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Abstract: We study the controllability of a closed control-affine quantum system driven
by two or more external fields. We provide a sufficient condition for controllability in
terms of existence of conical intersections between eigenvalues of the Hamiltonian in
dependence of the controls seen as parameters. Such spectral condition is structurally
stable in the case of three controls or in the case of two controls when the Hamiltonian
is real. The spectral condition appears naturally in the adiabatic control framework
and yields approximate controllability in the infinite-dimensional case. In the finite-
dimensional case it implies that the system is Lie-bracket generating when lifted to the
group of unitary transformations, and in particular that it is exactly controllable. Hence,
Lie algebraic conditions are deduced from purely spectral properties.

We conclude the article by proving that approximate and exact controllability are
equivalent properties for general finite-dimensional quantum systems.

1. Introduction

In this paper we consider a closed quantum system of the form

iψ̇(t) = H(u(t))ψ(t) = (H0 + u1(t)H1 + · · · + um(t)Hm)ψ(t), (1)

where ψ(·) describes the state of the system evolving in the unit sphere S of a finite- or
infinite-dimensional complex Hilbert space H. The control u(·) = (u1(·), . . . , um(·))
takes values in a subset U of R

m and represents external fields. The Hamiltonian H(u)
is a self-adjoint operator on H for every u ∈ U .

In control language, system (1) is exactly (respectively, approximately) controllable
if every point of S can be steered to (respectively, steered arbitrarily close to) any other
point of S, by an admissible trajectory of (1).

When the dimension of H is finite, the exact controllability of (1) can be studied using
general results on left-invariant systems on Lie groups [2,18,31,32]. The first infinite-
dimensional controllability problem which has attracted the attention of the control
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Fig. 1. A conical intersection when m = 2: the surfaces represent two eigenvalues of H(u1, u2) as functions
of u1 and u2

community is the so-called Law–Eberly model [34]. See [17] and also [1,9,27,33,47]
for further developments and related models. In the infinite-dimensional case, if the
controlled Hamiltonians H1,…,Hm are bounded, exact controllability can be ruled out
by functional analysis arguments [3,30,44]. Sufficient conditions for approximate con-
trollability have been obtained by proving exact controllability of restrictions of (1) to
spaces where the controlled Hamiltonians are unbounded [5–7]. Other sufficient condi-
tions for approximate controllability have been obtained by control-Lyapunov arguments
[8,36–38] and Lie–Galerkin techniques [12,16,20,21]. For a more detailed discussion,
see [11].

Both in the finite- and the infinite-dimensional case, checking the above-mentioned
controllability criteria is not an easy task. Typical conditions require that the eigenvalues
of H0 are non-resonant (e.g., all gaps are different or rationally independent) and that
the controlled Hamiltonians “sufficiently couple” the eigenstates of H0. Hence many
efforts were made to find easily checkable sufficient conditions for controllability of (1).

Notice that most of the conditions mentioned above are obtained for single-input
systems (m = 1). An alternative technique fully exploiting the multi-input framework
uses adiabatic theory to obtain approximate descriptions of the evolution of (1) for slowly
varying control functions u(·) [1,15,28]. Adiabatic methods work when the spectrum
exhibits eigenvalue intersections. In [15], in the case m = 2, it is shown how to exploit
the existence of conical intersections (see Fig. 1 and Definition 5) between every pair of
subsequent eigenvalues to induce an approximate population transfer from any eigenstate
to any other eigenstate or any nontrivial superposition of eigenstates (without controlling
the relative phases). This kind of partial controllability is named spread controllability
in [15].

In this paper we study the whole controllability implications of the conditions ensur-
ing spread controllability, namely the existence of conical intersections between every
pair of subsequent eigenvalues. A relevant advantage of these conditions is that they con-
sist in qualitative structural properties of the spectrum of H(u) as a function of u ∈ U .
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This might be useful when the explicit expression of the Hamiltonian is not known, but
one has information about its spectrum. Indeed, in many experimental situations one can
easily measure the spectrum of H(u) by spectroscopy techniques, while Hamiltonian
identification is a difficult task (see, e.g., [19,23,35] and references therein).

In the following we say that the spectrum of H(·) is conically connected if all eigen-
value intersections are conical, each pair of subsequent eigenvalues is connected by a
conical intersection such that all other eigenvalues are simple (see Fig. 2). A notable
property of conical connectedness is that it is a structurally stable property for m = 2
(when restricted to real Hamiltonians) and for m = 3. This structural stability dates back
to the 1920s [10,45] and is discussed in more details in Sect. 2.1 (see Remark 6).

Conically connected spectra are not rare in the physical literature. Finite-dimensional
examples appear in models for the stimulated Raman adiabatic passage (STIRAP), see
[13,28,41] and references therein. In the infinite-dimensional setting they appear in
generalisations of trapped-ion models [1].

The main results of the paper about the relations between conically connected spectra
and controllability are the following:

• if H is finite-dimensional and the spectrum of H(·) is conically connected then
Lie{H(u) | u ∈ U } is equal to u(n) if the trace of H(u) is nonzero for some u ∈ U
or su(n) otherwise. In particular (1) is exactly controllable and the same is true for its
lift in U(n) or SU(n);

• if H is infinite-dimensional and the spectrum of H(·) is conically connected then (1) is
approximately controllable. (For a counterpart of the finite-dimensional lifted-system
controllability, see Remark 16.)

Motivated by the exact/approximate dichotomy in the controllability of finite-/infinite-
dimensional systems, we investigate in the last part of the paper the equivalence between
exact and approximate controllability. We have already seen that exact controllability
cannot hold when dim(H) = ∞, since we assume H1 and H2 to be bounded. When
dim(H) < ∞ we prove that exact and approximate controllability are indeed equiva-
lent, both for (1) and its lift on U(n) or SU(n). This last result holds in the more general
setting where H(u) depends on u in a possibly nonlinear way.

The structure of the paper is the following. In Sect. 2 we introduce the basic definitions
related to controllability and conical intersections and we prove the finite-dimensional
exact controllability of a system exhibiting a conically connected spectrum and of its
lift in U(n) or SU(n) (Theorem 8). In Sect. 3 we prove that an infinite-dimensional sys-
tem having a conically connected spectrum is approximately controllable (Theorem 13).
Finally, in Sect. 4 we prove the equivalence between approximate and exact controlla-
bility for finite-dimensional closed quantum mechanical systems.

2. Conical Intersections and Exact Controllability in Finite Dimension

2.1. Basic definitions and facts. In this section we introduce some definitions and recall
some basic facts about control systems evolving on finite-dimensional manifolds.

We first define approximate and exact controllability for a smooth control system

q̇(t) = f (q(t), u(t)) (�)

defined on a connected manifold M with controls u(·) taking values in U ⊂ R
m .
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Definition 1. • The reachable set Aq0 from a point q0 ∈ M for (�) is the set of points
q1 ∈ M such that there exist a time T ≥ 0 and a L∞ control u : [0, T ] → U for which
the solution of the Cauchy problem q̇(t) = f (q(t), u(t)) starting from q(0) = q0 is
well defined on [0, T ] and satisfies q(T ) = q1.

• The system (�) is said to be exactly controllable if for every q0 ∈ M we haveAq0 = M .
• The system (�) is said to be approximately controllable if for every q0 ∈ M we have

that Aq0 is dense in M .

A relevant class of control systems for our discussion is given by right-invariant
control systems on Lie groups, namely, systems for which M is a connected Lie group
and each vector field f (·, u), u ∈ U , is right-invariant.

Lemma 3 below is a classical result concerning right-invariant control systems on
compact Lie groups (see, e.g., [18,26,32]).

Definition 2. Let (�) be a right-invariant control system and denote by e the identity of
the group M . Let Lie{ f (e, u) | u ∈ U } be the Lie algebra generated by { f (e, u) | u ∈
U }, i.e., the smallest subalgebra of the Lie algebra of M containing { f (e, u) | u ∈ U }.
The orbit G of (�) is the connected subgroup of M whose Lie algebra is Lie{ f (e, u) |
u ∈ U }.
Lemma 3. Let M be a connected compact Lie group and consider a right-invariant
control system (�) on M. The following conditions are equivalent:

• (�) is exactly controllable;
• the orbit G of (�) is equal to M;
• Lie{ f (e, u) | u ∈ U } is the Lie algebra of M.

The last condition is usually referred to as the Lie bracket generating condition. For
general nonlinear control systems of the type (�), the Lie bracket generating condition
requires that the evaluation at every point of the Lie algebra generated by the vector
fields f (·, u), u ∈ U , is the entire tangent space.

A general controlled closed quantum system evolving in a finite-dimensional Hilbert
space can be written as

iψ̇(t) = H(u(t))ψ(t), (2)

whereψ : [0, T ] → S2n−1 ⊂ C
n denotes the state of the system and H(u) is a Hermitian

matrix smoothly depending on u ∈ U ⊂ R
m . From now on let us take n ≥ 2, otherwise

the controllability problem is trivial.
Naturally associated with (2) is its lift on the unitary group U(n),

i ġ(t) = H(u(t))g(t), (3)

which is right-invariant and permits to write the solution ψ(·) of (2) starting from ψ0 as
ψ(t) = g(t)ψ0 where g(·) is the solution of (3) starting from the identity.

Lemma 3 implies that (3) is controllable in U(n) if and only if the Lie algebra
generated by {i H(u) | u ∈ U } is equal to u(n). If the trace of each matrix H(u), u ∈ U ,
is zero, then (3) is well posed in SU(n) and its exact controllability in SU(n) is equivalent
to the condition Lie{i H(u) | u ∈ U } = su(n).

In order to deduce the controllability properties of (2) from those of (3) one has to turn
towards the classification of transitive actions of subgroups of U(n) onto S2n−1 ⊂ C

n .
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As a consequence, system (2) is exactly controllable1 if and only if

Lie{i H(u) | u ∈ U } ⊇
{

su(n) if n is odd
an algebra conjugate to sp(n/2) if n is even. (4)

(See [2,24].)
Of special interests for this paper are closed control-affine quantum system driven

by m external fields, satisfying the following assumption:

(A) Let m ≥ 2 and U be an open and connected subset of R
m . We assume that H(·) is

control-affine, i.e., it has the form

H(u) = H0 + u1 H1 + · · · + um Hm .

In the following, under assumption (A), we focus on the controllability of the system

iψ̇(t) = (H0 + u1(t)H1 + · · · + um(t)Hm)ψ(t), ψ(t) ∈ S2n−1, (5)

and its lift

i ġ(t) = (H0 + u1(t)H1 + · · · + um(t)Hm)g(t), g(t) ∈ U(n). (6)

Remark 4. Let us briefly discuss the role of the assumptions listed in hypotheses (A).
The affine structure of H with respect to the control is natural in quantum control ([24])
and allows the application of the controllability criteria we are using in the following
(see Proposition 11). Moreover, the connectedness of U is required in order to apply
adiabatic techniques in the whole set of control parameters.

A crucial hypothesis that we shall use to prove exact controllability of (6) (and hence,
in particular, of (5)) is the existence of conical intersections (in the space of controls)
between consecutive energy levels, and the fact that these conical intersections occur at
distinct points in the space of controls. More precisely:

Definition 5. Let (A) be satisfied. Let �(u) = {λ1(u), . . . , λn(u)} be the spectrum of
H(u), where the eigenvalues λ1(u) ≤ · · · ≤ λn(u) are counted according to their
multiplicities. We say that ū ∈ U is a conical intersection between the eigenvalues λ j
and λ j+1 if λ j (ū) = λ j+1(ū) has multiplicity two and there exists a constant c > 0 such
that for any unit vector v ∈ R

m and t > 0 small enough we have

λ j+1(ū + tv)− λ j (ū + tv) > ct. (7)

See Fig. 1 for the picture of a conical intersection. Notice that the hypothesis m ≥ 2
guarantees that conical intersections do not disconnect U . This is crucial in the arguments
below (see, in particular, Lemma 9.)

Remark 6. Conical intersections are not pathological phenomena. On the contrary, they
happen to be generic for m = 3 or for m = 2, when restricted to real Hamiltonians, in
the following sense.

Let us first consider the case m = 2. Let sym(n) be the set of all n × n symmetric
real matrices. Then, generically with respect to the pair (H1, H2) in sym(n) × sym(n)
(i.e., for all (H1, H2) in an open and dense subset of sym(n) × sym(n)), for each u =

1 The exact controllability of system (2) is generally known as pure state controllability, while the exact
controllability of (3) is generally known as operator controllability
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Fig. 2. A conically connected spectrum in the case m = 2

(u1, u2) ∈ R
2 and λ ∈ R such that λ is a multiple eigenvalue of H0 + u1 H1 + u2 H2, the

eigenvalue intersection u is conical. Moreover, each conical intersection u is structurally
stable, in the sense that small perturbations of H0, H1 and H2 give rise, in a neighborhood
of u, to conical intersections for the perturbed H . See Sect. 3 for a version of this result
in infinite dimension and [15] for more details.

In the case m = 3, let Herm(n) be the space of n×n Hermitian matrices. Then, generi-
cally with respect to the triple (H1, H2, H3) in Herm(n)3, for each u = (u1, u2, u3) ∈ R

3

andλ ∈ R such thatλ is a multiple eigenvalue of H0+u1 H1+u2 H2+u3 H3, the eigenvalue
intersection u is conical. Structural stability also holds, in the same sense as above. See
[22] for more details and a discussion on the infinite-dimensional counterpart of these
properties.

The following definition identifies the Hamiltonians for which we can guarantee
exact controllability from qualitative properties of their spectra. Roughly speaking we
require all their eigenvalues to be connected by conical intersections and the conical
intersections to occur at different points in the space of controls.

Definition 7. Let (A) be satisfied. We say that the spectrum �(·) of H(·) is conically
connected if all eigenvalue intersections are conical and for every j = 1, . . . , n − 1,
there exists a conical intersection ū j ∈ U between the eigenvalues λ j , λ j+1, with λl(ū j )

simple if l 	= j, j + 1.

See Fig. 2 for a conically connected spectrum.

2.2. Conical connectedness implies exact controllability. The main result of Sect. 2 is
the following theorem.

Theorem 8. Let (A) be satisfied and assume that the spectrum�(·) of H(·) is conically
connected. Then the Lie algebra generated by {i H(u) | u ∈ U } is either u(n) or su(n)
(in the case H0, . . . , Hm ∈ su(n)). Hence, system (6) is either exactly controllable in
U(n) or well-posed and exactly controllable in SU(n).
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The proof of the theorem is based on the following lemma.

Lemma 9. Let (A) be satisfied and assume that the spectrum �(·) of H(·) is conically
connected. Then there exists Ū ⊂ U which is dense and with zero-measure complement
in U such that if

∑n
j=1 α jλ j (ū) = 0 with (α1, . . . , αn) ∈ Q

n and ū ∈ Ū then α1 =
α2 = · · · = αn.

Proof. For every α = (α1, . . . , αn) ∈ Q
n define

Uα = {u ∈ U |
n∑

j=1

α jλ j (u) = 0}.

Let Ū be the complement in U of the union of all Uα such that α j 	= αk for some
j, k ∈ {1, . . . ,m}. Since a countable union of subsets of R

m with empty interior and
zero measure has empty interior and zero measure, we are left to prove that Uα has
empty interior and zero measure if α j 	= αk for some j, k ∈ {1, . . . ,m}.

Notice that, by definition of conical intersection and since m ≥ 2, {u ∈ U |
�(u) is simple} is connected. Thanks to the analyticity of the spectrum in {u ∈ U |
�(u) is simple}, either Uα = U or Uα has empty interior and zero measure. The proof
is completed by showing that if Uα = U then α1 = · · · = αn .

Assume that Uα = U . Consider j ∈ {1, . . . , n − 1} and an analytic path γ : R → U
such that γ (0) = ū j , γ̇ (0) 	= 0, where ū j ∈ U is a conical intersection between the
eigenvalues λ j , and λ j+1, with λl(ū j ) simple if l 	= j, j + 1.

Since Uα = U , we have for every t ∈ R,

n∑
l=1

αlλl(γ (t)) = 0.

By analytic dependence of the spectrum along γ in a neighbourhood of γ (0) [40], the
functions

t 
→
{
λ j (γ (t)) if t < 0
λ j+1(γ (t)) if t ≥ 0, t 
→

{
λ j+1(γ (t)) if t < 0
λ j (γ (t)) if t ≥ 0,

and t 
→ λl(γ (t)), l 	= j, j + 1, are analytic in a neighborhood of 0. Hence,

α j+1λ j (γ (t)) + α jλ j+1(γ (t)) +
∑

l 	= j, j+1

αlλl(γ (t)) = 0

for t in a neighborhood of 0. Then

(α j − α j+1)(λ j (γ (t))− λ j+1(γ (t))) = 0

for t in a neighborhood of 0. By definition of conical intersection it must be α j = α j+1.
Since j is arbitrary, we deduce that α1 = · · · = αn concluding the proof. ��
Remark 10. The lemma fails to hold if m = 1, i.e., for single input systems. Consider
for instance n = 3, H0 = diag(0, 1, 2) and H1 = diag(1, 1, 0). Then the eigenvalues of
H(u) are u, u + 1 and 2. The spectrum is conically connected, but clearly Ū = ∅.

Notice that Lie(i H0, i H1) is made only by diagonal matrices and therefore {i H0, i H1}
does not generate u(n). Hence, this example also shows that Theorem 8 does not hold if
we remove the hypothesis m ≥ 2.
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The proof of Theorem 8 is based on the following adaptation of a controllability
criteria for single-input quantum control systems appeared in [11, Proposition 3.1]. The
proof can be obtained following exactly the same arguments as in [11].

Proposition 11. Let A0, A1, . . . , Am be skew-Hermitian n × n matrices. Denote by
λ1, . . . , λn the eigenvalues of A0, repeated according to their multiplicities and let
φ1, . . . , φn be an orthonormal basis of associated eigenvectors. Let

S0 = {( j, k) ∈ {1, . . . , n}2 | ∃ l ∈ {1, . . . ,m} such that 〈φ j , Alφk〉 	= 0}.
Assume that there exists S ⊆ S0 such that the graph having 1, . . . , n as nodes

and S as set of edges is connected. Assume, moreover, that for every ( j, k) ∈ S and
(r, s) ∈ S0\{( j, k)} we have λ j − λk 	= λr − λs . Then Lie(A0, . . . , Am) = su(n) if
A0, . . . , Am ∈ su(n) and Lie(A0, . . . , Am) = u(n) otherwise.

Proof of Theorem 8. Applying Lemma 9 we deduce the existence of u0 ∈ U such that
if

∑n
j=1 α jλ j (u0) = 0 with (α1, . . . , αn) ∈ Q

n then α1 = · · · = αn . In particular, the
spectrum of H(u0) is simple and two spectral gaps λ j (u0)−λk(u0) and λr (u0)−λs(u0)

are different if ( j, k) 	= (r, s) and j 	= k, r 	= s. Let φ1, . . . , φn be an orthonormal basis
of eigenvectors of H(u0).

Let us conclude the proof by applying Proposition 11 to A0 = i H(u0), A j = i Hj
for j = 1, . . . ,m: to this purpose, we are left to prove that the graph having 1, . . . , n as
nodes and

S0 = {( j, k) ∈ {1, . . . , n}2 | 〈φ j , Hlφk〉 	= 0 for some l = 1, . . . ,m}
as set of edges is connected.

Assume by contradiction that such graph is not connected. Then there exists a proper
subspace V of C

n generated by eigenvectors of H(u0)which is invariant for the evolution
of (5). Without loss of generality V = span{φ1, . . . , φr } with r < n.

Since the spectrum is conically connected, we can apply [43, Corollary 2.5] and
deduce that there exists an admissible trajectory of (5) steering φ1 to an arbitrary small
neighbourhood of {eiθφn | θ ∈ R}. (See also [15, Proposition 3.4] for a rephrasing
in control terms of [43, Corollary 2.5], which deals with general adiabatic evolutions
through conical intersections. The result is stated in [15] in the case m = 2 for symmetric
Hamiltonians but actually holds in the general case.) The contradiction is reached, since
V ∩ {eiθφn | θ ∈ R} = ∅. ��

3. Conical Intersections and Approximate Controllability in Infinite Dimension

In this section we extend the controllability analysis of the previous section to systems
of the form (5) evolving in infinite-dimensional spaces.

Consider a separable infinite-dimensional complex Hilbert space H. In this section
we make the following assumption:

(A∞) Let m ≥ 2 and U be an open and connected subset of R
m . Assume that the

Hamiltonian H(·) has the form

H(u) = H0 + u1 H1 + · · · + um Hm, u = (u1, . . . , um) ∈ U,

where H0, . . . , Hm are self-adjoint operators on H, with H0 bounded from below
and H1, . . . , Hm bounded.
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With a Hamiltonian H(·) as in assumption (A∞) we can associate the control system

iψ̇(t) = (H0 + u1(t)H1 + · · · + um(t)Hm)ψ(t), ψ(t) ∈ S, (8)

where S is the unit sphere of H.
Existence of solutions of (8) for u of class L∞ and H1, . . . , Hm bounded is classical

(see [39]).
A typical case for which (A∞) is satisfied is when H0 = −	+V , where	 is the Lapla-

cian on R
d and V is a continuous real-valued confining potential, i.e., lim|x |→∞ V (x) =

+∞, and H1, . . . , Hm are multiplication operators by continuous and bounded functions.
Under these conditions H0 is an unbounded operator on H = L2(Rd ,C), with discrete
spectrum, bounded from below. Each Hj , j = 1, . . . ,m, is bounded when considered
on H and represents the potential of a force Fj (x) = −∇Hj (x). Example of bounded
Hj are periodic functions or potentials for which Fj vanishes at infinity quickly enough.

3.1. Conical connectedness implies approximate controllability in infinite dimension.
The main technical assumption of this section is the following.

(B) The spectrum of H0 is discrete without accumulation points and each eigenvalue
has finite multiplicity.

Under assumptions (A∞) and (B) the spectrum of H(u), u ∈ U , with eigenvalues
repeated according to their multiplicities, can be described by �∞(u) = {λ j (u)} j∈N

with λ j (u) ≤ λ j+1(u) for every j ∈ N and each λ j (·) continuos on U . In analogy
with Definition 7, we say that�(·) is conically connected if all eigenvalue intersections
λ j = λ j+1, j ∈ N, are conical (the definition of conical intersection extends trivially to
this case) and for every j ∈ N there exists a conical intersection ū j ∈ U between the
eigenvalues λ j , λ j+1, with λl(ū j ) simple if l 	= j, j + 1.

Remark 12. Recall from [15] that conical intersections are generic in the case m = 2
in the reference case where H = L2(
,C), H0 = −	 + V0 : D(H0) = H2(
,C) ∩
H1

0 (
,C) → L2(
,C), H1 = V1, H2 = V2, with 
 a bounded domain of R
d and

Vj ∈ C0(
,R) for j = 0, 1, 2. Indeed, generically with respect to the pair (V1, V2) in
C0(
,R)×C0(
,R) (i.e., for all (V1, V2) in a countable intersection of open and dense
subsets of C0(
,R)× C0(
,R)), for each u ∈ R

2 and λ ∈ R such that λ is a multiple
eigenvalue of H0 + u1 H1 + u2 H2, the eigenvalue intersection u is conical. Moreover,
each conical intersection u is structurally stable, in the sense that small perturbations
of V0, V1 and V2 give rise, in a neighbourhood of u, to conical intersections for the
perturbed H .

The main purpose of this section is to extend Theorem 8 to the infinite-dimensional
case, as follows.

Theorem 13. Let hypotheses (A∞) and (B) be satisfied. If the spectrum�(·) is conically
connected then (8) is approximately controllable.

The proof of Theorem 13 follows the same pattern as the one of Theorem 8. The first
step is the following straightforward generalisation of Lemma 9.

Lemma 14. Let hypotheses (A∞) and (B) be satisfied and assume that the spectrum�(·)
is conically connected. Then there exists Ū ⊂ U which is dense and with zero-measure
complement in U such that for each N ∈ N,

∑N
j=1 α jλ j (ū) = 0 with (α1, . . . , αN ) ∈

Q
N and ū ∈ Ū implies α1 = α2 = · · · = αN = 0.
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In particular the spectrum of H(ū) for ū ∈ Ū as in Lemma 14 is such that two spectral
gaps λk(ū)− λ j (ū) and λr (ū)− λs(ū) are different if (k, j) 	= (r, s) and k 	= j , r 	= s.

In the infinite-dimensional case, the role of Proposition 11 is played by the following
corollary of [11, Theorem 2.6].

Proposition 15. Let hypotheses (A∞) and (B) be satisfied. Assume that there exists
ū ∈ U such that λk(ū) − λ j (ū) 	= λr (ū) − λs(ū) if (k, j) 	= (r, s), (k, j), (r, s) ∈
N

2\{(l, l) | l ∈ N}. Denote by (φ j (ū)) j∈N a Hilbert basis of eigenvectors of H(ū) and
let

S = {( j, k) ∈ N
2 | 〈φ j (ū), Hlφk(ū)〉 	= 0 for some l = 1, . . . ,m}.

If the graph having N as set of nodes and S as set of edges is connected then (8) is
approximately controllable in S.

The proof of Theorem 13 is then concluded as follows: Lemma 14 guarantees the
existence of ū such that the spectral gaps of�(ū) are all different; this allows to deduce
the conclusion from Proposition 15 provided that no proper linear subspace of H spanned
by eigenvectors of H(ū) is invariant for (8). As in the finite-dimensional case, this can
be proved by adiabatic methods, deducing from [43, Corollary 2.5] (or [15, Proposition
3.4]) that for every pair of eigenvectors of H(ū) there exists and admissible trajectory
of (8) connecting them with arbitrary precision.

Remark 16. Following [12], a stronger version of Proposition 15, and hence of Theo-
rem 13, could be stated, namely: under the same hypotheses, for every l ∈ N,ψ1, . . . , ψl ∈
S, ε > 0, and every unitary transformation ϒ of H, there exists a control function
u : [0, T ] → U such that, for every j = 1, . . . , l the solution of (8) having ψ j as initial
conditions arrives in a ε-neighborhood ofϒ(ψ j ) at time T . Notice that this is the natural
counterpart of controllability of the lift of (5) in the group of unitary transformations
proved in Sect. 2.

4. Equivalence Between Exact and Approximate Controllability
for Finite-Dimensional Systems

In the previous sections we have seen several sufficient conditions for controllability,
which is exact in the finite-dimensional case and approximate in the infinite-dimensional
one.

Our aim is to show that in the finite-dimensional case approximate controllability
always yields exact controllability for systems of the type

iψ̇(t) = H(u(t))ψ(t), ψ(t) ∈ S2n−1, u(t) ∈ U ⊂ R
m, (9)

or

i ġ(t) = H(u(t))g(t), g(t) ∈ G , u(t) ∈ U ⊂ R
m, (10)

where G denotes the group SU(n) if the trace of H(u) is zero for every u ∈ U and U(n)
otherwise.

More precisely, we have the following.

Theorem 17. System (9) is approximately controllable if and only it is exactly control-
lable. The same holds for system (10).

Remark 18. For a general nonlinear system, under the Lie bracket generating condi-
tion, approximate and exact controllability are equivalent (see [32, Lemma 6.3] or [29,
Proposition V.0.18]). We stress that here no Lie bracket generating condition is assumed.
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4.1. Remarks on Theorem 17. The proof of Theorem 17 is based on some results in
representation theory, recalled in the following section.

The statement of Theorem 17 for the lifted problem in SU(n) is folklore. Indeed, the
proof follows from the following 1942 result by Smith [42, note on p. 312], as detailed
below.

Theorem 19. [42] If a dense subgroup Ĝ of a simple Lie group G of dimension larger
than 1 contains an analytic arc, then Ĝ = G.

Proof of Theorem 17 in the case G = SU(n). Let (10) be approximately controllable in
SU(n). Then, the orbit from the identity is a dense subgroup Ĝ of SU(n). Any trajectory
of (10) with constant u is an analytic arc, contained in Ĝ . Then Ĝ = SU(n), i.e., the
orbit is the whole group. Lemma 3 yields that the accessible set coincides with G , i.e.,
that system (10) is exactly controllable. ��

Notice that the argument does not apply for G = U(n), since U(n) is not simple.
Moreover, the equivalence between approximate and exact controllability on the

sphere does not follow from the result on the lifted system. It is well-known, indeed,
that approximate/exact controllability on the group and on the sphere are not equivalent
since, as already recalled, if the Lie algebra generated by {i H(u) | u ∈ U } is equal to
sp(n/2) then (9) is exactly controllable, while (10) is not (even approximately).

4.2. Some facts from group-representation theory. In this section, we recall the two basic
main facts from representation theory that are needed in order to prove Theorem 17.
We consider a finite-dimensional representation of a Lie group G, X : G → L(h),
where h is a finite dimensional complex Hilbert space and L(h) denotes the space of
endomorphisms of h.

Theorem 20 below is stated by Dixmier in [25]. We need it for Lie groups, although
it holds more generally for locally compact topological groups.

We recall that the intersection of the kernels of all unitary irreducible finite-dimensional
representations of a group G is a subgroup of G. Then, G is said to be injectable in a
compact group2 if this subgroup is reduced to the identity of G.

Theorem 20. [25] 16.4.8 Let G be a connected, locally compact group. Then G is
injectable in a compact group if and only if G = R

p × K with p ≥ 0 and K a compact
group.

The second key fact that we need is due to Weil (see [46, p. 66] and [25, 13.1.8] for
a generalisation to infinite-dimensional representations for groups of type I).

Proposition 21. Let G = G1×G2 be the Cartesian product of two locally compact topo-
logical groups, and let X be an irreducible representation of G. Define the representation
X′

1 of G1 as X′
1(g1) := X(g1, e) and the representation X′

2 of G2 as X′
2(g2) := X(e, g2).

If X′
1 and X′

2 lie in a semisimple class of representations, then X is equivalent to the
tensor product X1 ⊗X2 with X1,X2 irreducible representations of G1,G2, respectively.

2 The definition given here is not the most natural, since injectability in a compact group is related to the
notion of compact group associated with a topological group that is defined via an universal property: For each
topological group G there exists a compact group � and a continuous morphism α : G → � such that for
any compact group �′ and continuous morphism α′ : G → �′ it exists a continuous morphism β : � → �′
such that α′ = β ◦ α. We give here only the definition that fits better with our purposes. For such beautiful
theory, see [25, 16.4].
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We would need to specify what a semisimple class of representations is, see [46, p. 65].
For our purpose, however, it is enough to recall that any class of bounded representation
is semisimple (see, e.g., [46, p. 70]).

Remark 22. We finally recall some elementary properties for unitary representations of
R

p. First recall that each irreducible unitary representation is a character, namely, a
representation of the type χξ (x) := eiξ ·x for some ξ ∈ R

p (see, e.g., [4, 6.1]). As a
consequence we have that, for p ≥ 1, unitary irreducible representations of R

p are not
faithful.

4.3. Proof of Theorem 17. It is clear that exact controllability implies approximate con-
trollability. The proof that approximate controllability implies exact controllability is
based on the following two results.

Proposition 23. Let G be a connected Lie subgroup of U (n). If the inclusion represen-
tation j : G ↪→ U (n) is irreducible, then G is compact.

Proof. Observe that the inclusion j : G ↪→ U (n) is a faithful (by definition) represen-
tation of G over C

n , since U (n) ⊂ L(Cn) = gl(n,C). Then, the kernel of j is reduced
to {e}, and thus G is injectable in a compact group.

Applying Theorem 20, we have that G = R
p × K with p ≥ 0 and K a compact

group. Remark that j is unitary, hence bounded. As already recalled, the class of bounded
representations of G is semisimple. Then we can apply Proposition 21, that gives us two
irreducible bounded representations X1 : R

p → L(Cm1) and X2 : K → L(Cm2) such
that j is equivalent to X1 ⊗ X2.

Since R
p is abelian and X1 is irreducible, then m1 = 1. Bounded irreducible (one

dimensional) continuous representations of R
p must be unitary. Hence X1 is a character

of R
p.

Since j is faithful, then X1 and X2 are faithful too. In conclusion, X1 is a faithful
irreducible unitary representation of R

p . Then, thanks to Remark 22, we have that p = 0.
Then G = K is compact. ��
Remark 24. The connectedness assumption in the statement of Proposition 23 is crucial:
the groups SE(2, N ) in [14] are counterexamples in the non-connected case.

Lemma 25. Let G be a subgroup of U (n) such that Gz is dense in S2n−1 for every
z ∈ S2n−1. Then j : G ↪→ U (n) is an irreducible representation of G.

Proof. Assume by contradiction that the inclusion is not irreducible, so that there exists
a proper subspace h of C

n which is invariant with respect to the action of G. Now take
z ∈ h ∩ S2n−1 and observe that Gz ⊂ h ∩ S2n−1. Thus Gz is not dense, leading to a
contradiction. ��

We can now conclude the proof of Theorem 17.
Let G be the orbit of (10), i.e., the subgroup of G whose Lie algebra is generated by

{i H(u) | u ∈ U } (see Definition 2).
Assume that system (9) is approximately controllable. The reachable set from a

point z ∈ S2n−1 for (9) is contained in the orbit Gz. Hence, Gz is dense in S2n−1 and
Lemma 25 guarantees that the inclusion j : G ↪→ U (n) is an irreducible representation
of G. We can then apply Proposition 23 and conclude that G is compact. In particular,



Approximate Controllability, Exact Controllability 1237

Gz is compact in S2n−1 for every z ∈ S2n−1. Finally, being Gz dense and compact in
S2n−1, it coincides wit S2n−1, i.e., the orbit from z of system (9) is equal to S2n−1. This
implies that system (9) satisfies the Lie bracket generating condition. We conclude from
the results recalled in Remark 18 that system (9) is exactly controllable.

Let now (10) be approximately controllable. Hence, G is dense in G . In particular,
system (9) is also approximately controllable and, according to the argument above, G is
compact. Hence G = G , i.e., by Lemma 3, (10) is exactly controllable. This concludes
the proof of Theorem 17.

Remark 26. If the attainable set of system (10) is dense in any subgroup G of U (n)which
acts transitively on S2n−1, then the same argument as above shows that (9) is exactly
controllable in S2n−1 and (10) is exactly controllable in G.

5. Conclusions

We have presented a sufficient condition for approximate controllability by adiabatic
evolution of quantum systems, which applies both in finite and infinite dimension. The
condition requires that the Hamiltonian depends on at least two control parameters and
that all energy levels are connected by conical eigenvalue intersections.

The advantage of this condition, with respect to techniques based on the generation
of new reachable directions by iterated Lie brackets, is that:

• the control laws are extremely regular and explicit,
• the checkability of the condition requires only information on the spectrum of the

Hamiltonian as a function of the control parameters, which is easily measured in
experimental situations.

The drawback is that at least two controls are necessary and that conical intersections,
although stable by perturbations, are not always present between all energy levels.

The approximate controllability is obtained as a consequence of the non-resonance
of the spectrum of the Hamiltonian for almost all values of the control parameters. It
turns out that in finite dimension, approximate and exact controllability are equivalent
properties and we prove this fact by representation theory arguments.
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