lie deriva-
tive of V along any combination of Dirac 1

N

∑N
i=1 δxi for some xi ∈ R; finally, by

passing to the limit in N , this holds for any measure µ. Observe that it holds

f

[
δx + δy

2

]
(z) =

1
2
φ(x − z)(x − z) +

1
2
φ(y − z)(y − z),

thus

LfV [µ] =
1
2

d

dt|t=0

V (etf[δx]) +
1
2

d

dt|t=0

V (etf[δy])

= xf
[
δx + δy

2

]
(x) + yf

[
δx + δy

2

]
(y)

=
1
2
φ(y − x)(y − x)x +

1
2
φ(x − y)(x − y)y

= −φ(x − y)
2

‖x − y‖2 ≤ 0.

Then, using the continuity conditions (1.12) and the density of the sum of Dirac
deltas in Pc(R), one can extend the estimate on Pc(R).

In particular this system fits into the framework of Theorem 1.1, which thus
provides the existence of a control strategy concentrating the mass at 0, in other
words, steering the system to global consensus.

Theorem 1.1 also gives an explicit construction of a control achieving consensus.
Assume that at a certain switching time, say t, the solution is µ(t) = 1

2χ[−1,1]. In
this case, we can write explicitly the slope function

st(a, b, η) = |LU(a,b,η)g[µ]V [µ]|

=
∣∣∣∣ d

dt|t=0

V (etU(a,b,η)µ)
∣∣∣∣

= 2
∣∣∣∣
∫

R

xU(a, b, η)(x)dµ(x)
∣∣∣∣
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= 2

∣∣∣∣∣1η
∫ a

a−η

x(x − a + η)dµ(x) +
∫ b

a

xdµ(x)

+
1
η

∫ b+η

b

x(−x + b + η)dµ(x)

∣∣∣∣∣,
where b − a + 2η ≤ c. For η large, the biggest contribution is given by the second
integral term ∫ b

a

xdµ(x) =
1
4
(min(b, 1)2 − max(a,−1)2).

If c < 2, then the control set ω cannot cover the whole support of µ and it will be
close to −1 or 1. The action of the control steers the mass in the region ω toward 0
breaking the symmetry of the measure µ. It may happen therefore that the region ω

will lose the optimality of the slope function and the control will switch to another
region on the opposite side. In general, if the measure µ is symmetric with respect
to the origin, then the control may chatter. This is the rationale for the introduction
of an hysteresis parameter h: the control acts on a set and holds it also sometimes
after losing optimality in order to prevent high-oscillating controls.

Here we present numerical simulations for this system. We consider an initial
data µ0 randomly distributed on the interval [0, 10] and we apply the control given in
Theorem 1.1 with three different choice of the hysteresis parameter h. In Fig. 2, we
represent the free evolution of the system, i.e. with u = 0. Each blue line describes
the trajectory of a percentile x between x0 and x100, i.e. of the value xn such that

Fig. 2. (Color online) Uncontrolled kinetic Hegselmann–Krause model. Blue lines represent the
evolution µ(t). The evolution of max and min of the support of µ(t) is represented with red lines.
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(a) h = 0.9

(b) h = 0.5

(c) h = 0.2

Fig. 3. (Color online) Application of the control strategy of Theorem 1.1 for different values of
the hysteresis parameter h. The yellow region is the controlled area.

µ((−∞, xn)) = n
100 and µ((xn, +∞)) = 1 − n

100 . Notice that the solution tends to
a finite combination of Dirac deltas representing clusters. Red lines represent the
trajectory of the minimal and maximal value.

The action of Theorem 1.1, with the variance as Lyapunov function, is repre-
sented in Fig. 3. The control set is represented by a yellow interval. We choose
c = 0.2 as the size of the control set. In this case the whole mass tends to a sin-
gle Dirac delta, representing consensus. One can observe that the control set is
piecewise constant with respect to time, as a consequence of the hysteresis.

Chattering may usually happen when dealing with sparse controls designed with
optimality criteria. Sparsity of the control in finite dimension is usually coded in
terms of control acting on the smallest number of components/agents and the term
sparsity comes from the fact that the control operator gi in (6.3) is a sparse vector.
This notion has been introduced in Refs. 11 and 12 for second-order alignment
systems (see also Ref. 35 for the controllability via leader of the Hegselmann–Krause
finite-dimensional model).

In the infinite-dimensional framework, the assumption that agents are indis-
tinguishable is crucial for defining mean-field limits; therefore, the notion of
componentwise sparsity loses its sense. The infinite-dimensional analogue of
componentwise sparsity is the sparsity population constraint (U′). In Sec. 3, we
have described the issues arising from this definition.
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The sparsity space constraint given in (U) is, on the other hand, the natural
definition of sparsity for mean-field equation of the form (1.2). The constraint is in
some sense geographical, since the control can act only on a region of the space. The
finite-dimensional analogue of such a control is the so-called decentralized control.
A decentralized control acts based on partial information on the agents inside a
certain neighborhood of the controlled ones. The decentralized control for multi-
agent systems is a well-established topic, we refer for instance to Refs. 17, 33 and 36
for decentralized consensus algorithms, see also Ref. 8 for a recent result with L∞-
constraints on the control of the form (1.4).

7. Conclusion and Open Questions

In this paper, we have generalized the classical Jurdjevic–Quinn stabilization
method to infinite-dimensional control systems described by transport partial dif-
ferential equations with non-local terms. Such equations arise in crowd models that
are mean-field limits of particle systems for a finite number of agents: for this reason,
it is natural to require some sparsity constraint to the control.

We established a mean-field Jurdjevic–Quinn stabilization method under the
sparsity constraint (U): the control acts on a small set of the configuration space,
with a bounded strength.

Improving Theorem 1.1 in the original spirit of Jurdjevic and Quinn may be
done in several ways: on the one side, by reducing the target goal to the largest
subset of Z that is invariant under the uncontrolled dynamics f [µ]; on the other
side, by reducing the target by imposing zero higher-order derivatives, i.e. when Z
is the set of all µ ∈ Pc(B(0, R)) such that

LfV [µ] = Lk
fLugiV [µ] = 0,

for every u ∈ Lip(Rd, R), i = 1, . . . , m, and k ∈ N.
Dealing with iterated Lie derivatives, that is, with Lie brackets, in the kinetic

setting is an open perspective.
Addressing more general systems than those presented in Sec. 5 is also of great

interest. In particular, it would be interesting to develop similar approaches to
enforce stabilization of a transport equation to a specific set Z of configurations,
such as steady-states or periodic trajectories. In this spirit, a remarkable result for
describing cell migrations is given in Ref. 18, where steady-states are “rosettes”, that
are symmetric configurations of cells leading to emergence of specific macroscopic
structures.
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