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Abstract We prove a Pontryagin Maximum Principle for optimal control
problems in the space of probability measures, where the dynamics is given by
a transport equation with non-local velocity.

We formulate this first-order optimality condition using the formalism of
subdifferential calculus in Wasserstein spaces. We show that the geometric
approach based on needle variations and on the evolution of the covector (here
replaced by the evolution of a mesure on the dual space) can be translated
into this formalism.

1 Introduction

Transport equations with non-local interaction terms have been intensively
studied for decades by various communities. They were for instance already
introduced in statistical physics in 1938 when Vlasov proposed these equations
to describe long-range Coulomb interactions [36]. For such reasons, several
transport equations appear as mean-field limits of particle systems, see e.g.
[31,34]. More recently, the study of crowd modelling has stimulated a renewed
interest for these equations. Indeed, pedestrians have a long-range perception
of their space, and thus choose their path based on long-range interactions.
While such interactions do not enjoy action-reaction properties which are typi-
cal in physical models, methods connected to mean-field limit approaches have
shown their adaptability in this setting too (see e.g. [8,17,29,30]). More gen-
erally, the study of other kind of interacting agents, such as opinion dynamics
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on networks [9,28], or animal flocks [7,18], has been conveyed with similar
techniques.

Several contributions have shown that the natural setting for studying
transport equations with non-local terms is the space of measures endowed
with the Wasserstein distance, see e.g. [6]. In this case, existence and unique-
ness of the solution of a Cauchy problem are ensured by a natural Lipschitz
condition [5], and metric estimates for the associated flow are available too
[32]. For simplicity, we will only deal with measures with compact support, for
which the Wasserstein distance is always finite.

Beside the analysis of such partial differential equations, it is now of great
interest to study control problems for the transport equation with
non-local velocities. Apart from a few recent results about controllability
[21], most of the contributions in this direction have considered optimal con-
trol problems, i.e. the minimization of a functional where the constraint is
a controlled dynamics. Applications of these problems are of great interest,
canonical examples being provided e.g. by the minimal escape time problem
for a crowd [3,23] or the enforcement of consensus in a network by minimizing
the variance of the opinions (see e.g. [12,13,33]).

Existence of optimal controls has been investigated in [25], as well as in the
setting of mean-field control [1,2]. Convergence of optimizers via the mean-field
limit of the dynamics was also studied with methods related to Γ -convergence
in [24].

The next logical step in this study is the derivation of first-order necessary
optimality conditions allowing to characterize and compute optimal trajecto-
ries. Although Hamilton-Jacobi optimality conditions in Wasserstein spaces
have received some attention, see e.g. the seminal paper [26] and recent devel-
opments in the field of control theory [15], Pontryagin optimality conditions
remain rather unexplored. A first result in this direction was presented in [10],
in which a coupled PDE-ODE system was studied, in which the control acts
on the ODE part only. The main result was a necessary first-order condition
written as a Pontryagin Maximum Principle. Instead, we turn our attention
here to a control problem formulated directly on the PDE. Then, one needs a
sufficiently rich differential structure to compute derivatives of the functional
to be minimized with respect to the control. In this context, the state is repre-
sented by a measure, for which the adapted setting is given by subdifferential
calculus in Wasserstein spaces. We recall the main useful results of this theory
in Section 2 (see also [6] for a thorough introduction).

Our contribution in this article is to show that, in this general framework,
several results of geometric control can be translated from finite-dimensional
dynamical systems to transport equations with non-local velocities. With this
aim, we derive a new Pontryagin Maximum Principle in this infinite-dimensional
setting. While the proof scheme is close to the classical finite-dimensional case,
each step requires the definition of tools adapted to Wasserstein spaces and
additional technical care in the different arguments.

As a result, the new Pontryagin Maximum Principle (PMP in the following)
is formulated in the language of subdifferential calculus in Wasserstein spaces.



The Pontryagin Maximum Principle in the Wasserstein Space 3

In particular, the state-costate variables are here replaced by a measure on
the product of the tangent and cotangent bundle. The dynamics is given by
an Hamiltonian system in the space of measures, similar to what studied in
[5], where the corresponding Hamiltonian is given by a maximization in an
adapted space of controls functions satisfying Lipschitz constraints.

In the sequel, we shall study Pontryagin-type optimality condition for op-
timal control problems given in the general form

(P)


min
u∈U

[∫ T

0

L(µ(t), u(t))dt+ ϕ(µ(T ))

]
,

s.t.

{
∂tµ(t) +∇ · ((v[µ(t)](t, ·) + u(t, ·))µ(t)) = 0,

µ(0) = µ0 ∈Pc(Rd).

(1)

As already stated, our formulation of the PMP deeply relies on the formal-
ism of subdifferential calculus in Wasserstein spaces (see e.g. [14,27]). In this
formalism, the extended subdifferential ∂φ(µ) (see Definition 5 below) of a
functional φ(·) at a given measure µ ∈ Pc(Rd) is made of transport plans.
As it is the case for subdifferential calculus in Banach spaces, there exists a
notion of minimal selection (see Theorem 3 below) among the elements of this
subdifferential. The minimal selection in an extended subdifferential, which we
denote by ∂◦φ(µ), plays the same conceptual role of the gradient of a differ-
entiable functional. The existence of such minimal selection is a consequence
of the regularity hypothesis (see Definition 6 and the corresponding Theorem
3 below), that we impose to the functionals studied in the following.

In this context, the barycenter γ̄◦φ : Rd → Rd (see Definition 4 below) of
the minimal selection is the closest object to what would be a gradient in
the sense of subdifferential calculus, in particular when computing derivatives
along curves of measures (see Proposition 4 below). However, barycenters of
extended subdifferentials are not in the classical subdifferentials in general. Yet
for a good score of functionals involved in applications such as potential and
interaction energies, relative entropies, variance functionals (see e.g. Section 4
below for some examples), the minimal selection is induced by its barycenter.
In this case, the latter is referred to as the Wasserstein gradient (see Definition
7 below) ∇µφ(µ) : Rd → Rd of the functional φ(·) at µ.

We introduce in Theorem 1 below a heuristic version of our main result
and postpone for the sake of readability its precise statement to Section 3,
Theorem 5. In the sequel, we will denote by B2d(0, R) the ball of radius R
centered at 0 in R2d, by π1, π2 : R2d → Rd the projection operators on the
first and second components and by K a generic compact subset of Rd.

Theorem 1 (Heuristic statement of the Pontryagin Maximum Prin-
ciple for (P)) Let (u∗(·), µ∗(·)) ∈ U × Lip([0, T ],Pc(Rd)) be an optimal pair
control-trajectory for (P) and assume that hypotheses (H) of Theorem 5 below
hold.
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Then, there exist a constant R > 0 depending on µ0, T , U , v[·](·, ·), ϕ(·),
L(·, ·) and a curve ν∗(·) ∈ Lip([0, T ],P(B2d(0, R)) Lipschitzian with respect
to the W1-metric satisfying the following conditions :

(i) It solves the forward-backward system of continuity equations
∂tν
∗(t) +∇(x,r) ·

(
J2d∇̃νHc(t, ν∗(t), u∗(t))ν∗(t)

)
= 0 in [0, T ]× R2d,

π1
#ν
∗(0) = µ0,

π2
#ν
∗(T ) = (−γ̄◦ϕ)#µ

∗(T ),

where the vector field ∇̃νHc(t, ν∗(t), u∗(t))(·, ·) is (almost) the Wasserstein
gradient of a suitable compactification of the infinite dimensional Hamilto-
nian H(·, ·, ·) of the system, defined by

H(t, ν, ω) =

∫
R2d

〈r, v[π1
#ν](t, x) + ω(x)〉dν(x, r)− L(π1

#ν, ω)

for any (t, ν, ω) ∈ [0, T ]×Pc(R2d)× U .
(ii) It satisfies the Pontryagin maximization condition

Hc(t, ν∗(t), u∗(t)) = max
ω∈U

[Hc(t, ν∗(t), ω)]

for L 1-almost every t ∈ [0, T ].

The structure of the article is the following : in Section 2 we recall useful
results of analysis in Wasserstein spaces, PDEs with non-local velocities and
subdifferential calculus in (P2(Rd),W2). We also prove in Proposition 5 an
existence and characterization result for directional derivatives along measure
curves for non-local flows. In Section 3 we state and prove our main result.
We first introduce in Section 3.1 the main steps of our proof strategy - in
particular the concept of needle like variation -, on a simpler instance (P1)
of problem (P). We proceed to prove Theorem 5 in Section 3.2. In Section 4
we discuss more in details the set of hypotheses (H) of Theorem 5 and list
some relevant examples of classical functionals satisfying them.

2 Analysis in Wasserstein spaces

In this section, we recall several notions about analysis in the space of proba-
bility measures, optimal transport theory, Wasserstein spaces, continuity equa-
tions and subdifferential calculus in the space (P2(Rd),W2). All the results
stated in this section are well-known, at the exception of Proposition 5 which
is a generalization of the classical differentiation result for smooth flows of
diffeomorphisms that we recall in Proposition 3.
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2.1 The optimal transport problem and Wasserstein spaces

In this section, we introduce some classical notations and results of optimal
transport and analysis in Wasserstein spaces.

We denote by P(Rd) the space of Borel probability measures over Rd and
by L d the standard Lebesgue measure on Rd. For p ≥ 1, we define Pp(Rd)
as the subset of P(Rd) of measures having finite p-th moment, i.e.

Pp(Rd) =

{
µ ∈P(Rd) s.t.

∫
Rd
|x|pdµ(x) < +∞

}
.

The support of a Borel probability measure µ ∈ P(Rd) is defined as the
closed set supp(µ) = {x ∈ Rd s.t. µ(N ) > 0 for any neighbourhood N of x}.
We denote by Pc(Rd) the subset of P(Rd) of measures which supports are
compact.

We say that a sequence (µn) ⊂P(Rd) of Borel probability measures con-
verges narrowly towards µ ∈P(Rd), denoted by µn ⇀

n→+∞
µ, provided that

∫
Rd
φ(x)dµn(x) −→

n→+∞

∫
Rd
φ(x)dµ(x) for all φ ∈ C0

b (Rd) (2)

where C0
b (Rd) denotes the set of continuous and bounded functions from Rd

into R.

We recall the definitions of pushforward of a Borel probability measure
through a Borel map and transport plan.

Definition 1 (Pushforward of a measure through a Borel map)
Given a Borel probability measure µ ∈P(Rd) and a Borel map f : Rd → Rd,
the pushforward f#µ of µ through f(·) is defined as the only Borel probability
measure such that f#µ(B) = µ(f−1(B)) for any Borel set B ⊂ Rd.

Definition 2 (Transport plan) Given two probability measures µ and ν on
Rd, we say that γ ∈P(R2d) is a transport plan between µ and ν, denoted by
γ ∈ Γ (µ, ν), provided that γ(A× Rd) = µ(A) and γ(Rd × B) = ν(B) for any
Borel subsets A,B ⊂ Rd, or equivalently π1

#γ = µ and π2
#γ = ν.

Given a probability measure γ ∈ R2d, we also denote by Γ (γ, ν) the set of
plans lµ.. ∈ P(R3d) such that π1,2

# lµ.. = γ and π3
#lµ.. = ν where π1,2 : (x, y, z) ∈

R3d 7→ (x, y) ∈ R2d.

We recall in the following Proposition three useful convergence results for
sequences of probability measures and functions (see e.g. [6, Chapter 5]).

Proposition 1 (Convergence results) Let (µn) ⊂ P(Rd) be a sequence
narrowly converging to µ ∈P(Rd), (fn) be a sequence of µ-measurable func-
tions pointwisely converging to f and g ∈ C0(Rd).
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(i) Suppose that x 7→ |g(x)| is uniformly integrable with respect to the family
{µn}∞n=1, i.e

lim
k→+∞

∫
{|g(x)|≥k}

|g(x)|dµn(x) = 0

for all n ≥ 1. Then, the sequence (
∫
Rd g(x)dµn(x)) ⊂ R converges to∫

Rd g(x)dµ(x) as n→ +∞.

(ii) The sequence (g#µn) ⊂P(Rd) narrowly converges to g#µ as n→ +∞.

(iii) (Vitali convergence theorem) Suppose that the family x 7→ |fn(x)| is uni-
formly integrable with respect to the measure µ, i.e.

lim
k→+∞

∫
{|fn(x)|≥k}

|fn(x)|dµ(x) = 0

for all n ≥ 1 and also assume that |f(x)| < +∞ for µ-almost every x ∈ Rd.
Then (fn) converges uniformly to f in L1(Rd;µ) as n→ +∞.

In the 40’s, Kantorovich introduced the optimal mass transportation prob-
lem in its modern mathematical formulation : given two probability mea-
sures µ, ν ∈ P(Rd) and a cost function c : R2d → R, find a transport plan
γ ∈ Γ (µ, ν) such that∫

R2d

c(x, y)dγ(x, y) = min

{∫
R2d

c(x, y)dγ′(x, y) s.t. γ′ ∈ Γ (µ, ν)

}
.

This problem has been extensively studied in very broad contexts (see
e.g. [6,35]) with high levels of generality on the underlying spaces and cost
functions. In the particular case where c(x, y) = |x− y|p for some real number
p ≥ 1, the optimal transport problem can be used to define a distance over
the subspace Pp(Rd) of P(Rd).

Definition 3 (Wasserstein distance and Wasserstein spaces)
Given two probability measures µ, ν ∈ Pp(Rd), the p-Wasserstein distance
Wp between µ and ν is defined by

Wp(µ, ν) = min

{(∫
R2d

|x− y|pdγ(x, y)

)1/p

s.t. γ ∈ Γ (µ, ν)

}
.

The set of plans γ ∈ Γ (µ, ν) achieving this optimal value is denoted1 by
Γo(µ, ν) and referred to as the set of optimal transport plans between µ and
ν. The space (Pp(Rd),Wp) of probability measures with finite p-th moment
endowed with the p-th Wasserstein metric is called the Wasserstein space of
order p.

We recall some of the interesting properties of these spaces in the following
Proposition (see e.g. [6, Chapter 7] or [35, Chapter 6]).

1 We omit the dependence on p for clarity and conciseness.
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Proposition 2 (Properties of the Wasserstein distance) The topology
induced in Pp(Rd) by the Wasserstein metric Wp metrizes the weak-* topology
of probability measures induced by the narrow convergence (2). More precisely,

Wp(µn, µ) −→
n→+∞

0 ⇐⇒ µn ⇀
n→+∞

µ and

∫
Rd
|x|pdµn(x) −→

n→+∞

∫
Rd
|x|pdµ(x)

For compactly supported measures µ, ν ∈ Pc(Rd), the Wasserstein dis-
tances are ordered, i.e. p1 ≤ p2 =⇒ Wp1(µ, ν) ≤ Wp2(µ, ν). In particular
when p = 1, the following Kantorovich-Rubinstein duality formula holds

W1(µ, ν) = sup

{∫
Rd
φ(x) d(µ− ν)(x) s.t. Lip(φ,Rd) ≤ 1

}
. (3)

In what follows, we shall mainly restrict our considerations to the Wasser-
stein spaces of order 1 and 2 built over Pc(Rd). We end this introductory
paragraphs by recalling the concepts of disintegration and barycenter in the
context of optimal transport.

Definition 4 (Disintegration and barycenter) Let µ, ν ∈ Pp(Rd) and
γ ∈ Γ (µ, ν) be a transport plan between µ and ν. We define the disintegration
{γx}x∈Rd ⊂ Pp(Rd) of γ on its first marginal µ, usually denoted by γ =∫
γxdµ(x), as the µ-almost uniquely determined Borel family of probability

measures such that∫
R2d

φ(x, y)dγ(x, y) =

∫
Rd

∫
Rd
φ(x, y)dγx(y)dµ(x),

for any Borel map φ : R2d → Rd.
The barycenter γ̄ ∈ Lp(Rd,Rd;µ) of the plan γ is then defined by

γ̄ : x ∈ supp(µ) 7→
∫
Rd
y dγx(y).

2.2 The continuity equation with non-local velocities on Rd

In this section, we introduce the continuity equations with non-local velocities
in (Pc(Rd),W1). These equations write

∂tµ(t) +∇ · (v[µ(t)](t, ·)µ(t)) = 0, (4)

where t 7→ µ(t) is a narrowly continuous family of probability measures on Rd
and (t, x) 7→ v[µ](t, x) is a Borel family of vector fields for any µ ∈ Pc(Rd),
satisfying the condition∫ T

0

∫
Rd
|v[µ(t)](t, x)|dµ(t)(x)dt < +∞. (5)
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Equation (4) has to be understood in the sense of distributions, i.e.∫ T

0

∫
Rd

(∂tφ(t, x) + 〈∇xφ(t, x), v[µ(t)](t, x)〉) dµ(t)(x)dt = 0 (6)

for all φ ∈ C∞c ([0, T ]× Rd), or alternatively as

d

dt

∫
Rd
φ(x)dµ(t)(x) =

∫
Rd
〈∇φ(x), v[µ(t)](t, x)〉dµ(t)(x) (7)

for all φ ∈ C∞c (Rd) and L 1-almost every t ∈ [0, T ].
As already mentioned in the introduction, these equations are interesting

for a large number of applications. It is important to notice that v[µ] depends
on the whole measure µ and not only on its values at some points as it is
usually the case for non-linear conservation laws.

We now recall a theorem which was first derived in [5] providing existence,
uniqueness and representation formula for solutions of (4). We state here a
version explored in [32,33] that is more suited to our control-theoretic frame-
work.

Theorem 2 (Existence, uniqueness and representation of solutions
for (4)) Consider a non-local velocity field v[·](·, ·) defined as

v : µ ∈Pc(Rd) 7→ v[µ](·, ·) ∈ L∞(R, C1 ∩ L∞(Rd,Rd)), (8)

and satisfying the following assumptions

(H’)

� There exists positive constants L1 and M such that

|v[µ](t, x)− v[µ](t, y)| ≤ L1|x− y| and |v[µ](t, x)| ≤M(1 + |x|)

for every µ ∈Pc(Rd), t ∈ R and (x, y) ∈ R2d;
� There exists a positive constant L2 such that

‖v[µ](t, ·)− v[ν](t, ·)‖C0(Rd) ≤ L2W1(µ, ν)

for every µ, ν ∈Pc(Rd) and t ∈ R;

s Then for every initial datum µ0 ∈Pc(Rd), the Cauchy problem{
∂tµ(t) +∇ · (v[µ(t)](t, ·)µ(t)) = 0

µ(0) = µ0,
(9)

admits a unique solution µ(·) in C0(R,Pc(Rd)). This solution is locally Lips-
chitz in t with respect to the W1-metric. Besides, if µ0 is absolutely continuous
with respect to L d, then µ(t) is absolutely continuous with respect to L d as
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well for all times t ≥ 0.
Furthermore for every T > 0 and every µ0, ν0 ∈Pc(Rd), there exists RT > 0
depending on supp(µ0) and CT > 0 such that

supp(µ(t)) ⊂ B(0, RT ) and W1(µ(t), ν(t)) ≤ CTW1(µ0, ν0),

for all times t ∈ [0, T ] and any solutions µ(·), ν(·) of (9).
Let (Φv(0,t)[µ

0](·))t≥0 be the family of flows of diffeomorphisms generated by

the non-local vector field v[µ(t)](t, ·), defined as the unique solution of ∂tΦ
v
(0,t)[µ

0](x) = v[µ(t)]
(
t, Φv(0,t)[µ

0](x)
)
,

Φv(0,0)[µ
0](x) = x for all x in Rd.

(10)

Then, the unique solution of the Cauchy problem (9) can be expressed at time
t as µ(t) = Φv(0,t)[µ

0](·)#µ
0.

We recall below a standard result which links the differential of the flow
of diffeomorphisms of an ODE at time t to the solution of a corresponding
linearized Cauchy problem (see e.g. [11]).

Proposition 3 (Differential of a flow) Let (t, x) 7→ v(t, x) be measurable
in t as well as sublinear and C1 in x. Define the family of C1-flows (Φvt (·))t≥0

associated to v(·, ·) by (10) in the case where v(·, ·) is independent from µ(·).
Then, it holds that the differential DxΦ

v
(s,t)(x)·h of the flow between times s

and t, evaluated at x and applied to some vector h ∈ Rd is the unique solution
w(·, x) of the linearized Cauchy problem

∂tw(t, x) = Dxv(t, Φv(s,t)(x)) · w(t, x) , w(s, x) = h.

This characterization is essential for proving the Pontryagin Maximum
Principle in the usual finite dimensional setting using the needle-like variations
approach. We shall prove in Proposition 5 a generalization of this result in the
non-local case where the initial measure is perturbed by a Lipschitz family
of continuous and bounded maps. Such a result is crucial to study the first
order perturbation induced by a needle-like variation on a measure curve in
the non-local setting.

2.3 Subdifferential calculus in (P2(Rd),W2)

In this section, we recall some elements of subdifferential calculus in the
Wasserstein space (P2(Rd),W2). For a thorough introduction, see [6, Chapters
9-11] where the full theory is developed and applied to the study of gradient
flows.

Throughout this section, we denote by φ : P2(Rd)→ (−∞,+∞] a proper,
lower-semicontinuous functional. We denote the effective domain D(φ) of φ(·)
as the set of points where it is finite, i.e.

D(φ) = {µ ∈P2(Rd) s.t. φ(µ) < +∞}.



10 Benôıt Bonnet, Francesco Rossi

We further assume that for τ∗ > 0 small enough, the Moreau-Yosida re-
laxation of φ(·) defined by

φM(µ, τ ; ·) : ν 7→ 1

2τ
W 2

2 (µ, ν) + φ(ν) (11)

attains a minimum at some µτ ∈ D(φ) for any τ ∈ (0, τ∗). This technical
assumption is satisfied whenever φ(·) is bounded from below and at least
lower-semicontinuous and is crucial for proving the main results of the theory
developed in [6, Chapter 10].

We start by introducing the concept of extended subdifferentials for a func-
tional defined over the Wasserstein space (P2(Rd),W2).

Definition 5 (Extended subdifferential) Let µ1 ∈ D(φ). We say that a
transport plan γ ∈P2(R2d) belongs to the extended (Fréchet) subdifferential
∂φ(µ1) of φ(·) at µ1 provided that

(i) π1
#γ = µ1,

(ii) for all µ3 ∈P2(Rd) it holds

φ(µ3)− φ(µ1) ≥ inf
lµ.. ∈Γ 1,3

o (γ,µ3)

[∫
R3d

〈x2, x3 − x1〉dlµ..
]

+ o(W2(µ1, µ3)),

where Γ 1,3
o (γ, µ3) = {lµ.. ∈ Γ (γ, µ3) s.t. π1,3

# lµ.. ∈ Γo(µ
1, µ3)}. Moreover, we

say that an extended subdifferential γ is induced by a plan if there exists
ξ ∈ L2(Rd,Rd;µ1) such that γ = (Id × ξ)#µ

1. In which case, ξ(·) belongs to
the classical subdifferential ∂φ(µ) of φ(·) at µ.

We say that a transport plan γ ∈P2(R2d) belongs to the strong extended
subdifferential ∂Sφ(µ1) of φ(·) at µ1 if the following stronger condition holds

for all µ3 ∈P2(Rd) and lµ.. ∈ Γ (γ, µ3)

φ(µ3)− φ(µ1) ≥
∫
R3d

〈x2, x3 − x1〉dlµ.. + o(W2,lµ.. (µ1, µ3)),
(12)

where for lµ.. ∈P(R3d) the quantity W2,lµ.. (µ1, µ3) is defined by

W2,lµ.. (µ1, µ3) =

(∫
R2d

|x1 − x3|2dlµ.. (x1, x2, x3)

)1/2

.

We now introduce the technical notions of regularity and metric slope that
are instrumental in deriving a sufficient condition for the extended subdiffer-
ential of a functional to be non-empty. This result is stated in Theorem 3 and
its proof can be found in [6, Theorem 10.3.10].

Definition 6 (Regular functionals over (P2(Rd),W2) and metric slope)
A proper and lower semicontinuous functional φ(·) is said to be regular pro-
vided that whenever (µn) ⊂ P2(Rd) and (γn) ⊂ P2(R2d) are taken such
that µn

W2−→ µ in P2(Rd) , φ(µn) −→ φ̃ in R,

γn ∈ ∂Sφ(µn) ∀n ≥ 1 , γn
W2−→ γ in P2(R2d),
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it implies that γ ∈ ∂φ(µ) and φ̃ = φ(µ).

Furthermore, we define the metric slope |∂φ|(µ) of the functional φ(·) at
µ ∈ D(φ) as

|∂φ|(µ) = limsup
ν→µ

[
(φ(µ)− φ(ν))

+

W2(µ, ν)

]
.

where (•)+ denotes the positive part.

Theorem 3 (Link between extended subdifferentials and metric slopes)
Let φ(·) be a proper, lower-semicontinuous, bounded from below and regular
functional over P2(Rd). Then, the extended subdifferential ∂φ(µ) of φ(·) at
some µ ∈ D(φ) is non-empty if and only if its metric slope |∂φ|(µ) at µ is
finite.

In which case, there exists a unique minimal selection in ∂φ(µ), denoted
by ∂◦φ(µ), satisfying

(∫
R2d

|r|2d(∂◦φ(µ))(x, r)

)1/2

= min

{(∫
R2d

|r|2dγ(x, r)

)1/2

s.t. γ ∈ ∂φ(µ)

}
=|∂φ|(µ).

This minimal selection can be explicitly characterized as follows : let µτ be
the minimizer of the Moreau-Yosida functional (11) for some τ ∈ (0, τ∗).
Then there exists a family of strong subdifferentials (γτ ) ⊂ (∂Sφ(µτ )) which
converges towards ∂◦φ(µ) in the W2-metric along any vanishing sequence τn ↓
0.

We list in Section 4 below several examples of regular functionals and
compute the minimal selection in their extended subdifferential. We end this
section by recalling the definition of Wasserstein gradient.

Definition 7 (Wasserstein gradient) Whenever the minimal selection ∂◦φ(µ)
is induced by a Borel map, this map is called the Wasserstein gradient of φ(·).
It is denoted by ∇µφ(µ) ∈ L2(Rd,Rd;µ) and it coincides with the barycenter
of the minimal selection.

The main interest of subdifferential calculus in the space (P2(Rd),W2)
is to compute derivatives of functionals along measure curves. However, the
general chain rule described in [6, Proposition 10.3.18] only applies to the case
of a curve ε 7→ µ(ε) = G(ε, ·)#µ generated by a given smooth functions G(ε, ·)
when one restricts himself to strong subdifferentials. Yet, there is no reason
in general for the strong subdifferential of a functional to be non-empty. In
Proposition 4, we condense some well known results of [6, Chapter 10] in order
to provide a chain rule that allows to compute derivatives along smooth vector
fields using the minimal selection ∂◦φ(µ). For simplicity, we state this result
in the framework of the Wasserstein space Pc(Rd).
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Proposition 4 (Minimal selection and chain rule along smooth vec-
tor fields) Let µ ∈ Pc(Rd) and K = ∪x∈supp(µ)B(x, 1). Let φ : P(K) →
(−∞,+∞] be a functional satisfying hypotheses (C) and (D) of Theorem
5. Define G ∈ Lip((−ε̄, ε̄), C0(Rd,Rd)) a family of continuous functions with
G(0, ·) = Id, supp(G(ε, ·)#µ) ⊂ K for all ε ∈ (−ε̄, ε̄) and F : x 7→ d

dε [G(ε, x)]ε=0

being C0 as well.
Then it holds that

d

dε
[φ(G(ε, ·)#µ)]ε=0 =

∫
R2d

〈γ̄◦(x),F(x)〉dµ(x),

where γ̄◦ ∈ L2(Rd,Rd;µ) is the barycenter of ∂◦φ(µ).

Proof First remark that it holds for any ν ∈P(K)

(φ(µ)− φ(ν))
+ ≤ Lip(φ,P(K))W2(µ, ν)

where Lip(φ,P(K)) is the Lipschitz constant of φ(·) on P(K). Hence, |∂φ|(µ)
is uniformly bounded by Lip(φ,P(K)). Moreover, the assumption that φ(·) is
bounded from below and Lipschitz on sets of uniformly compactly supported
measures implies that for τ∗ > 0 small enough, the Moreau-Yosida functional
ΦM(µ, τ ; ·) defined in (11) attains a minimum point µτ ∈ D(φ) ⊂ P(K) for
any τ ∈ (0, τ∗). Thus, by Theorem 3, ∂φ(µ) is non-empty and contains at least
the minimal selection ∂◦φ(µ) at any µ ∈P(K).

Consider a sequence (τn) ⊂ (0, τ∗) converging to 0 and the corresponding
sequence of strong subdifferentials (γτn) ⊂ (∂Sφ(µτn)) converging towards
∂◦φ(µ) in the W2-metric. Pick ε ∈ (0, ε̄) small enough and choose lµ.. τnε =

(π1, π2,G(ε, ·) ◦ π1)#γτn ∈ Γ (γτn ,G(ε, ·)#µτn). By the definition of strong
subdifferentials given in (12), it holds that

φ(G(ε, ·)#µτn)− φ(µτn)

ε
≥
∫
R2d

〈r, G(ε, x)− x
ε

〉dγτn(x, r) + o(1). (13)

since

o(W2,lµ.. (G(ε, ·)#µτn , µτn)) = o
(
‖G(ε, ·)− Id‖L2(µτn )

)
= o(ε) for all n ≥ 1.

Remark that the left hand side of (13) is bounded over P(K) uniformly with
respect to n ≥ 1 and ε ∈ (0, ε̄) by Lipschitzianity of φ(·).

We recall that γτn
W2−→ ∂◦φ(µ) in P2(R2d). Notice that the whole sequence

(µτn) is in P(K), thus for all ε ∈ (0, ε̄) the maps x 7→ |(G(ε, x) − x)/ε|2 are
uniformly integrable with respect to {π1

#γτn}
+∞
n=1. Hence, the maps (x, r) 7→

|〈r, (G(ε, x)− x)/ε〉| are uniformly integrable with respect to {γn}+∞n=1 and the
application of Proposition 1-(i) implies that for all ε ∈ (0, ε̄),∫

R2d

〈r, G(ε, x)− x
ε

〉dγτn(x, r) −→
τn↓0

∫
R2d

〈r, G(ε, x)− x
ε

〉d(∂◦φ(µ))(x, r)

=

∫
Rd
〈γ̄◦(x),

G(ε, x)− x
ε

〉dµ(x)

(14)
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using the notion of barycenter of a plan introduced in Definition 4.
Moreover, the Lipschitz regularity in the W2-metric of φ(·) over P(K)

together with Proposition 1-(ii) imply that

φ(G(ε, ·)#µτn) −→ φ(G(ε, ·)#µ). (15)

Thus, merging (13),(14) and (15), we prove that for any ε ∈ (0, ε̄) with ε̄ > 0
small enough, it holds

φ(G(ε, ·)#µ)− φ(µ)

ε
≥
∫
Rd
〈γ̄◦(x),

G(ε, x)− x
ε

〉dµ(x) + o(1).

Invoking similar arguments, the family of maps (|〈γ̄◦(·), (G(ε, ·)− Id)/ε〉|)ε∈(0,ε̄)

is uniformly integrable with respect to µ and it holds that |〈γ̄◦(·),F(·)〉| < +∞
µ-almost everywhere. Therefore, letting ε ↓ 0 and invoking Proposition 1-(iii),
we recover that

lim
ε↓0

[
φ(G(ε, ·)#µ)− φ(µ)

ε

]
≥
∫
Rd
〈γ̄◦(x),F(x)〉dµ(x).

Following the same steps with ε ∈ (−ε̄, 0), we obtain the converse inequality
for ε ↑ 0. Since we assumed that ε 7→ φ(G(ε, ·)#µ) is differentiable at ε = 0 in
(D), these limits coincide and it holds

d

dε
[φ(G(ε, ·)#µ)]ε=0 =

∫
Rd
〈γ̄◦(x),F(x)〉dµ(x),

which proves our claim.

Remark 1 (The case ∂Sφ(µ) 6= ∅) When ∂Sφ(µ) is non-empty, the previous
chain rule can be applied with any strong subdifferential and for more general
classes of vector fields, see e.g. [6, Remark 10.3.2].

The interest of proving this kind of result for the minimal selection is
twofold. First, as recalled in Theorem 3, a minimal selection always exists
when the extended subdifferential is non-empty. Second, minimal selections
can be computed explicitly even in very general settings for a wide range of
functionals (see e.g. [6, Chapter 10.4] or Section 4). In such cases, they are
usually induced by their barycenter, yielding the existence of a Wasserstein
gradient for the functional.

2.4 Directional derivatives of non-local flows

In this section, we prove the existence of directional derivatives along measure
curves generated by suitable Lipschitz families of continuous and bounded
maps for non-local flows. Such derivatives are characterized as the only solution
of a linearized Cauchy problem. This result can be seen as a generalization to
the Wasserstein setting of Proposition 3.

Before stating our result, we recall the classical Banach Fixed Point The-
orem with parameter (see e.g. [11, Theorem A.2.1]).
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Theorem 4 (Banach fixed point theorem with parameter) Let X be
a Banach space, S be a metric space and Λ : X × S → X be a continuous
mapping such that, for some κ < 1,

‖Λ(x, s)− Λ(y, s)‖X ≤ κ‖x− y‖X for all x, y ∈ X and s ∈ S.

Then for each s ∈ S, there exists a unique fixed point x(s) ∈ X of Λ(·, s).
Moreover, the map s 7→ x(s) is continuous and for any (s, y) ∈ S×X, it holds

‖y − x(s)‖X ≤
1

1− κ
‖y − Λ(s, y)‖X . (16)

We are now ready to state and prove the main result of this Section.

Proposition 5 (Directional derivative of a non-local flow with re-
spect to the initial data) Let µ ∈ Pc(Rd), ε̄ > 0 be a small parameter,
G(·, ·) ∈ Lip((−ε̄, ε̄), C0(Rd,Rd)) be a family of bounded maps with G(0, ·) = Id
and F : x ∈ supp(µ) 7→ d

dε [G(ε, x)]ε=0 be continuous as well.
Let v[·](·, ·) be a non-local vector field satisfying hypotheses (F),(B),(D),

Φv(0,·)[·](·) be the corresponding family of non-local flows as defined in Theorem

2 and µ(·) be the unique solution of the corresponding Cauchy problem (9)
starting from µ.

Then, the map ε ∈ (−ε̄, ε̄) 7→ Φv(0,t)[G(ε, ·)#µ](x) admits a derivative at

ε = 0 for all (t, x) ∈ [0, T ] × B(0, RT ) that we denote by wΦ(t, x). It can be
characterised as the unique solution of the Cauchy problem
∂tw(t, x) = Dxv[µ(t)]

(
t, Φv(0,t)[µ](x)

)
w(t, x)

+

∫
Rd
lΓ. ◦(t,Φv

(0,t)
[µ](x)

) (Φv(0,t)[µ](y)
)
·
[
DxΦ(0,t)[µ](y)F(y) + w(t, y)

]
dµ(y),

w(0, x) = 0 for all x ∈ Rd,
(17)

where for all (t, z), lΓ. ◦(t,z)(·) is the matrix-valued map made of the barycenters

of the minimal selections ∂◦µv
i[µ(t)](t, z) in the extended subdifferential of the

components of µ 7→ vi[µ](t, z) at µ(t).

Proof We follow a classical scheme of proof used in the finite dimensional set-
ting to show that flows of diffeomorphims admit directional derivatives char-
acterized as the unique solution of a linearized Cauchy problem (see e.g. [11,
Theorem 2.3.1].

First, we define Ω = B(0, RT ) and we introduce the operator ΛΦ : w ∈
C0([0, T ]×Ω,Rd) 7→ ΛΦ(w) ∈ C0([0, T ]×Ω,Rd) defined for all (t, x) ∈ [0, T ]×
Ω by

ΛΦ(w)(t, x) =

∫ t

0

Dxv[µ(s)]
(
s, Φv(0,s)[µ](x)

)
w(s, x)ds

+

∫ t

0

∫
Rd
lΓ. ◦(s,Φv

(0,s)
[µ](x)

) (Φv(0,s)[µ](y)
)
·
[
DxΦ(0,s)[µ](y)F(y) + w(s, y)

]
dµ(y)ds.
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By hypotheses (F) and (B), the right hand side of the previous equation is con-
tinuous in (t, x). We first show that this operator admits a unique fixed point
and afterwards that it coincides with the map which to every (t, x) associates
the derivative at ε = 0 of the family of non-local flows ε 7→ Φv(0,t)[G(ε, ·)#µ](x).
With this goal, we introduce a parameter α > 0 that will be chosen so that
the operator ΛΦ(·) is contracting with respect to the equivalent norm

‖w‖αC0([0,T ]×Ω) = sup
(t,x)∈[0,T ]×Ω

[
e−2αt|w(t, x)|

]
. (18)

Remark that for any w1, w2 ∈ C0([0, T ]×Ω,Rd) and any (t, x) ∈ [0, T ]×Ω,
it holds

|ΛΦ(w2)(t, x)− ΛΦ(w1)(t, x)|

≤
∫ t

0

∣∣∣Dxv[µ(s)]
(
s, Φv(0,s)[µ](x)

)
· (w2(s, x)− w1(s, x))

∣∣∣ ds
+

∫ t

0

∫
Rd

∣∣∣∣lΓ. ◦(s,Φv
(0,s)

[µ](x)
) (Φv(0,s)[µ](y)

)
· (w2(s, y)− w1(s, y))

∣∣∣∣dµ(y)ds

≤
∫ t

0

(
L1|w2(s, x)− w1(s, x)|+ L2 ‖w2(s, ·)− w1(s, ·)‖L1(µ)

)
ds

≤
∫ t

0

(L1 + L2) ‖w2(s, ·)− w1(s, ·)‖C0(Ω) ds,

since µ(Ω) = 1, and where we introduced

L1 =
∥∥∥Dxv[µ(·)](·, Φv(0,·)[µ](·))

∥∥∥
L∞([0,T ]×Ω;L 1×µ(·))

,

and

L2 =

∥∥∥∥lΓ. ◦(·,Φv
(0,·)[µ](·)

) (Φv(0,·)[µ](·)
)∥∥∥∥

L∞([0,T ]×Ω2;L 1×µ(·)×µ(·))

which exist by hypotheses (F) and (B). It further holds by definition of
‖·‖αC0([0,T ]×Ω) that

|ΛΦ(w2)(t, x)− ΛΦ(w1)(t, x)|

≤
∫ t

0

e2αs(L1 + L2) ‖w2(·, ·)− w1(·, ·)‖αC0([0,T ]×Ω) ds

≤e
2αt − 1

2α
(L1 + L2) ‖w2(·, ·)− w1(·, ·)‖αC0([0,T ]×Ω) .

Multiplying both sides of the inequality by e−2αt and taking the supremum
over (t, x) ∈ [0, T ] × Ω in the left-hand side yields the desired contractivity
with a constant equal to 1/2 provided that α ≥ (L1 + L2). It is then possible
to apply Theorem 4 to obtain the existence of a unique fixed point wΦ(·, ·) ∈
C0([0, T ]×Ω,Rd) of ΛΦ(·).
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Define for ε ∈ (−ε̄, ε̄) the parametrized family of operators Ψ ε : f ∈
C0([0, T ]×Ω,Rd) 7→ Ψ ε(f) ∈ C0([0, T ]×Ω,Rd) defined by

Ψ ε(f)(t, x) = x+

∫ t

0

v[f(s, ·)#(G(ε, ·)#µ)](s, f(s, x))ds (19)

for all (t, x) ∈ [0, T ]×Ω. Up to defining again the equivalent norm ‖·‖αC0([0,T ]×Ω)

as in (18) with a suitable α > 0, it can be shown that this operator is con-
tracting independently from ε as a direct consequence of the Lipschitzianity
hypotheses given in (F). We can thus invoke again Theorem 4 to obtain the
existence of a unique fixed point of Ψ ε(·) for each ε ∈ (−ε̄, ε̄). Notice that by
definition, this family of fixed points is precisely the parametrized family of
non-local flows (t, x) 7→ Φv(0,t)[G(ε, ·)#µ](x). As a consequence of Theorem 2,

we know that these maps are C1 with respect to x for all ε.
We now define the map Φ̂v,ε(0,·)[µ](·) by

Φ̂v,ε(0,·)[µ](·) : (t, x) 7→ Φv(0,t)[µ](x) + εwΦ(t, x).

To conclude, we then need to show that

lim
ε→0

∥∥∥∥1

ε

(
Φ̂v,ε(0,·)[µ](·)− Φv(0,·)[G(ε, ·)#µ](·)

)∥∥∥∥
C0([0,T ]×Ω)

= 0,

which will directly yield the existence and the characterization of the direc-
tional derivative of the flow along (−ε̄, ε̄) 7→ G(ε, ·)#µ

0. By (16) in Theorem
4 and the equivalence of the C0-norms we introduced, there exists a constant
C > 0 independent from ε such that it holds

1

|ε|

∥∥∥Φ̂v,ε(0,·)[µ](·)− Φv(0,·)[G(ε, ·)#µ](·)
∥∥∥
C0
≤ 2C

|ε|

∥∥∥Φ̂v,ε(0,·)[µ](·)− Ψ ε(Φ̂v,ε(0,·)[µ](·))(·, ·)
∥∥∥
C0
.

We now want to perform a first order expansion on Ψ ε(Φ̂v,ε(0,s)[µ](·))(·, ·) with

respect to ε. Take (s, x) ∈ [0, T ]×Ω. One has by definition of Φ̂v,ε(0,·)[µ](·) that

Φ̂v,ε(0,s)[µ](G(ε, x)) =Φv(0,s)[µ](G(ε, x)) + εwΦ(s,G(ε, x))

=Φv(0,s)[µ](x) + ε
(

DxΦ
v
(0,s)[µ](x)F(x) + wΦ(s, x)

)
+ o(ε),

by continuity of wΦ(s, ·) for all s ∈ [0, T ].
By assumptions (F), (B) and (D), we can apply the chain rule of Propo-

sition 4 component-wise on the vi to obtain that

v
[
Φ̂v,ε(0,s)[µ](·) ◦ G(ε, ·)#µ

]
(s, z) = v[Φv(0,s)[µ](·)#µ](s, z)

+ ε

∫
Rd
lΓ. ◦(s,z)

(
Φv(0,s)[µ](y)

) [
DxΦ

v
(0,s)[µ](y)F(y) + wΦ(s, y)

]
dµ(y) + o(ε)

(20)



The Pontryagin Maximum Principle in the Wasserstein Space 17

where for all (s, z) the map y 7→ lΓ. ◦(s,z)(y) = (γ̄i,◦(s,z)(y))1≤i≤d ∈ Rd×d is made

of the barycenters of the minimal selections in the extended subdifferentials of
the components vi’s.

Performing a Taylor expansion in the space variable for the non-local ve-
locity field, it also holds that

v
[
Φv(0,s)[µ](·)#µ

] (
s, Φv(0,s)[µ](x) + εwΦ(s, x)

)
= v[Φv(0,s)[µ](·)#µ]

(
s, Φv(0,s)[µ](x)

)
+ εDxv[Φv(0,s)[µ](·)#µ]

(
s, Φv(0,s)[µ](x)

)
· wΦ(s, x) + o(ε),

(21)

as well as

lΓ. ◦(s,Φv
(0,s)

[µ](x)+εwΦ(s,x)
) (Φv(0,s)[µ](y)

)
= lΓ. ◦(s,Φv

(0,s)
[µ](x)

) (Φv(0,s)[µ](y)
)

+ o(1)

(22)
thanks to assumption (B) in which we state that z 7→ lΓ. ◦(t,z)(x) is continuous

for all (s, x) ∈ [0, T ]× Rd .

Merging (19), (20) and (21), (22) and recalling the definition of wΦ(·, ·), it
holds

Ψ ε
(
Φ̂v,ε(0,·)[µ](·)

)
(t, x) = x+

∫ t

0

v[Φv(0,s)[µ](·)#µ](s, Φv(0,s)[µ](x))ds

+ ε

∫ t

0

∫
Rd
lΓ. ◦(s,Φv

(0,s)
[µ](x)

) (Φv(0,s)[µ](y)
) [

DxΦ
v
(0,s)[µ](y)F(y) + wΦ(s, y)

]
dµ(y)ds

+ ε

∫ t

0

Dxv[Φv(0,s)[µ](·)#µ](s, Φv(0,s)[µ](x)) · wΦ(s, x)ds+ o(ε)

= Φv(0,t)[µ](x) + εwΦ(t, x) + o(ε).

Therefore, we finally recover that

1

|ε|

∣∣∣Ψ ε(Φ̂ε(0,·)[µ](·))(t, x)− Φ̂ε(0,t)[µ](x)
∣∣∣ ≤ o(1)

as ε→ 0 for all (t, x) ∈ [0, T ]×Ω, and conclude that

lim
ε→0

[∥∥∥∥1

ε

(
Φ(0,·)[G(ε, ·)#µ](·)− Φ̂ε(0,·)[µ](·)

)∥∥∥∥
C0([0,T ]×Ω)

]
= 0.

We thus proved that the derivative of ε ∈ (−ε̄, ε̄) 7→ Φv(0,t)[G(ε, ·)#µ](x) at

ε = 0 exists for any (t, x) and that it is the only solution of equation (17).
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3 The Pontryagin Maximum Principle

In this section, we state the main result of our article.

Theorem 5 (Pontryagin Maximum Principle for (P)) Let (u∗(·), µ∗(·)) ∈
U × Lip([0, T ],Pc(Rd)) be an optimal pair control-trajectory for (P) and as-
sume that the following hypotheses (H) hold :

(H)

(U) : The set of admissible controls is U = L1([0, T ], U) where
U ⊂ C1(Rd,Rd) is a non-empty and closed subset of {v ∈
C1(Rd,Rd) s.t. ‖v(·)‖C1(Rd) ≤ LU} for a given constant LU > 0.

(L) : The running cost L : (µ, ω) ∈ Pc(Rd) × U 7→ L(µ, ω) ∈ R is
Lipschitz in (µ, ω) with respect to the product metric W2 × C0 over
P(K)×U for any compact set K ⊂ Rd. The functional µ ∈P(K) 7→
L(µ, ω) is proper, regular in the sense of Definition 6 below, bounded
for any ω ∈ U and K ⊂ Rd compact.

(C) : The terminal cost ϕ : µ ∈Pc(Rd) 7→ ϕ(µ) ∈ R is proper, regular
in the sense of Definition 6 below, Lipschitz with respect to the W2-
metric, bounded from below over P(K) for any compact set K ⊂ Rd.

(F) : The non-local velocity field v : µ ∈ Pc(Rd) 7→ v[µ](·, ·) ∈
L1([0, T ], C1(Rd,Rd) ∩ L∞(Rd,Rd)) satisfies

|v[µ](t, x)| ≤M(1 + |x|) , |v[µ](t, x)− v[µ](t, y)| ≤ L1|x− y| ,
and ‖v[µ](t, ·)− v[ν](t, ·)‖C0(Rd) ≤ L2W1(µ, ν)

for L 1-almost every t ∈ [0, T ] and all (x, y) ∈ R2d where M,L1 and
L2 are positive constants. For any compact set K ⊂ Rd and any i ∈
{1, ..., d}, the components µ ∈ P(K) 7→ vi[µ](t, x) are regular in the
sense of Definition 6 below. The differential in space µ ∈ Pc(Rd) 7→
Dxv[µ](t, x) is narrowly continuous for L 1-almost every t ∈ [0, T ] and
all x ∈ Rd.

(B) : The barycenter x 7→ γ̄◦ϕ(x) of the minimal selection ∂◦ϕ(µ) in
the extended subdifferential of the terminal cost ϕ(·) at some measure
µ ∈Pc(Rd) is continuous.
The barycenter x 7→ γ̄◦L(x) of the minimal selection ∂◦µL(µ, ω) in the

extended subdifferential of the running cost L(·, ω) at some µ ∈Pc(Rd)
is continuous.
The barycenters (x, y) 7→ γ̄i,◦(t,x)(y) of the minimal selections

∂◦µv
i[µ](t, x) in the extended subdifferentials of the components vi de-

fine continuous mappings for L 1-almost every t ∈ [0, T ].
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(D) : The maps µ ∈ Pc(Rd) 7→ ϕ(µ), µ ∈ Pc(Rd) 7→ L(µ, ω) and
µ ∈ Pc(Rd) 7→ v[µ](t, x) are differentiable along measure curves gen-
erated by Lipschitz-in-time, continuous and bounded perturbations of
the identity for L 1×µ-almost every (t, x) ∈ [0, T ]×Rd and any ω ∈ U ,
i.e.

d+

dε
[φ(G(ε, ·)#µ)] =

d−

dε
[φ(G(ε, ·)#µ)]

d+

dε
[L(G(ε, ·)#µ, ω)] =

d−

dε
[L(G(ε, ·)#µ, ω)]

and
d+

dε
[v[G(ε, ·)#µ](t, x)] =

d−

dε
[v[G(ε, ·)#µ](t, x)] ,

whenever (G(ε, ·))(−ε̄,ε̄) is a Lipschitz family of continuous and bounded
maps, differentiable at ε = 0 and such that G(0, ·) = Id.

Then, there exist a constant R > 0 depending on µ0, T , U , v[·](·, ·), ϕ(·),
L(·, ·) and a curve ν∗(·) ∈ Lip([0, T ],P(B2d(0, R)) Lipschitzian with respect
to the W1-metric satisfying the following conditions :

(i) It solves the forward-backward system of continuity equations
∂tν
∗(t) +∇(x,r) ·

(
J2d∇̃νHc(t, ν∗(t), u∗(t))ν∗(t)

)
= 0 in [0, T ]× R2d,

π1
#ν
∗(0) = µ0,

π2
#ν
∗(T ) = (−γ̄◦ϕ)#µ

∗(T ),
(23)

where γ̄◦ϕ(·) is the barycenter of the minimal selection ∂◦ϕ(µ∗(T )) of

the final cost ϕ(·) at µ∗(T ) and J2d is the symplectic matrix in R2d.

The compactified Hamiltonian of the system Hc(·, ·, ·) is defined by

Hc(t, ν, ω) =

{
H(t, ν, ω) if ν ∈P(B2d(0, R)),

+∞ otherwise,
(24)

for any (t, ν, ω) ∈ [0, T ]×Pc(R2d)× U where

H(t, ν, ω) =

∫
R2d

〈r, v[π1
#ν](t, x) + ω(x)〉dν(x, r)− L(π1

#ν, ω) (25)

is the infinite dimensional Hamiltonian of the system for any (t, ν, ω) ∈
[0, T ]×Pc(R2d)× U .
The vector field ∇̃νHc(t, ν∗(t), u∗(t))(·, ·) is defined by

∇̃νHc(t, ν∗(t), u∗(t)) : (x, r) ∈ supp(ν∗(t)) 7→(
Dxu

∗(t, x)>r + Dxv[π1
#ν
∗(t)](t, x)>r + lΓ. ◦v[ν∗(t)](t, x)− γ̄◦L(t, x)

v[π1
#ν
∗(t)](t, x) + u∗(t, x)

)
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where t ∈ [0, T ] 7→ γ̄◦L(t, ·) is a measurable selection of the barycenters
of ∂◦µL(µ∗(t), u∗(t)).

The map lΓ. ◦v[ν](·, ·) is defined for any ν ∈P(B2d(0, R)) by

lΓ. ◦v[ν] : (t, x) ∈ [0, T ]× π1(B(0, R)) 7→
∫
R2d

(
lΓ. ◦(t,y)(x)

)>
pdν(y, p)

where for L 1×π1
#ν-almost every (t, y) ∈ [0, T ]×π1(B2d(0, R)) we de-

fine lΓ. ◦(t,y) : x ∈ supp(π1
#ν(t)) 7→ (γ̄i,◦(t,y)(x))1≤i≤d as the matrix-valued

map made of the barycenters of the minimal selections ∂◦µv
i[π1

#ν](t, y)

in the extended subdifferentials of the components (vi) of the non-local
velocity field.

(ii) It satisfies the Pontryagin maximization condition

Hc(t, ν∗(t), u∗(t)) = max
ω∈U

[Hc(t, ν∗(t), ω)] , (26)

for L 1-almost every t ∈ [0, T ].

The general hypotheses (H) are rather cumbersome and can sometimes be
hard to verify. Nevertheless, they are satisfied by a good score of functionals of
great interest in various application fields. We present some relevant examples
in Section 4.

Remark 2 (On the smoothness assumption (U)) The reason why we chose
to impose the strong C1,1-smoothness assumption on the set of admissible
controls is twofold.

First, the main scope of this paper is to provide first-order optimality con-
ditions for infinite-dimensional problems arising as mean-field limits of finite
dimensional systems. Even though very general existence results à la DiPerna-
Lions-Ambrosio [4,20] are available for Cauchy problems of the form (9), they
only deal with macroscopic quantities which are related to the underlying mi-
croscopic ones only for almost every curve in a suitable space of curves. The
desired exact micro-macro correspondence which we aim at preserving can
only hold in the presence of Cauchy-Lipschitz smoothness assumptions on the
driving vector fields, see [4].

Second, the classical geometric proof of the maximum principle consisting
in performing local-in-time perturbations of an optimal trajectories can only
be carried out under C1-regularity assumptions, due to the non-linearity of
the problem studied here. Even though the derivation of a maximum principle
under a merely Lipschitz-regularity assumption on the optimal control in the
spirit of the non-smooth maximum principle (see e.g. [16]) might be available
in this context, it would require a completely different approach and much
more technical arguments.
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Let it be noted that these assumptions are verified in the classical setting
of systems that are linear or affine with respect to the controls, i.e. where
the controlled term is of the form u : (t, x) 7→

∑m
k=1 uk(t)Fk(x) where the

(Fk(·))1≤k≤m are C1 vector fields.

Remark 3 (Almost-Hamiltonian flow) Observe that in our formulation of the
PMP, the vector field ∇̃νHc(t, ν∗(t), u∗(t)) is not the Wasserstein gradient of
the compactified Hamiltonian Hc(ν∗(t), u∗(t)), since in general the barycenter
of a minimal selection is not in the classical subdifferential. However, in any
context where the minimal selections of the cost and dynamics functionals
are induced by maps, which will automatically be their barycenters, or when
they are strong subdifferentials, it can be shown by standard methods that
∇̃νHc(t, ν∗(t), u∗(t)) is in fact the Wasserstein gradient of the compactified
Hamiltonian at (t, ν∗(t), u∗(t)) for L 1-almost every t ∈ [0, T ].

We first describe in Section 3.1 our scheme of proof on a simplified problem
(P1) where there are no interaction field v[·](·, ·) and no running cost L(·, ·). We
then proceed to prove the PMP for the more general problem (P) in Section
3.2. In what follows, we shall restrict our attention to the Wasserstein space
Pc(Rd) endowed with the W1-metric.

3.1 The Pontryagin Maximum Principle with no interaction field and no
running cost

We start by proving the Pontryagin Maximum Principle for a simplified version
of the optimal control problem (P) presented in the introduction. We consider
the following optimal control problem in the space of probability measures

(P1)


min
u∈U

[ϕ(µ(T ))] ,

s.t.

{
∂tµ(t) +∇ · (u(t, ·)µ(t)) = 0,

µ(0) = µ0 ∈Pc(Rd),

(27)

and show that the Pontryagin-type optimality conditions provided in the fol-
lowing theorem hold.

Theorem 6 (Pontryagin Maximum Principle for (P1))
Let (u∗(·), µ∗(·)) ∈ U×Lip([0, T ],Pc(Rd)) be an optimal pair control-trajectory
for (P1) and assume that hypotheses (U),(C),(B) hold. Then, there exists a
constant R > 0 and a curve ν∗(·) ∈ Lip([0, T ],P(B2d(0, R))) satisfying the
following statements :

(i) It solves the forward-backward system of continuity equations
∂tν
∗(t) +∇(x,r) · (J2d∇νHc(ν∗(t), u∗(t))ν∗(t)) = 0, in [0, T ]× R2d

π1
#ν
∗(0) = µ0,

π2
#ν
∗(T ) = (−γ̄◦ϕ)#µ

∗(T ),
(28)
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where J2d is the symplectic matrix of R2d.
The compactified Hamiltonian Hc(·, ·) of the system is defined by

Hc : (ν, ω) ∈Pc(R2d)× U 7→

{
H(ν, ω) if ν ∈P(B2d(0, R))

+∞ otherwise
, (29)

where

H : (ν, ω) ∈Pc(R2d)× U 7→
∫
R2d

〈r, ω(x)〉dν(x, r) (30)

is the infinite dimensional Hamiltonian of the system.
The vector field (x, r) 7→ ∇νHc(ν∗(t), u∗(t))(x, r) = (Dxu

∗(t, x)>r, u∗(t, x))
is the Wasserstein gradient of the compactified Hamiltonian for L 1-almost
every t ∈ [0, T ], i.e. ∂◦νHc(ν∗(t), u∗(t)) = (I2d×∇νHc(ν∗(t), u∗(t)))#ν

∗(t).
(ii) It satisfies the Pontryagin maximization condition

Hc(ν∗(t), u∗(t)) = max
ω∈U

[Hc(ν∗(t), ω)] (31)

for L 1-almost every t ∈ [0, T ].

We split the proof of this result into several steps. In Step 1, we introduce
the concept of needle-like variation of an optimal control and compute explic-
itly the corresponding family of perturbed measures. In Step 2 we study the
first order perturbation of the final cost induced by the needle-like variation.
We introduce in Step 3 a suitable costate propagating this information back-
ward to the base point of the needle-variation. In Step 4, we show that the
curve introduced in Step 3 satisfies the conditions (i) and (ii) of the PMP.

Step 1 : Needle-like variations

We start by considering an optimal pair control-trajectory (u∗(·), µ∗(·)) ∈
U×Lip([0, T ],Pc(Rd)) along with the constant RT > 0 such that supp(µ(t)) ⊂
B(0, RT ) for all times t ∈ [0, T ]. Fix a control ω ∈ U , a Lebesgue point
τ ∈ [0, T ] of t 7→ u∗(t) ∈ C1(Rd,Rd) in the Bochner sense (see, e.g. [19]) and
a parameter ε ∈ [0, ε̄) with ε̄ > 0 small. We define the needle-like variation of
parameters (ω, τ, ε) of u∗ as follows

ũω,τε ≡ ũε : t 7→

{
ω if t ∈ [τ − ε, τ ],

u∗(t) otherwise.
(32)

We denote by t 7→ µ̃t(ε) the corresponding solution of the continuity equa-
tion starting from µ0 at time t = 0. Notice that ũε(·) ∈ L1([0, T ], C1(Rd,Rd)∩
L∞(Rd,Rd)), thus the corresponding continuity equation is still well-posed.

The link between the perturbed measure µ̃T (ε) and the optimal measure
µ∗(T ) at time T is given in the following Lemma.



The Pontryagin Maximum Principle in the Wasserstein Space 23

µ0

µ∗(τ − ε) µ∗(τ)

µ∗(T )

ω − u∗(τ)

Fω,τT ◦ Φu∗
(T,τ)

(·)

µ̃τ (ε)

µ̃T (ε) = Gω,τT (ε, ·)#µ∗(T )

Fig. 1 Illustration of the effect of a needle-like variation on a measure curve.

Lemma 1 There exists a family of functions Gω,τT (·, ·) ∈ Lip((−ε̄, ε̄), C0(Rd,Rd))
such that they are C1-diffeomorphisms over B(0, RT ) for all ε ≥ 0 and it holds

µ̃T (ε) = Gω,τT (ε, ·)#µ
∗(T ). (33)

Moreover, there exists a constant RΦT > 0 depending on RT , LU and v[·](·, ·)
such that for all ε ∈ (−ε̄, ε̄) it holds supp(Gω,τT (ε, ·)#µ

∗(T )) ⊂ B(0, RΦT ).
This family of maps satisfies the following Taylor expansion with respect

to the L2(Rd,Rd;µ∗(T ))-norm

Gω,τT (ε, ·) = Id + εFω,τT ◦ Φu
∗

(T,τ)(·) + o(ε),

where

Fω,τT : x ∈ supp(µ∗(τ)) 7→ DxΦ
u∗

(τ,T )(x) · [ω(x)− u∗(τ, x)] (34)

is a C0 mapping.

Proof By definition of ũε(·, ·) in (32), it holds that

µ̃T (ε) = Φu
∗

(τ,T ) ◦ Φ
ω
(τ−ε,τ) ◦ Φ

u∗

(τ,τ−ε) ◦ Φ
u∗

(T,τ)(·)#µ
∗(T ) for all ε ∈ [0, ε̄).

Thus, by choosing Gω,τT (ε, ·) = Φu
∗

(τ,T ) ◦Φ
ω
(τ−ε,τ) ◦Φ

u∗

τ−ε ◦Φu
∗

(T,τ)(·), formula (33)

holds true for ε ∈ [0, ε̄). Moreover, since the definition of ε 7→ Gω,τT (ε, ·) only

involves functions that are continuous and uniformly bounded over B(0, RT ),
the perturbed measures µ̃T (·) are compactly supported in some bigger ball
B(0, R′T ) for all ε ∈ [0, ε̄) as well.

Recalling the definition of the flow x 7→ Φv(0,t)(x), one has by Lebesgue’s

Differentiation Theorem (see e.g. [22, Chapter 1.7]) :
Φu
∗

(τ,τ−ε)(x) = x−
∫ τ

τ−ε
u∗
(
t, Φu

∗

(τ,t)(x)
)

dt = x− εu∗(τ, x) + o(ε)

Φω(τ−ε,τ)(x) = x+

∫ τ

τ−ε
ω
(
Φω(τ−ε,t)(x)

)
dt = x+ εω(x) + o(ε)
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since t 7→ Φu
∗

(τ−ε,t)(x) and t 7→ Φu
∗

(t,τ)(x) are C0 for any x ∈ B(0, RT ) and

τ ∈ [0, T ] Lebesgue point of t 7→ u∗(t) ∈ C1(Rd,Rd) in the Bochner sense.
Chaining these two expansions and recalling that ω(·) and Φu

∗

(τ,T )(·) are C1-
smooth yields

Φu
∗

(τ,T )◦Φ
ω
(τ−ε,τ)◦Φ

u∗

(τ,τ−ε)(x) = Φu
∗

(τ,T )(x)+εDxΦ
u∗

(τ,T )(x)·[ω(x)− u∗(τ, x)]+o(ε).

Thus,

Gω,τT (ε, x) = x+ εFω,τT ◦ Φu
∗

(T,τ)(x) + o(ε) for any x ∈ supp(µ∗(T )),

where we choose

Fω,τT : x 7→ DxΦ
u∗

(τ,T )(x) · [ω(x)− u∗(τ, x)] .

We can now extend Gω,τT (·, ·) from [0, ε̄) to (−ε̄, ε̄) in such a way that the
left and right derivatives at ε = 0 coincide, by defining e.g.

Gω,τT (ε, ·) ≡ Id + εFω,τT ◦ Φu
∗

(T,τ)(·)

whenever ε ∈ (−ε̄, 0]. Notice that since Fω,τT ◦ Φu∗(T,τ)(·) is C0, both x ∈
B(0, RT ) 7→ Gω,τT (ε, x) and x ∈ B(0, RT ) 7→ d

dε [Gω,τT (ε, x)]ε=0 define C0 map-
pings for all ε ∈ (−ε̄, ε̄). Moreover, the continuity and uniform boundedness
of DxΦ

u∗

(τ,T )(·) over B(0, RT ) along with hypothesis (U) imply that Fω,τT (·) is

bounded. Hence, there exists a constantRΦT > 0 such that supp(Gω,τT (ε, ·)#µ
∗(T ))

⊂ B(0, RΦT ) for all ε ∈ (−ε̄, ε̄). Moreover, the fact that G(ε, ·) and Fω,τT (·) are
continuous and bounded yields that they are uniformly integrable with re-
spect to the compactly supported measure µ∗(T ). An application of Proposi-
tion 1−(iii) allows to conclude that this expansion holds in L2(Rd,Rd;µ∗(T )),
which achieves the proof.

We end this first step by a Lemma which is a direct consequence of Propo-
sition 3.

Lemma 2 For any x ∈ supp(µ∗(τ)), the trajectory t 7→ Fω,τt (x) is the unique
solution of the Cauchy problem

∂tFω,τt (x) = Dxu
∗
(
t, Φu

∗

(τ,t)(x)
)
Fω,τt (x) , Fω,ττ (x) = ω(x)− u∗(τ, x). (35)

Proof It is sufficient to apply Proposition 3 and to remark that here v ≡ u∗.

Step 2 : First-order optimality condition

Thanks to the optimality of u∗(·), for each ε ∈ (0, ε̄) it holds

ϕ(µ̃T (ε))− ϕ(µ∗(T ))

ε
≥ 0, (36)

where ε ∈ (0, ε̄) 7→ µ̃T (ε) = Gω,τT (ε, ·)#µ
∗(T ).
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Recalling that the measures ε 7→ µ̃T (ε) are uniformly compactly supported,
that ϕ(·) satisfies hypotheses (C) and that the map ε ∈ (−ε̄, ε̄) 7→ ϕ(µ̃T (ε)) is
differentiable at ε = 0 by hypothesis (D), we can apply the chainrule given in
Proposition 4 to the endpoint cost :

0 ≤ lim
ε↓0

[
ϕ(µ̃T (ε))− ϕ(µ∗(T ))

ε

]
=

∫
Rd
〈γ̄◦ϕ(x),Fω,τT ◦ Φu

∗

(T,τ)(x)〉dµ∗(T )(x),

(37)
where γ̄◦ϕ ∈ L2(Rd,Rd;µ∗(T )) is the barycenter of the minimal selection
∂◦ϕ(µ∗(T )) in the extended subdifferential of ϕ(·) at µ∗(T ).

We recover a formula similar to the classical finite dimensional case. The
next step is to introduce a suitable costate along with its backward dynam-
ics that will propagate this first-order information to the base-point τ of the
needle-like variation while generating a Hamiltonian-like dynamical structure.

Step 3 : Backward dynamics and Pontryagin maximization condition

Equation (37) provides us with a first-order optimality condition which
involves all the needle parameters (ω, τ) ∈ U × [0, T ]. We will show that it
implies, along with the choice of a suitable costate, the maximization condition
(31).

To this aim, we build a curve ν∗ ∈ Lip([0, T ],Pc(R2d)) solution of the
forward-backward system of continuity equations

∂tν
∗(t) +∇ · (V∗(t, ·, ·))ν∗(t)) = 0 in [0, T ]× R2d,

π1
#ν
∗(t) = µ∗(t) for all t ∈ [0, T ],

ν∗(T ) = (Id × (−γ̄◦ϕ))#µ
∗(T ),

(38)

associated to the vector field

V∗ : (t, x, r) ∈ [0, T ]× R2d 7→ (u∗(t, x),−Dxu
∗(t, x)>r). (39)

Notice that, contrarily to system (28), we impose the more restrictive product
structure on the terminal datum.

This system is peculiar in the sense that the driving vector field V∗(·, ·, ·)
does not satisfy verbatim the hypotheses (H’) of Theorem 2. However, it
exhibits a cascade structure, in the sense that one can first determine uniquely
µ∗(·) and then build ν∗(·) by disintegration. This fact is underlined by the
condition π1

#ν
∗(t) = µ∗(t) for all times t ∈ [0, T ]. We make this statement

precise in the next Lemma.

Lemma 3 (Definition and well-posedness of solutions of (38))
Let (u∗(·), µ∗(·)) be an optimal pair control-trajectory for (P1). For µ∗(T )-
almost every x ∈ Rd, we consider the family of backward flows (Ψx(T,t)(·))t≤T
associated to the Cauchy problems

∂twx(t, r) = −Dxu
∗(t, Φu

∗

(T,t)(x))wx(t, r) , wx(T, r) = r, (40)
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and define the associated curves of measures σ∗x : t 7→ Ψx(T,t)(·)#δ(−γ̄◦ϕ(x)).

Then, ν∗ : t 7→ (Φu
∗

(T,t), Id)#ν
∗
T (t) is the unique solution of (38) with2

ν∗T (t) =
∫
σ∗x(t)dµ∗(T )(x) ∈ Pc(R2d) for all times t ∈ [0, T ]. Moreover, there

exists two constants R′T , L
′
T > 0 such that

supp(ν∗(t)) ⊂ B2d(0, R′T ) and W1(ν∗(t), ν∗(s)) ≤ L′T |t− s|

for all s, t ∈ [0, T ].

Proof We recall that by hypothesis (U), the elements of U are uniformly
sublinear and Lipschitz in space for L 1-almost every times t ∈ [0, T ]. We
recall that by Theorem 2, this implies the existence of a constant RT > 0
depending on supp(µ0), T and LU such that supp(µ∗(·)) ⊂ B(0, RT ).

For µ∗(T )-almost every x ∈ Rd, the Cauchy problem (40) has a unique
solution and the corresponding curves t 7→ σ∗x(t) are uniquely determined.
Moreover, the uniform Lipschitzianity of the elements of U implies that these
curves are uniformly compactly supported and Lipschitz in the W1-metric
uniformly with respect to x ∈ supp(µ∗(T )) with constants R̃T , L̃T depending
on LU , T and ϕ(·).

We now define the curve ν∗(·) as in the statement of Lemma 3 above and
show that it is a uniformly compactly supported and Lipschitz solution of the
forward-backward system (38). The fact that there exists RT > 0 depending on
RT and R̃T such that ν∗(·) is uniformly compactly supported in B2d(0, RT ) is a
direct consequence of its definition. The Lipschitzianity in theW1-metric comes
from the following computations. For any ξ ∈ Lip(R2d,R) with Lip(ξ,R2d) ≤ 1,
it holds ∫

R2d

ξ(x, r)d(ν∗(t)− ν∗(s))(x, r)

=

∫
Rd

∫
Rd
ξ(Φu

∗

(T,t)(x), r)dσ∗x(t)(r)dµ∗(T )(x)

−
∫
Rd

∫
Rd
ξ(Φu

∗

(T,s)(x), r)dσ∗x(s)(r)dµ∗(T )(x)

≤
∫
Rd

∫
Rd
|Φu

∗

(T,t)(x)− Φu
∗

(T,s)(x)|dσ∗x(t)(r)dµ∗(T )(x)

+

∫
Rd

Lip(Φu
∗

(T,s), B(0, RT ))W1(σ∗x(s), σ∗x(t))dµ∗(T )(x)

≤ L′T |t− s|

where L′T > 0 is a uniform constant depending on the time and space Lip-
schitz constants of the flows of diffeomorphims (Φu

∗

(T,t)(·))t∈[0,T ] and on LU .

Taking the supremum over all the 1-Lipschitz functions ξ(·, ·) and using the
Kantorovich-Rubinstein duality (3) yields the Lipschitzianity of ν∗(·) in the
W1-metric.

2 Namely, ν∗T (t) is defined as the µ∗(T )-almost uniquely determined measure which has
µ∗(T ) as its first marginal and which disintegration is given by {σ∗

x(t)}x (see Definition 4).
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Finally, remark that for any ξ ∈ C∞c (R2d,R) it holds

d

dt

[∫
R2d

ξ(x, r)dν∗(t)(x, r)

]
=
d

dt

[∫
Rd

∫
Rd
ξ(Φu

∗

(T,t)(x), r)dσ∗x(t)(r)dµ∗(T )(x)

]
=

∫
Rd

∫
Rd
〈∇xξ(Φu

∗

(T,t)(x), r), u∗(t, Φu
∗

(T,t)(x)〉dσ∗x(t)(r)dµ∗(T )(x)

+

∫
Rd

∫
Rd
〈∇rξ(Φu

∗

(T,t)(x), r),−Dxu
∗(t, Φu

∗

(T,t)(x))>r〉dσ∗x(t)(r)dµ∗(T )(x)

=

∫
R2d

〈
∇(x,r)ξ(x, r),

(
u∗(t, x)

−Dxu
∗(t, x)>r

)〉
dν∗(t)(x, r)

which along with the fact that ν∗(T ) = ν∗T (T ) = (Id× (−γ̄◦ϕ))#µ
∗(T ) achieves

the proof.

We now show that the curve of measures ν∗(·) defined in Lemma 3 is such
that the map Kω,τ (·) defined by

Kω,τ : t ∈ [τ, T ] 7→
∫
R2d

〈r,Fω,τt ◦ Φu
∗

(t,τ)(x)〉dν∗(t)(x, r), (41)

is constant over [τ, T ]. We shall see in Step 4 that this is equivalent to the
Pontryagin maximization condition (31).

Lemma 4 The map t 7→ Kω,τ (t) defined in (41) is constant over [τ, T ] for
any couple of needle parameters (ω, τ).

Proof Notice that by definition of ν∗(·), the map Kω,τ (·) rewrites

Kω,τ (t) =

∫
Rd

∫
Rd
〈r,Fω,τt ◦ Φu

∗

(T,τ)(x)〉dσ∗x(t)(r)dµ∗(T )(x) for all t ∈ [τ, T ].

(42)
The maps t ∈ [τ, T ] 7→ Fω,τt ◦ Φu∗(T,τ)(x) and t ∈ [τ, T ] 7→ σ∗x(t) are Lips-

chitz, uniformly with respect to x ∈ supp(µ∗(T )). The integrand (x, r) 7→
〈r,Fω,τt ◦ Φu∗(T,τ)(x)〉 is bounded with respect to x and Lipschitz with respect

to r, uniformly with respect to t ∈ [τ, T ]. Hence, t 7→ Kω,τ (t) is Lipschitz as
well. It will therefore be constant provided that its derivative - which exists
L 1-almost everywhere - is equal to zero.

Observe that, using formula (7) and the definition of V∗(·, ·, ·) in (19), it
holds

d

dt
Kω,τ (t) =

∫
Rd

∫
Rd
〈r, ∂tFω,τt ◦ Φu

∗

(T,τ)(x)〉dσ∗x(t)(r)dµ∗(T )(x)

+

∫
Rd

∫
Rd
〈−Dxu

∗(t, Φu
∗

(T,t)(x))>r,Fω,τt ◦ Φu
∗

(T,τ)(x)〉dσ∗x(t)(r)dµ∗(T )(x).

(43)

We recall the characterization of ∂tFω,τt (·) given in (35) and plug it into
(43). This implies that d

dtKω,τ (t) = 0 for L 1-almost every times t ∈ [τ, T ],
and thus that Kω,τ (·) is constant over [τ, T ].
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Step 4 : Proof of the Pontryagin Maximum Principle for (P1)

We proved in Lemma 3 the existence of a constant R ≡ R′T > 0 such that

the solution ν∗(·) to (38) satisfies supp(ν∗(·)) ⊂ B2d(0, R). We accordingly
define the infinite dimensional Hamiltonian H : (ν, ω) ∈ Pc(R2d) × U 7→∫
R2d〈r, ω(x)〉dν(x, r) of the system and the compactified Hamiltonian Hc(·, ·)

by (29).
In Lemma 4 we showed that, with this choice of forward-backward system

(38), the map Kω,τ (·) defined in (41) is constant over [τ, T ] for any choice of
ω ∈ U and τ ∈ [0, T ] Lebesgue point of u∗(·). This implies in particular that
Kω,τ (τ) = Kω,τ (T ). Since we proved in (37) that it holds

0 ≤
∫
Rd
〈γ̄◦ϕ(x),Fω,τT ◦ Φu

∗

(T,τ)(x)〉dµ∗(T )(x) = −Kω,τ (T ),

it directly follows that

Kω,τ (τ) =

∫
R2d

〈r, ω(x)− u∗(τ, x)〉dν∗(τ)(x, r) ≤ 0,

for all ω ∈ U and τ ∈ [0, T ] Lebesgue point of u∗(·).
Recalling that L 1-almost τ ∈ [0, T ] is a Lebesgue point in the Bochner

sense for an L1-function defined over the real line (see e.g. [19, Chapter 2,
Theorem 9]), we recover the infinite dimensional maximization condition (31)

Hc(ν∗(t), u∗(t)) = max
ω∈U

[Hc(ν∗(t), ω)]

for L 1-almost every t ∈ [0, T ].
Invoking the C1 regularity of the elements of U , it can be seen using Propo-

sition 6 that the minimal selection ∂◦νHc(ν∗(t), u∗(t)) in the extended subd-
ifferential of Hc(·, u∗(t)) exists at ν∗(t) ∈ P(B2d(0, R)) for L 1-almost every
t ∈ [0, T ] and that it is induced by the map

∇νHc(ν∗(t), u∗(t)) : (x, r) ∈ supp(ν∗(t)) 7→
(

Dxu
∗(t, x)>r
u∗(t, x)

)
.

Therefore, we recognize the Wasserstein Hamiltonian structure V∗(t, ·, ·) =
J2d∇νHc(ν∗(t), u∗(t))(·, ·) for L 1-almost every t ∈ [0, T ] where J2d is the
symplectic matrix in R2d. This ends our proof of Theorem 6.

3.2 The general Pontryagin Maximum Principle

After having exhibited the main mechanisms of our proof for the Pontryagin
Maximum Principle for the simplified problem (P1), we are ready to tackle the
general case proposed in (P). The latter is a generalization of (P1) in the sense
that we add a general running cost L(·, ·) and a general non-local interaction
vector field v[·](·, ·).
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Step 1 : Needle-like variations in the non-local case

As in Section 3.1, let us consider an optimal pair control-trajectory (u∗(·), µ∗(·)),
a Lebesgue point τ ∈ [0, T ] of u∗(·) and an element ω ∈ U . We introduce
again the needle-like variation ũω,τε (·) of u∗(·) with parameters (ω, τ, ε) for
ε ∈ [0, ε̄), as defined in (32). Notice that this time, τ is a Lebesgue point for
t 7→ v[µ∗(t)](t, ·) + u∗(t, ·).

In keeping with the notations introduced in (10) for flows associated to
transport PDEs with non-local velocities, the family of perturbed measures
ε ∈ [0, ε̄) 7→ µ̃t(ε) are defined for all times t ∈ [τ, T ] by

µ̃t(ε) = Φv,u
∗

(τ,t)[µ̃τ (ε)] ◦ Φv,ω(τ−ε,τ)[µ
∗(τ − ε)] ◦ Φv,u

∗

(t,τ−ε)[µ
∗(t)](·)#µ

∗(t).

One can readily check that under the sublinearity and regularity hypotheses
imposed in (U) and (F), there exists again a constant R̃T > 0 such that

supp(µ̃t(ε)) ⊂ B(0, R̃T ) for all (t, ε) ∈ [0, T ]× [0, ε̄).
We now derive in Lemma 5 the perturbation stemming from the needle-

like variation. We prove therein a result akin to Lemma 2 giving a precise
ODE-type characterization of this perturbation. To do so, we use the results
of Proposition 5 concerning the directional derivatives of the non-local flow
combined to the classical result stated in Lemma 2 and the definition of needle-
like variation.

Lemma 5 (Perturbation induced by a needle-like variation in the
non-local case) Let (u∗(·), µ∗(·)) be an optimal pair control-trajectory for
problem (P) and ũε(·) be the needle-like perturbation of u∗(·) as introduced in
(32).

Then, there exists for all times t ∈ [τ, T ] a family of functions Gω,τt (·, ·) ∈
Lip((−ε̄, ε̄), C0(Rd,Rd)) such that they are C1-diffeomorphisms over B(0, RT )
for all ε ≥ 0 and it holds

µ̃t(ε) = Gω,τt (ε, ·)#µ
∗(t).

Besides, there exists a constant RΦT > 0 depending on RT , LU and v[·](·, ·) such

that for all (t, ε) ∈ [τ, T ]× (−ε̄, ε̄) it holds supp(Gω,τt (ε, ·)#µ
∗(t)) ⊂ B(0, RΦT ).

This family of maps satisfies the following Taylor expansion for all t ∈ [τ, T ]
with respect to the L2(Rd,Rd;µ∗(t)) norm :

Gω,τt (ε, ·) = Id + εFω,τt ◦ Φv,u
∗

(t,τ)[µ
∗(t)](·) + o(ε),

with

Fω,τt : x ∈ supp(µ∗(τ)) 7→ DxΦ
v,u∗

(τ,t)[µ
∗(τ)](x) · [ω(x)− u∗(τ, x)] + wω,τΦ (t, x)

where wω,τΦ (t, x) is the derivative at ε = 0 of the map ε ∈ (−ε̄, ε̄) 7→ Φv,u
∗

(τ,t)[µ̃τ (ε)](x)

as described in Proposition 5.



30 Benôıt Bonnet, Francesco Rossi

Moreover, the map (t, x) ∈ [τ, T ] × supp(µ∗(τ)) 7→ Fω,τt (x) is the unique
solution of the Cauchy problem

∂tFω,τt (x) =

∫
Rd
lΓ. ◦(t,Φv,u∗

(τ,t)
[µ∗(τ)](x)

) (Φv,u∗(τ,t)[µ
∗(τ)](y)

)
· Fω,τt (y)dµ∗(τ)(y)

+
[
Dxu

∗
(
t, Φv,u

∗

(τ,t)[µ
∗(τ)](x)

)
+ Dxv[µ∗(t)]

(
t, Φv,u

∗

(τ,t)[µ
∗(τ)](x)

)]
· Fω,τt (x)

Fω,ττ (x) = ω(x)− u∗(τ, x).
(44)

Proof We start by computing the measures µ̃τ (ε) as a function of µ∗(τ) for all
ε ∈ [0, ε̄). By definition of the needle-like variation, it holds

µ̃τ (ε) = Φv,ω(τ−ε,τ)[µ
∗(τ − ε)] ◦ Φv,u

∗

(τ,τ−ε)[µ
∗(τ)](·)#µ

∗(τ)

Using Lebesgue’s Differentiation Theorem, we obtain the following expan-
sions at the first order with respect to ε

Φv,ω(τ−ε,τ)[µ
∗(τ − ε)](y)

= y +

∫ τ

τ−ε

[
v[µ̃t(ε)]

(
t, Φv,ω(τ−ε,t)[µ

∗(τ − ε)](y)
)

+ ω
(
Φv,ω(τ−ε,t)[µ

∗(τ − ε)](y)
)]

dt,

= y + ε (v[µ∗(τ)](τ, y) + ω(y)) + o(ε),

as well as

Φv,u
∗

(τ,τ−ε)[µ
∗(τ)](y)

= y −
∫ τ

τ−ε

[
v[µ∗(t)]

(
t, Φv,u

∗

(t,τ−ε)[µ
∗(τ)](y)

)
+ u∗

(
t, Φv,u

∗

(t,τ−ε)[µ
∗(τ)](y)

)]
dt,

= y − ε (v[µ∗(τ)](τ, y) + u∗(τ, y)) + o(ε).

Chaining these two expressions together and recalling that ω(·) and v[µ∗(τ)](τ, ·)
are C1-smooth, it holds

Φv,ω(τ−ε,τ)[µ
∗(τ − ε)] ◦ Φv,u

∗

(τ,τ−ε)[µ
∗(τ)](y) = y + ε [ω(y)− u∗(τ, y)] + o(ε)

and we deduce the expression that will prove useful in the sequel

µ̃τ (ε) = (Id + ε [ω(·)− u∗(τ, ·)] + o(ε))# µ∗(τ). (45)

We now want to obtain a similar expression but at some time t ∈ [τ, T ].
First, recall that µ̃t(ε) = Gω,τt (ε, ·)#µ

∗(t) where

Gω,τt (ε, ·) : x ∈ supp(µ∗(t)) 7→Φv,u
∗

(τ,t)[µ̃τ (ε)] ◦ Φv,ω(τ−ε,τ)[µ
∗(τ − ε)]

◦Φv,u
∗

(τ,τ−ε)[µ
∗(τ)] ◦ Φv,u

∗

(t,τ)[µ
∗(t)](x).

(46)
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By (45), one has the following expansion

Φv,u
∗

(τ,t)[µ̃τ (ε)] ◦ Φv,ω(τ−ε,τ)[µ
∗(τ − ε)] ◦ Φv,u

∗

(τ,τ−ε)[µ
∗(τ)] ◦ Φv,u

∗

(t,τ)[µ
∗(t)](·)

= Φv,u
∗

(τ,t)[µ̃τ (ε)] ◦
(
Φv,u

∗

(t,τ)[µ
∗(τ)](·)

+ε
[
ω
(
Φv,u

∗

(t,τ)[µ
∗(τ)](·)

)
− u∗

(
τ, Φv,u

∗

(t,τ)[µ
∗(τ)](·)

)]
+ o(ε)

)
= Φv,u

∗

(τ,t)[µ̃τ (ε)]
(
Φv,u

∗

(t,τ)[µ
∗(τ)](·)

)
+ εDxΦ

v,u∗

(τ,t)[µ
∗(τ)]

(
Φv,u

∗

(t,τ)[µ
∗(τ)](·)

)
·[

ω
(
Φv,u

∗

(t,τ)[µ
∗(τ)](·)

)
− u∗

(
τ, Φv,u

∗

(t,τ)[µ
∗(τ)](·)

)]
+ o(ε).

(47)

since µ̃τ (ε)
W1−→ µ∗(τ) as ε ↓ 0, µ ∈Pc(Rd) 7→ DxΦ

v,u∗

(0,t)[µ](x) is continuous by

(F), and we are only interested in a Taylor expansion at the first order in ε.

It then remains to compute the O(ε) term arising from Φv,u
∗

(τ,t)[µ̃τ (ε)](·) in

(47). Due to Proposition 5, the derivative of the non-local flow along directions
induced by Lipschitz families of continuous and bounded maps exists. Recalling
(45), this translates into

Φv,u
∗

(τ,t)[µ̃τ (ε)](y) = Φv,u
∗

(τ,t)[µ
∗(τ)](y) + εwω,τΦ (t, y) + o(ε),

where wω,τΦ (t, y) is defined through (17) in the case where the non-local velocity
field is given by (t, x) 7→ v[µ∗(t)](t, x) + u∗(t, x).

Thus, we proved the pointwise Taylor expansion at the first order with ε :

Gω,τt (ε, x) = x+ εFω,τt ◦ Φu
∗,v

(t,τ)[µ
∗(t)](x) + o(ε)

for µ∗(t)-almost every x ∈ Rd, where

Fω,τt : x ∈ supp(µ∗(τ)) 7→ DxΦ
v,u∗

(τ,t)[µ
∗(τ)](x) · [ω(x)− u∗(τ, x)] + wω,τΦ (t, x)

(48)
is a continuous mapping for all t ∈ [τ, T ].

A standard application of Proposition 1-(iii) shows that this expansion
holds in L2(Rd,Rd;µ∗(t)). One can then extend Gω,τt (·, ·) to (−ε̄, ε̄) while pre-
serving this expansion around ε = 0 by defining e.g.

Gω,τt (ε, ·) ≡ Id + εFω,τt ◦ Φv,u
∗

(τ,t)[µ
∗(τ)](·) for ε ∈ (−ε̄, 0].

The existence of a constant RΦT depending on RT , LU and v[·](·, ·) such that

supp(Gω,τt (ε, ·)#µ
∗(t)) ⊂ B(0, RΦT ) follows from hypotheses (F) and (B),

which ensure the continuity and boundedness of the perturbation functions

over B(0, R̃T ).
We finally prove the counterpart of Lemma 2 providing an ODE-type char-

acterization for the perturbation induced by the needle-like variation in the
non-local case. Recalling the definition of (t, x) 7→ Fω,τt (x) given in (48) and
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summing the ODE-type characterization of t 7→ wω,τΦ (t, ·) and DxΦ
v,u∗

(τ,·) [µ∗(τ)](·)·
[ω(·)− u∗(τ, ·)], we recover

∂tFω,τt (x) =

∫
Rd
lΓ. ◦(t,Φv,u∗

(τ,t)
[µ∗(τ)](x)

) (Φv,u∗(τ,t)[µ
∗(τ)](y)

)
· Fω,τt (y)dµ∗(τ)(y)

+
[
Dxu

∗
(
t, Φv,u

∗

(τ,t)[µ
∗(τ)](x)

)
+ Dxv[µ∗(t)]

(
t, Φv,u

∗

(τ,t)[µ
∗(τ)](x)

)]
· Fω,τt (x)

Fω,ττ (x) = ω(x)− u∗(τ, x),

which concludes the proof of our result.

In the development of Steps 2, 3 and 4, we do not need to take into account
the explicit dependence of the flows with respect to their starting measures.

We shall henceforth write Φv,u
∗

(·,·) (·) ≡ Φv,u
∗

(·,·) [µ∗(·)](·) for clarity and conciseness.

Step 2 : First-order optimality condition

In the framework of Problem (P), the optimality of u∗(·) writes

ϕ(µ̃T (ε))− ϕ(µ∗(T ))

ε
+

1

ε

∫ τ

τ−ε
[L(µ̃t(ε), ω)− L(µ∗(t), u∗(t))] dt

+
1

ε

∫ T

τ

[L(µ̃t(ε), u
∗(t))− L(µ∗(t), u∗(t))] dt ≥ 0 for all ε ∈ [0, ε̄).

(49)

The first order perturbation corresponding to the final cost ϕ(·) has already
been treated in (36)-(37), Section 3.1. We study the integral terms arising from
the running cost. Remark first that it holds

lim
ε↓0

[
1

ε

∫ τ

τ−ε
[L(µ̃t(ε), ω)− L(µ∗(t), u∗(t))] dt

]
= L(µ∗(τ), ω)−L(µ∗(τ), u∗(τ)),

by the Lebesgue Differentiation Theorem, since µ̃t(ε)
W1−→ µ∗(t) as ε ↓ 0 for all

t ∈ [0, T ] and since τ is a Lebesgue point of u∗(·).
Equivalently to the proof of the PMP for Problem (P1), the perturbed

measures are uniformly supported in a compact set. Thus, under hypotheses
(L) and recalling that the function ε ∈ (−ε̄, ε̄) 7→ L(µ̃t(ε), u

∗(t)) is differen-
tiable at ε = 0 for L 1-almost every t ∈ [τ, T ] by hypothesis (D), the chain
rule of Proposition 4 can be applied to the running cost to obtain

lim
ε↓0

[
1

ε
[L(µ̃t(ε), u

∗(t))− L(µ∗(t), u∗(t))]

]
=

∫
Rd
〈γ̄◦L(t, x),Fω,τt ◦ Φv,u

∗

(t,τ)(x)〉dµ∗(t)(x),

(50)

where γ̄◦L(t, ·) ∈ L2(Rd,Rd;µ∗(t)) is the barycenter of ∂◦µL(µ∗(t), u∗(t)) for
L 1-almost every t ∈ [0, T ].

Moreover, the uniform compactness of the supports of the perturbed mea-
sures and hypothesis (L) imply that the left hand side in (50) is uniformly



The Pontryagin Maximum Principle in the Wasserstein Space 33

bounded by a function in L1([0, T ],R+) for any ε ∈ (0, ε̄). Therefore, it holds
by an application of Lebesgue Dominated Convergence Theorem that

lim
ε↓0

[
1

ε

∫ T

τ

[L(µ̃t(ε), u
∗(t))− L(µ∗(t), u∗(t))] dt

]

=

∫ T

τ

∫
Rd
〈γ̄◦L(t, x),Fω,τt ◦ Φv,u

∗

(t,τ)(x)〉dµ∗(t)(x)dt.

Thus, the optimality of (u∗(·), µ∗(·)) translates into the first-order condition∫
Rd
〈γ̄◦ϕ(x),Fω,τT ◦ Φv,u

∗

(T,τ)(x)〉dµ∗(T )(x) + [L(µ∗(τ), ω)− L(µ∗(τ), u∗(τ))]

+

∫ T

τ

∫
Rd
〈γ̄◦L(t, x),Fω,τt ◦ Φv,u

∗

(t,τ)(x)〉dµ∗(t)(x)dt ≥ 0,

(51)
for any couple of needle parameters (ω, τ).

Step 3 : Backward dynamics and Pontryagin maximization condition

We now build a solution ν∗(·) ∈ Lip([0, T ],Pc(R2d)) to the system of
continuity equations

∂tν
∗(t) +∇ · (V∗[ν∗(t)](t, ·, ·)ν∗(t)) = 0 in [0, T ]× R2d,

π1
#ν
∗(t) = µ∗(t) for all t ∈ [0, T ],

ν∗(T ) = (Id × (−γ̄◦ϕ))#µ
∗(T ),

(52)

associated to the non-local vector field

V∗[ν∗(t)] :(t, x, r) ∈ [0, T ]× supp(ν) 7→(
v[π1

#ν
∗(t)](t, x) + u∗(t, x)

γ̄◦L(t, x)− lΓ. ◦v[ν∗(t)](t, x)−Dxu
∗(t, x)>r −Dxv[µ∗(t)](t, x)>r)

)
where lΓ. ◦v[·](·, ·) is given by

lΓ. ◦v[ν](t, x) =

∫
R2d

(
lΓ. ◦(t,y)(x)

)>
p dν(y, p) (53)

for any (ν, t, x) ∈ Pc(Rd) × [0, T ] × supp(π1
#ν), with lΓ. ◦(·,·)(·) defined as in

Theorem 5.
As in Lemma 3 of Section 3.1, we build a solution ν∗(·) of (52) by making

use of the cascaded structure of the system. We then show that this solution
is such that the map Kω,τ (·) defined in this context by

Kω,τ : t ∈ [τ, T ] 7→
∫
R2d

〈r,Fω,τt ◦ Φv,u
∗

(t,τ)(x)〉dν∗(t)(x, r)

−
∫ t

τ

∫
R2d

〈γ̄◦L(t, x),Fω,τs ◦ Φv,u
∗

(s,τ)(x)〉dµ∗(s)(x)ds

+ [L(µ∗(τ), u∗(τ))− L(µ∗(τ), ω)]

(54)
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is constant over [τ, T ].

Lemma 6 (Well-posedness of solutions of (52)) Let (u∗(·), µ∗(·)) be an
optimal pair control-trajectory for (P). We consider the family of maps (t, x, r) ∈
[0, T ]× R2d 7→ Ψt(x, r) ∈ Rd, defined to be the solution of

∂tw(t, x, r) = γ̄◦L(t, Φv,u
∗

(T,t)(x))−Dxu
∗(t, Φv,u

∗

(T,t)(x))>w(t, x, r)

−Dxv[µ∗(t)](t, Φv,u
∗

(T,t)(x))>w(t, x, r)

−
∫
R2d

lΓ. ◦(t,Φv,u∗
(T,t)

(y)
) (Φv,u∗(T,t)(x)

)>
w(t, y, p) d(Id × (−γ̄◦ϕ))#µ

∗(T )(y, p),

w(T, x, r) = r
(55)

For µ∗(T )-almost every x ∈ Rd, we define the curves of measures σ∗x : t 7→
Ψt(x, ·)#δ(−γ̄◦ϕ(x)) and denote by V∗x(·, ·) the corresponding non-local vector
fields describing their evolution.

Then ν∗ : t 7→ (Φv,u
∗

(T,t), Id)#ν
∗
T (t) solves (52) with ν∗T (t) =

∫
σ∗x(t)dµ∗(T )(x).

Moreover, there exists two constants R′T , L
′
T > 0 such that

supp(ν∗(t)) ⊂ B2d(0, R′T ) and W1(ν∗(t), ν∗(s)) ≤ L′T |t− s|,

for all s, t ∈ [0, T ]

Proof We denote by Ω the compact3 subset supp((Id× (−γ̄◦ϕ)#µ
∗(T )) of R2d.

We first show that (55) admits a unique continuous solution (t, x, r) ∈ [0, T ]×
Ω 7→ Ψt(x, r) ∈ Rd. This can be done by reproducing the strategy of the proof
of Proposition 5 which consists in defining a weighted C0([0, T ]×Ω)-norm for
which the right-hand side of (55) is contracting and applying Banach’s Fixed
Point Theorem. Notice that here, the coupling between the non-local flows
arising from the integral term in (55) requires us to use explicitly the continuity
of the right-hand side with respect to x. In Lemma 3, all the backward Cauchy
problems were independent and we did not need any regularity assumption on
x for the proof to work.

Since [0, T ] × Ω is compact, (t, x, r) 7→ Ψt(x, r) is bounded. This implies
by (55) that t 7→ Ψt(x, r) is Lipschitz for all (x, r) ∈ Ω. Moreover, a direct
application of Grönwall Lemma along with (55) allows to show that for all
(t, x) ∈ [0, T ]× π1(Ω), ones has

|Ψt(x, r2)− Ψt(x, r1)| ≤ C|r2 − r1|

for all (r1, r2) ∈ π2(Ω). Hence, we showed that (t, r) ∈ [0, T ]×π2(Ω) 7→ Ψt(x, r)
is Lipschitz for all x ∈ π1(Ω).

Therefore, carrying out same computations as in Lemma 3, we show that
the curves of measures t 7→ σ∗x(t) = Ψt(x, ·)#δ−γ̄◦

ϕ(x)
are well-defined, uniformly

compactly supported and Lipschitz in the W1-metric for µ∗(T )-almost every

3 Recall that γ̄◦
ϕ(·) is a continuous map by hypothesis (B).
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x ∈ Rd. This implies the existence of two constants R′T , L
′
T > 0 such that it

holds

supp(ν∗(t)) ⊂ B2d(0, R′T ) and W1(ν∗(t), ν∗(s)) ≤ L′T |t−s| for all s, t ∈ [0, T ].

Moreover, for any ξ ∈ C∞c (R2d,R), it holds that

d

dt

[∫
R2d

ξ(x, r)dν∗(t)(x, r)

]
=

d

dt

[∫
Rd

∫
Rd
ξ(Φv,u

∗

(T,t)(x), r)dσ∗x(t)(r)dµ∗(T )(x)

]
=

∫
Rd

∫
Rd
〈∇xξ(Φv,u

∗

(T,t)(x), r), v[µ∗(t)](t, Φv,u
∗

(T,t)(x))〉dσ∗x(t)(r)dµ∗(T )(x)

+

∫
Rd

∫
Rd
〈∇xξ(Φv,u

∗

(T,t)(x), r), u∗(t, Φv,u
∗

(T,t)(x))〉dσ∗x(t)(r)dµ∗(T )(x)

+

∫
Rd

∫
Rd
〈∇rξ(Φv,u

∗

(T,t)(x), r), γ̄◦L(t, Φv,u
∗

(T,t)(x))〉dσ∗x(t)(r)dµ∗(T )(x)

−
∫
Rd

∫
Rd
〈∇rξ(Φv,u

∗

(T,t)(x), r),Dxu
∗(t, Φv,u

∗

(T,t)(x))>r〉dσ∗x(t)(r)dµ∗(T )(x)

−
∫
Rd

∫
Rd
〈∇rξ(Φv,u

∗

(T,t)(x), r),Dxv[µ∗(t)](t, Φv,u
∗

(T,t)(x))>r〉dσ∗x(t)(r)dµ∗(T )(x)

−
∫
Rd

∫
Rd

〈
∇rξ(Φv,u

∗

(T,t)(x), r), lΓ. ◦v[ν∗](t, Φv,u
∗

(T,t)(x))
〉

dσ∗x(t)(r)dµ∗(T )(x)

=

∫
R2d

〈∇xξ(x, r), v[µ∗(t)](t, x) + u∗(t, x)〉dν∗(t)(x, r)

+

∫
R2d

〈∇rξ(x, r), γ̄◦L(t, x)−Dxu
∗(t, x)>r −Dxv[µ∗(t)](t, x)>r〉dν∗(t)(x, r)

−
∫
R2d

〈∇rξ(x, r), lΓ. ◦v[ν∗(t)](t, x)〉dν∗(t)(x, r)

where we used the fact that

lΓ. ◦v[ν∗(t)](t, Φv,u
∗

(T,t)(x)) =

∫
R2d

lΓ. ◦(t,Φv,u∗
(T,t)

(y)
) (Φv,u∗(T,t)(x)

)>
p dν∗T (t)(y, p)

=

∫
Rd

∫
Rd
lΓ. ◦(t,Φv,u∗

(T,t)
(y)

) (Φv,u∗(T,t)(x)
)>

p dσ∗y(t)(p)dµ∗(T )(y)

=

∫
R2d

lΓ. ◦(t,Φv,u∗
(T,t)

(y)
) (Φv,u∗(T,t)(x)

)>
Ψt(y, p) d((Id × (−γ̄◦ϕ)#µ

∗(T ))(y, p)

We therefore recover that t 7→ ν∗(t) solves (52), which ends the proof.

Lemma 7 The map t 7→ Kω,τ (t) defined in (54) is constant over [τ, T ] for
any couple of needle parameters (ω, τ).

Proof This proof follows the same steps as in the proof of Lemma 4, the

difference lying in the fact that the flows (Φv,u
∗

(0,t)(·))t∈[0,T ] are associated to the

non-local PDE. It can be verified again as in the proof of Lemma 4 that t 7→
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Kω,τ (t) is Lipschitz. We compute d
dtKω,τ using (7) as in (43) while plugging

in the expressions for Fω,τt (·) and its time-derivative provided by Lemma 5.

d

dt
Kω,τ (t)

=

∫
Rd

∫
Rd

〈
r, ∂tFω,τt ◦ Φv,u

∗

(T,τ)(x)
〉

dσ∗x(t)(r)dµ∗(T )(x)

+

∫
Rd

∫
Rd

〈
V∗x(t, r),Fω,τt ◦ Φv,u

∗

(T,τ)(x)
〉

dσ∗x(t)(r)dµ∗(T )(x)

−
∫
R2d

〈γ̄◦L(t, Φv,u
∗

(T,t)(x)),Fω,τt ◦ Φv,u
∗

(T,τ)(x)〉dµ∗(T )(x)

=

∫
R2d

〈
r,

∫
Rd
lΓ. ◦(t,Φv,u∗

(T,t)
(x)

) (Φv,u∗(T,t)(y)
)
Fω,τt ◦ Φv,u

∗

(T,τ)(x)dµ∗(T )(y)

〉
dν∗T (t)(x, r)

−
∫
R2d

〈∫
R2d

lΓ. ◦(t,Φv,u∗
(T,t)

(y)
) (Φv,u∗(T,t)(x)

)>
p dν∗T (t)(y, p),Fω,τt ◦ Φv,u

∗

(T,τ)(x)

〉
dν∗T (t)(x, r)

=0

by plugging in the expressions of ∂tFω,τt (·) and V∗x(t, ·). The two quantities
are shown to be equal due to the uniform boundedness of the integrands given
by (B) and Fubini-Tonelli theorem. This altogether leads to d

dtKω,τ (t) = 0 for
L 1-almost every t ∈ [τ, T ] and thus to Kω,τ (·) being constant over [τ, T ].

Step 4 : Proof of the Pontryagin Maximum Principle for (P)

We proved in Lemma 6 that there exists a curve ν∗ ∈ Lip([0, T ],Pc(R2d))
solution of (52) along with a constant R ≡ R′T > 0 such that supp(ν∗(·)) ⊂
B2d(0, R). The non-local velocity field V∗[ν∗(·)](·, ·, ·) is defined for L 1×ν∗(·)-
almost every (t, x, r) ∈ [0, T ]×B2d(0, R) by

V∗[ν∗(t)](t, x, r) =(
γ̄◦L(t, x)−Dxu

∗(t, x)>r −Dxv[π1
#ν
∗(t)](t, x)>r − lΓ. ◦v[ν∗(t)](t, x)

v[π1
#ν
∗(t)](t, x) + u∗(t, x)

)
.

We define the infinite dimensional Hamiltonian H(·, ·, ·) of the system by

H : (t, ν, ω) ∈ [0, T ]×Pc(R2d)× U 7→
∫
R2d

〈r, ω(x)〉dν(x, r)− L(π1
#ν, ω).

along with its compactification Hc(·, ·, ·) given by (24).
Furthermore, we proved in Lemma 7 that the solution ν∗(·) that we built

is such that the map Kω,τ (·) defined in (54) is constant over [τ, T ] for any cou-
ple of needle parameters (ω, τ). Hence, it holds in particular that Kω,τ (τ) =
Kω,τ (T ) which is a non-positive quantity by the first-order optimality condi-
tion (51). This fact implies that∫

R2d

〈r, ω(x)− u∗(τ, x)〉dν∗(τ)(x, r)− [L(µ∗(t), ω)− L(µ∗(t), u∗(t))] ≤ 0,
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for all ω ∈ U and τ ∈ [0, T ] Lebesgue point of v[µ∗(·)](·, ·) + u∗(·). This
inequality rewrites as the Pontryagin Maximization condition (26) :

Hc(t, ν∗(t), u∗(t)) = max
ω∈U

[Hc(t, ν∗(t), ω]

for L 1-almost every t ∈ [0, T ].
Finally, one recognizes the pseudo-Hamiltonian structure V∗[ν∗(t)](t, x, r) =

J2d∇̃νHc(t, ν∗(t), u∗(t)) for L 1×ν∗(·)-almost every (t, x, r) ∈ [0, T ]×B2d(0, R)
where the map ∇̃νHc(t, ν∗(t), u∗(t))(·, ·) is precisely the non-local velocity field
V∗[ν∗](t, ·, ·) for L 1-almost every t ∈ [0, T ]. This concludes our proof of the
Pontryagin Maximum Principle for (P).

4 Examples

The aim of the general result stated in Theorem 5 is to provide first-order
necessary optimality conditions that are adapted to a wide range of functionals.
We give in the following Propositions some examples of classical functionals
that are encompassed in hypotheses (H) and compute the minimal selection
in their Wasserstein subdifferential.

Proposition 6 (Subdifferential of a smooth integral functional)
Let V ∈ C1(Rd,R) and K ⊂ Rd be a compact set. Define V : µ ∈ P(K) 7→∫
Rd V (x)dµ(x). Then the functional V (·) is regular at any µ ∈ P(K) in the

sense of Definition 6, Lipschitz in the W1-metric. Moreover, the minimal se-
lection ∂◦V (µ) in its extended subdifferential at µ is a classical strong subd-
ifferential induced by a map and given explicitly by ∂◦V (µ) = (Id ×∇V )#µ.

Proof See e.g. [6, Proposition 10.4.2].

Remark 4 Taking any power α > 0 of V (·) yields the same results provided
that the functional x 7→ xα is differentiable at V (µ). In which case, the minimal
selection in the extended subdifferential is induced by the map

∇µ(V α)(µ) : x ∈ supp(µ) 7→ αV (µ)α−1∇V (x). (56)

Proposition 7 (Subdifferential of the variance functional) Let K ⊂ Rd
be a compact set and define the variance functional by

Var : µ ∈P(K) 7→ 1

2

∫
Rd
|x− µ̄|2dµ(x) =

1

2

∫
Rd
|x|2dµ(x)− 1

2
|µ̄|2

where µ̄ =
∫
Rd xdµ(x) denotes the average of the measure µ.

Then, the functional Var(·) is regular at any µ ∈ P(K), Lipschitz in the
W1-metric and the minimal selection ∂◦Var(µ) in its extended subdifferen-
tial is a classical strong subdifferential induced by the map ∇µVar(µ) : x ∈
supp(µ) 7→ x− µ̄.
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Proof It is clear by definition of the variance functional that it is bounded from
below over P(K). Moreover, an application of the Kantorovich-Rubinstein
duality formula (3) yields the Lipschitzianity in the W1-metric. The regularity
in the sense of Definition 6 is a consequence of the convexity along Wasserstein
geodesics of the variance functional (see [6, Lemma 10.3.8]).

We now show that x 7→ x − µ̄ is in the classical strong subdifferential of
the variance functional at µ ∈P(K). For any ν ∈P(K) and lµ.. ∈ Γ (µ, ν), it
holds that ∫

R2d

〈x1 − µ̄, x2 − x1〉dlµ.. (x1, x2)

=

∫
R2d

〈x1, x2〉dlµ.. (x1, x2)−
∫
Rd
|x1|2dµ(x1) + |µ̄|2 − 〈µ̄, ν̄〉,

≤1

2

∫
Rd
|x2|2dν(x2)− 1

2

∫
Rd
|x1|2dµ(x1) + |µ̄|2 − 〈µ̄, ν̄〉,

≤Var(ν)−Var(µ) +
1

2
|µ̄− ν̄|2.

Moreover, one can estimate the quantity |µ̄− ν̄|2 as follows:

|µ̄− ν̄|2 ≤
(∫

R2d

|x1 − x2|dlµ.. (x1, x2)

)2

≤
∫
R2d

|x1 − x2|2dlµ.. (x1, x2) = W 2
2,lµ.. (µ, ν) = o(W2,lµ.. (µ, ν)),

since lµ.. ∈ Γ (µ, ν), invoking Jensen’s Inequality and the definition of W2,lµ.. (·, ·)
given in Definition 5.

Therefore, we conclude that for any ν ∈ P(K) and any lµ.. ∈ Γ (µ, ν) it
holds

Var(ν)−Var(µ) ≥
∫
R2d

〈x1 − µ̄, x2 − x1〉dlµ.. (x1, x2) + o(W2,lµ.. (µ, ν)).

which is equivalent to x ∈ supp(µ) 7→ x− µ̄ being a classical strong subdiffer-
ential at µ.

Now, take in particular ν ≡ νs = (Id + sξ)#µ for some small s > 0 and
ξ ∈ C∞c (Rd) such that supp(νs) ⊂P(K). It then holds

+∞ > lim
s↓0

[
Var((Id + sξ)#µ)−Var(µ)

s

]
≥
∫
Rd
〈x1 − µ̄, ξ(x1)〉dµ(x1).

Furthermore, one can check that it holds

lim
s↓0

[
Var((Id + sξ)#µ)−Var(µ)

s

]
≤ lim sup

s↓0

[
(Var((Id + sξ)#µ)−Var(µ))

+

W2(µ, (Id + sξ)#µ)

]
lim sup
s↓0

[
W2(µ, (Id + sξ)#µ)

s

]
≤|∂Var|(µ) ‖ξ‖L2(µ),
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so that, for any ξ ∈ C∞c (Rd) with ‖ξ‖L2(µ)≤ 1, one has∫
Rd
〈x1 − µ̄, ξ(x1)〉dµ(x1) ≤ |∂Var|(µ).

By applying a density argument for test functions in the space L2(Rd,Rd;µ)
and using the dual characterization of the L2-norm of a functional, it finally
holds that ‖Id − µ̄‖L2(µ)≤ |∂Var|(µ), which amounts to state by Theorem 3
that the strong subdifferential x ∈ supp(µ) 7→ x − µ̄ is the minimal selection
in the classical subdifferential ∂Var(µ) of the variance functional at µ.

Remark 5 (Possible extensions) The analysis carried out in the previous Propo-
sition for the variance functional can be applied in a similar fashion to integral
functionals of the form

W k : µ ∈P(K) 7→
∫
Rd
W (x1, ..., xk)d(µ× ...× µ)(x1, ..., xk)

Vm : µ ∈P(K) 7→
∫
Rd
V
(
x,
∫
Rd m(y)dµ(y)

)
dµ(x)

for any k ≥ 1, W ∈ C1(Rd×k,R), V ∈ C2(Rd × Rn,R) and m ∈ C2(Rd,Rn)
for some n ≥ 1.

Proposition 8 (Subdifferential of a smooth convolution interaction)
Let K ⊂ Rd be a compact set, H(·, ·) ∈ C1(R2d,Rd) be a function with sublinear
growth and consider the non-local velocity field v[·](·) : (µ, x) ∈Pc(K)×Rd 7→∫
Rd H(x, y)dµ(y).

Then, v[·](·, ·) satisfies (F), (B) and (D) and the first order variations x ∈
supp(µ) 7→ Dxv[µ](x) and x ∈ supp(µ) 7→

∫
Rd lΓ. ◦x(y)dµ(y) can be computed

explicitly as 
Dxv[µ](x) =

∫
Rd

DxH(x, y)dµ(y),∫
Rd
lΓ. ◦x(y)dµ(y) =

∫
Rd

DyH(x, y)dµ(y).

where lΓ. ◦x(·) is defined as in Theorem 5.

Proof The Lipschitz estimates and the regularity in the sense of Definition
6 can be derived using Kantorovich duality and the results of Proposition
6. For the first order variations, apply a classical differentiation under the
integral sign result for the first one and Proposition 6 to the components
µ 7→

∫
Rd H

i(x, y)dµ(y) for any fixed x ∈ supp(µ) for the second one.

We summarize these results in the form of an overview of possible functions
satisfying (H) in the following corollaries.

Corollary 1 (Example of terminal costs satisfying the hypotheses of
Theorem 5)
If ϕ : P(K) 7→ R is either a (suitable) power of a smooth integral functional
or the variance functional, then it satisfies hypotheses (C), (B) and (D).
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Corollary 2 (Example of running costs satisfying the hypotheses of
Theorem 5)
Let l : (x, v) ∈ R2d 7→ l(x, v) ∈ R be a C1, function K ⊂ Rd be compact, and
define the running cost L : (µ, ω) ∈P(K)× U 7→ R by

L(µ, ω) =

∫
Rd
l(x, ω(x))dµ(x).

Then, L(·, ·) satisfies hypotheses (L), (B) and (D). Moreover, the barycen-
ter of the minimal selection in its extended subdifferential ∂◦µL(µ, ω) is deter-
mined at any µ ∈P(K) by

γ̄◦L ≡ ∇µL(µ, ω) : x ∈ supp(µ) 7→ ∇xl(x, ω(x)) + Dxω(x)>∇vl(x, ω(x)).

Proof The proof only involves elementary Lipschitz-type estimates and the use
of Proposition 6.

Notice again that it is possible to take any power α ≥ 1 of the previous
cost and any power α > 0 provided that the functional does not vanish along
the optimal pair control-trajectory (u∗(·), µ∗(·)) ∈ Lip([0, T ],Pc(Rd))× U .

The following result shows that functionals based on kernels are regular.
They appear in several mean-field models for interaction, see e.g. [8,9,17,25,
31,34,36].

Corollary 3 (Non-local vector field satisfying hypotheses (H))
If v[·](·, ·) : P(K)× [0, T ]×K → Rd is defined for any (µ, t, x) by

v[µ](t, x) = (H(t, ·) ? µ(t))(x) + vl(t, x),

for some sublinear interaction kernel H ∈ L∞([0, T ], C1(Rd,Rd)) and vector
field vl(·, ·) measurable in t as well as sublinear and Lipschitz in x, then it
satisfies hypotheses (F), (B) and (C).

When the compactified Hamiltonian of the system ω ∈ U 7→ Hc(t, ν∗(t), ω)
is differentiable at u∗(t) for L 1-almost every t ∈ [0, T ], the maximization
condition can be rewritten as a usual first-order condition.

Corollary 4 (Differentiation of the Hamiltonian) Suppose that u∗(t) ∈
int(U) for L 1-almost every t ∈ [0, T ] and that the compactified Hamiltonian
ω ∈ U 7→ Hc(t, ν∗(t), ω) is Fréchet differentiable at u∗(t) for L 1-almost every
t ∈ [0, T ]. Then u∗(t) verifies:

DωHc(t, ν∗(t), u∗(t)) · v = 0 (57)

for all v ∈ U and for L 1-almost every t ∈ [0, T ].
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