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TRAFFIC REGULATION VIA CONTROLLED SPEED LIMIT∗

MARIA LAURA DELLE MONACHE† , BENEDETTO PICCOLI‡ , AND

FRANCESCO ROSSI§

Abstract. We study an optimal control problem for traffic regulation via variable speed limit.
The traffic flow dynamics is described with the Lighthill–Whitham–Richards model with Newell–
Daganzo flux function. We aim at minimizing the L2 quadratic error to a desired outflow, given
an inflow on a single road. We first provide existence of a minimizer and compute analytically
the cost functional variations due to needle-like variation in the control policy. Then, we compare
three strategies: instantaneous policy; random exploration of control space; steepest descent using
numerical expression of gradient. We show that the gradient technique is able to achieve a cost
within 10% of the random exploration minimum with better computational performances.
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1. Introduction. In this paper, we study an optimal control problem for traffic
flow on a single road using a variable speed limit. The first traffic flow models on
a single road of infinite length using a nonlinear scalar hyperbolic partial differential
equation (PDE) are due to Lighthill and Whitham [33] and, independently, Richards
[35], who in the 1950s proposed a fluid dynamic model to describe traffic flow. Later
on, the model was extended to networks [20] and started to be used to control and
optimize traffic flow on roads. In the last decade, several authors studied optimization
and control of conservation laws and several papers proposed different approaches to
optimization of hyperbolic PDEs; see [5, 19, 21, 24, 31, 36, 37] and references therein.
These techniques were then employed to optimize traffic flow through, for example,
inflow regulation [12], ramp metering [34], and variable speed limit [22]. We focus
on the last approach, where the control is given by the maximal speed allowed on
the road. Notice that also the engineering literature presents a wealth of approaches
[1, 2, 10, 11, 13, 15, 25, 26, 27, 28, 29, 30, 38], but mostly in the time discrete
setting. In [1, 2] a dynamic feedback control law is employed to compute variable
speed limits using a discrete macroscopic model. Instead, [25, 26, 27] use model
predictive control to optimally coordinate variable speed limits for freeway traffic
with the aim of suppressing shock waves.

In this paper, we address the speed limit problem on a single road. The control
variable is the maximal allowed velocity, which may vary in time but we assume to
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be of bounded total variation, and we aim at tracking a given target outgoing flow.
More precisely, the main goal is to minimize the quadratic difference between the
achieved outflow and the given target outflow. Mathematically the problem is very
hard, because of the delays in the effect of the control variable (speed limit). In fact,
the link entering time (LET) τ(t), which represents the entering time of the car exiting
the road at time t (see (7)), depends on the given inflow and the control policy on the
whole time interval [τ(t), t]. Moreover, the input-output map is defined in terms of
LET, thus the achieved outflow at time t depends on the control variable on the whole
interval [τ(t), t]. Due to the complexity of the problem, in this article we restrict the
problem to free flow conditions. Notice that this assumption is not too restrictive.
Indeed, if the road is initially in free flow, then it will keep the free flow condition due
to properties of the Lighthill–Whitham–Richards (LWR) model; see [9, Lemma 1].

After formulating the optimal control problem, we consider needle-like variations
for the control policy as used in the classical Pontryagin maximum principle [8]. We
are able to derive an analytical expression of the one-sided variation of the cost,
corresponding to needle-like variations of the control policy, using fine properties of
functions with bounded variation. In particular the one-sided variations depend on the
sign of the control variation and involve integrals w.r.t. the distributional derivative
of the solution as a measure; see (10). This allows us to prove Lipschitz continuity of
the cost functional in the space of a bounded variation function and prove existence
of a solution.

Afterwards, we define three different techniques to numerically solve this problem.
• Instantaneous policy. We design a closed-loop policy, which depends only on

the instantaneous density at the road exit. More precisely, we choose the
speed limit which gives the nearest outflow to the desired one.

• Random exploration (RE). It uses time discretization and random binary tree
search of the control space to find the best maximal velocity profile.

• Gradient descent method (GDM). It consists in approximating numerically
the gradient of the cost functional using (10) combined with a steepest descent
method.

We compare the three approaches on two test cases: constant desired outflow and
sinusoidal inflow; sinusoidal desired outflow and inflow. In both cases RE provides
the best control policy, however, GDM performs within 10% of the best RE result
with a computational cost of around 15% of RE. On the other hand, instantaneous
policy performs poorly with respect to the RE, but with a very low computational
cost. Notice that, in some cases, instantaneous policy may be the only practical
policy, while GDM also represents a valid approach for real-time control, due to good
performance and reasonable computational costs. Moreover, control policies provided
by RE may have too large a total variation to be of practical use.

The paper is organized as follows: section 2 gives the description of the traffic
flow model and of the optimal control problem. Moreover, the existence of a solution
is proved. In section 3, the three different approaches to find control policies are
described. Then in section 4, these techniques are implemented on two test cases.
Final remarks and future work are discussed in section 5.

2. Mathematical model. In this section, we introduce a mathematical frame-
work for the speed regulation problem. The traffic dynamics is based on the classical
LWR model [33, 35], while the optimization problem will seek minimizers of quadratic
distance to an assigned outflow.
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Fig. 1. Velocity and flow for different speed limits.

2.1. Traffic flow modeling. We consider the LWR model on a single road of
length L to describe the traffic dynamics. The evolution in time of the car density
ρ is described by a Cauchy problem for scalar conservation law with time-dependent
maximal speed v(t):

(1)
{
ρt + f(ρ, v(t))x = 0, (t, x) ∈ R+ × [0, L],
ρ(0, x) = ρ0(x), x ∈ [0, L],

where ρ = ρ(t, x) ∈ [0, ρmax] with ρmax the maximal car density. In the transportation
literature the graph of the flux function ρ → f(ρ) (in our case for a fixed v(t)) is
commonly referred to as the fundamental diagram. Throughout the paper, we focus
on the Newell–Daganzo-type [14] fundamental diagrams; see Figure 1(b). The speed
takes value on a bounded interval v(t) ∈ [vmin, vmax], 0 < vmin ≤ vmax, thus the flux
function f : [0, ρmax]× [vmin, vmax]→ R+ is given by

(2) f(ρ, v(t)) =

 ρv(t) if 0 ≤ ρ ≤ ρcr,
v(t)ρcr

ρmax − ρcr
(ρmax − ρ) if ρcr < ρ ≤ ρmax

with v(t) representing the maximal speed; see Figure 1(a). Notice that the flow is
increasing up to a critical density ρcr and then decreasing. The interval [0, ρcr] is
referred to as the free flow zone, while [ρcr, ρmax] is referred to as the congested flow
zone.

The problem we consider is the following. Given an inflow In(t), we want to track
a fixed outflow Out(t) on a time horizon [0, T ], T > 0, by acting on the time-dependent
maximal velocity v(t). A maximal velocity function v : [0, T ] → [vmin, vmax] is called
a control policy.

It is easy to see that a road in free flow can become congested only because of
the outflow regulation with shocks moving backward; see [9, Lemma 2.3]. Since we
assume Neumann boundary conditions at the road exit, the traffic will always remain
in free flow, i.e., ρ(t, x) ≤ ρcr for every (t, x) ∈ [0, T ]× [0, L]. Given the inflow function
In(t), we consider the initial boundary value problem with assigned flow boundary
condition fl + f(ρ(t, 0+)) on the left in the sense of Bardos, Le Roux, and Nédélec
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(see [6]) and Neumann boundary condition (flow fr + f(ρ(t, 0−))) on the right:

(3)


ρt + f(ρ, v(t))x = 0, (t, x) ∈ R+ × [0, L],
ρ(0, x) = ρ0(x), x ∈ [0, L],
fl(t) = In(t),
fr(t) = ρ(t, L) v(t).

We denote by BV the space of scalar functions of bounded variations and by TV the
total variation; see [7] for details. For any scalar BV function h we denote by ξ(x±)
its right (respectively, left) limit at x. We further assume the following.

Hypothesis 2.1. There exists 0 < ρmin
0 ≤ ρmax

0 ≤ ρcr and 0 < fmin ≤ fmax such
that ρ0 ∈ BV([0, L], [ρmin

0 , ρmax
0 ]) and In ∈ BV([0, T ], [fmin, fmax]).

Under this assumption, we have the following.

Proposition 2.2. Assume that Hypothesis 2.1 holds and

v ∈ BV([0, T ], [vmin, vmax]).

Then, there exists a unique entropy solution ρ(t, x) to (3). Moreover, ρ(t, x) ≤ ρcr
and, setting

(4) Out(t) = ρ(t, L)v(t),

we have that Out(.) ∈ BV([0, T ],R) and the following estimates hold:

min
{
ρmin

0 ,
fmin

vmax

}
≤ ρ(t, x) ≤ max

{
ρmax

0 ,
fmax

vmin

}
for x ∈ [0, L],(5)

min
{
ρmin

0 vmin, fmin
vmin

vmax

}
≤ Out(t) ≤ max

{
ρmax

0 vmax, fmax
vmax

vmin

}
.(6)

Proof. Let vn ∈ BV([0, T ], [vmin, vmax]) be a sequence of piecewise constant func-
tions converging to v in L1 and satisfying TV(vn) ≤ TV(v). For each vn, by standard
properties of initial boundary value problems for conservation laws [6, Theorem 2] and
[16], there exists a unique BV entropy solution ρn to (3) with ρn ∈ Lip([0, T ],L1). No-
tice that the left flow condition is equivalent to the boundary condition: ρl(t) = In(t)

v(t) .
From [9, Lemma 2.3] and the Neumann boundary condition on the right, we get that
ρn(t, x) ≤ ρcr; thus, by the maximum principle it holds that

ρn(t, ·) ∈ BV
(

R,
[
min

{
ρmin

0 ,
fmin

vmax

}
,max

{
ρmax

0 ,
fmax

vmin

}])
.

Let us now estimate the total variation of the solution ρn. Since it solves a scalar
conservation laws, the total variation does not increase in time due to dynamics on
]0, L[. Notice that changes in v(·) will not increase the total variation of ρn inside the
road (i.e., on ]0, L[). The total variation of ρn increases only because of new waves
generated by changes in the inflow. Using the boundary condition ρl(t) = In(t)

v(t) , we
can estimate the total variation in space of ρn caused by the time variation of In,
respectively, time variation of v, by TV(In)

vmin
, respectively, fmax TV(v)

v2
min

. Finally we get

sup
t

TV(ρn(t, ·)) ≤ TV(ρn(0, ·) +
TV(In)
vmin

+
fmax TV(v)

v2
min

.

By Helly’s theorem (see [7, Theorem 2.4]) there exists a subsequence converging in
L1([0, T ]× [0, L]) to a limit ρ∗. By Lipschitz continuity of the flux and dominated con-
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Fig. 2. Graphical representation of the LET function τ = τ(t, v) defined in (7).

vergence we get that f(ρn(t, x), v(t)) converges in L1([0, T ]×[0, L]) to f(ρ∗(t, x), v(t)).
Passing to the limit in the weak formulation

∫
Ω ρ

n ϕt + f(ρn, w)ϕx dt dx = 0 (where
Ω ⊂⊂ [0, T ] × [0, L] and ϕ ∈ C∞0 ) we have that ρ∗ is a weak entropic solution. We
can pass to the limit also in the left boundary condition because this is equivalent
to ρl(t) = In(t)

v(t) and v is bounded from below. Finally ρ∗ is a solution to (3). The
standard Kružhkov entropy condition [32] and [6, Theorem 2] ensure uniqueness of
the solution. Since Out(t) = ρ(t, L)v(t), we have that Out(t) has bounded variation
and satisfies Proposition 2.2.

To simplify notation, we further make the following assumptions.

Hypothesis 2.3. We assume Hypothesis 2.1 and the following:

ρmin
0 ≤ fmin

vmax
and ρmax

0 ≥ fmax

vmin
.

Given a control policy v, we can define an LET function τ = τ(t, v) representing
the entering time for a car exiting the road at time t. The function depends on the
control policy v, but for simplicity we will write τ(t) when the policy is clear from
the context. Notice that LET is defined only for a time greater than a given t0 > 0,
the exit time of the car entering the road at time t = 0; see Figure 2. Note that t0
satisfies

∫ t0
0 v(s)ds = L and, for each t ≥ t0,

(7)
∫ t

τ(t)
v(s)ds = L.

Such τ(t) is unique, due to the hypothesis v ≥ vmin > 0. From the identity∫ τ(t2)

τ(t1)
v(s)ds =

∫ t2

t1

v(s)ds,

we get the following.

Lemma 2.4. Given a control policy v, the function τ is a Lipschitz continuous
function with Lipschitz constant vmax

vmin
.

Recalling the definition of outflow of the solution given in (4), we get the following.
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Proposition 2.5. The input-output flow map of the initial boundary value prob-
lem (3) is given by

(8) Out(t) = In(τ(t))
v(t)

v(τ(t))
.

Proof. Thanks to Proposition 2.2, the solution ρ to the initial boundary value
problem (3) satisfies ρ(t, x) ≤ ρcr, thus ρ solves a conservation law linear in ρ. In-
deed the Newell–Daganzo flow is linear in the free flow zone. Therefore, no shock
is produced inside the domain [0, L] and characteristics are defined for all times. In
particular the value of ρ is constant along characteristics. The characteristic exiting
the domain at time t enters the domain from the boundary at time τ(t). Therefore
we get ρ(t, L) = ρ(0, τ(t)) = In(τ(t))

v(τ(t)) . From (4) we get the desired conclusion.

Remark 2.6. This map is highly nonlinear with respect to the control policy v
due to the definition of τ . Hence, the classical techniques of linear control cannot be
applied. Moreover, such a formulation clearly shows how delays enter the input-output
flow map. The effect of the control v at time t on the outflow depends on the choice of
v on the time interval [τ(t), t], because of the presence of the LET map in formula (8).

2.2. Optimal control problem. We are now ready to define formally the prob-
lem of outflow tracking.

Problem 2.7. Let Hypothesis 2.3 hold, fix f∗ ∈ BV([0, T ], [fmin, fmax]) and K > 0.
Find the control policy v ∈ BV([0, T ], [vmin, vmax]) with TV(v) ≤ K, which minimizes
the functional J : BV([0, T ], [vmin, vmax])→ R defined by

(9) J(v) :=
∫ T

0
(Out(t)− f∗(t))2dt,

where Out(t) is given by (8).

We prove later on, in Proposition 2.15, that Problem 2.7 admits a solution.

Remark 2.8. We use the same positive extreme values fmin, fmax for both the
inflow In(.) and the target outflow f∗(.) for simplicity of notation only.

Remark 2.9. In the simple case where all the parameters are constant in time,
i.e., In, Out, f∗, ρ0 do not depend on time, the problem has a a trivial solution which
is v = f∗

ρ0
realizing J(v) = 0.

2.3. Cost variation as function of control policy variation. In this section
we estimate the variation of the cost J(v) with respect to the perturbations of the
control policy v. This computation will allow to prove continuous dependence of the
solution from the control policy.

We first fix the notation for integrals of the BV function with respect to Radon
measures.

Definition 2.10. Let φ be a BV function and µ a Radon measure. We define∫
φ(x+) dµ(x) :=

∫
φ(x) dµc(x) +

∑
i

miφ(x+
i ),

where µ = µc +
∑
imiδxi is the decomposition of µ into its continuous1 and Dirac

parts.

1We recall that any Radon measure on R can be decomposed into its continuous (AC + Cantor)
and Dirac parts, as a consequence of the Lebesgue decomposition Theorem; see, e.g., [17].
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Fig. 3. Needle-like variation of the velocity v.

We now compute the variation in the cost J produced by needle-like variation
in the control policy v(·), i.e., variation of the value of v(·) on small intervals of the
type [t, t+ ∆t] in the same spirit as the needle variations of the Pontryagin maximum
principle [8]. The analytical expression of variations will allow us to implement a
steepest-descent-type strategy to find the optimal speed limit.

Definition 2.11. Consider v ∈ BV([0, T ], [vmin, vmax]) and a time t such that
τ−1(0) = t0 ≤ t < τ(T ) and v(t+) < vmax. Let ∆v > 0, ∆t > 0 be sufficiently small
such that t + ∆t ≤ τ(T ) and v(t+) + ∆v ≤ vmax. We define a needle-like variation
v′(·) of v, corresponding to t, ∆t, and ∆v by setting v′(s) = v(s)+∆v if s ∈ [t, t+∆t]
and v′(s) = v(s) otherwise; see Figure 3.

Lemma 2.12. Consider v ∈ BV([0, T ], [vmin, vmax]) and let v′ be a needle-like vari-
ation of v. Then it holds that

lim
∆v→0+

lim
∆t→0+

J(v′)− J(v)
∆v

= 2ρ2(t, L−)v(t+)− 2ρ(t, L−)f∗(t+)

−
∫

]0,L]
v((t+ s(x))+) dρ2

x(t) + 2
∫

]0,L]
f∗((t+ s(x))+)) dρx(t)

+ 2
In(t−)
v(t+)

(
f∗(t+)− v(τ−1(t′)−)

v(t+)
In(t−)

)
,

(10)

where integrals are defined according to Definition 2.10. For ∆v < 0, the limit for
∆v → 0− satisfies the same formula with right limits replaced by left limits in the two
integral terms in (10).

Remark 2.13. Notice that the condition τ−1(0) = t0 < t implies that the outflow
Out(s) ∈ [t, t+∆t], depends only on the inflow In(.) and not on the initial density ρ0. If
such a condition is not satisfied, the perturbation given by ∆v has a comparable effect
on Out(.), but it needs to be estimated in two parts: one with respect to In([0, t+∆t])
and one with respect to ρ0(0, L− l) with l being such that∫ t

0
v(s)ds = l.

The condition t + ∆t ≤ τ(T ) means that the perturbation ∆v has influence on the
whole outflow Out(s) in the interval [t, τ−1(t+ ∆t)]. If this is not satisfied, then the
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influence of the perturbation is stopped at T < τ−1(t + ∆t), hence, the variation
Out(s) is smaller.

Proof. Let τ(t) be defined according to (7) and an outflow Out(t) according to
(8). For simplicity we assume that v(·) has a constant value v̂ := v(t+) on [t, t+ ∆t],
the general case holding because of properties of BV functions.

We define t′ = t+ ∆t and s′ to be the unique value satisfying∫ s′

0
v(t′ + σ)dσ = L− (v̂ + ∆v)∆t,

s′′ to be the unique value satisfying∫ s′′

0
v(t′ + σ)dσ = L− v̂∆t,

and s′′′ = τ−1(t′) − t′, hence,
∫ s′′′

0 v(t′ + σ)dσ = L. Notice that s′ < s′′ < s′′′. We
also define the function

(11) x(s) = L−
∫ s

0
v(t′ + σ)dσ.

Remark that x(s) is a decreasing function, with x(0) = L , x(s′) = (v̂ + ∆v)∆t,
x(s′′) = v̂∆t, and x(s′′′) = 0. We denote with Out′(s) the outflow, τ ′(s) the LET (see
(7)), and ρ′(s, x) the density for the policy v′. Clearly, we have Out′(s) = Out(s) for
s ∈ [0, t] ∪ [τ−1(t′), T ] and τ ′(s) = τ(s) for s ∈ [t0, t] ∪ [τ−1(t′), T ].

To compute the variation, we distinguish four time intervals: I1 = (t, t′), I2 =
(t′, t′ + s′), I3 = (t′ + s′, t′ + s′′), and I4 = (t′ + s′′, τ−1(t′)); see Figure 4. The
variation of the cost in the first interval can be directly computed as a function of the
velocity variation, while in the other intervals the delays in the outflow formula (8) will
render the computation more involved. We denote with J1, . . . , J4 the contributions
to lim∆t→0+(J(v′)− J(v))/∆v in the four intervals and estimate them separately.

Case 1. I1 = (t, t′). Let s ∈ [0, t′ − t] = [0,∆t], then Out(t + s) = ρ(t, L − sv̂)v̂
and Out′(t+ s) = ρ(t, L− s(v̂ + ∆v))(v̂ + ∆v). We have

J1 = lim
∆t→0+

1
∆t

[∫ ∆t

0

(
Out′(t+ s)− f∗(t+ s)

)2
ds(12)

−
∫ ∆t

0
(Out(t+ s)− f∗(t+ s))2

ds

]

= lim
∆t→0+

1
∆t

[∫ ∆t

0
Out′2(t+ s)−Out2(t+ s)

− 2f∗(t+ s)
(
Out′(t+ s)−Out(t+ s)

)
ds

]
.(13)

Substituting the expressions for the outflows we get

lim
∆t→0+

1
∆t

[∫ ∆t

0
ρ2(t, L− s(v̂ + ∆v))(v̂ + ∆v)2 − ρ2(t, L− sv̂)v̂2ds

−
∫ ∆t

0
2f∗(t+ s) (ρ(t, L− s(v̂ + ∆v))(v̂ + ∆v)− ρ(t, L− sv̂)v̂) ds

]
.
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Fig. 4. Graphical representation for the notation used in subsection 2.3.

Dividing the first integral into two parts and making the change of variable σ = s v̂+∆v
v̂ ,

lim
∆t→0+

1
∆t

[∫ ∆t(1+ ∆v
v̂ )

0
ρ2(t, L− σv̂)(v̂ + ∆v)�2

v̂

����v̂ + ∆v
dσ

−
∫ ∆t

0
ρ2(t, L− sv̂)v̂2ds−

∫ ∆t

0
2f∗(t+ s)(

v̂(ρ(t, L− s(v̂ + ∆v))− ρ(t, L− sv̂)) + ∆v(ρ(t, L− s(v̂ + ∆v)))
)
ds

]
.

After simple algebraic manipulation we get

lim
∆t→0+

1
∆t

[∫ ∆t(1+ ∆v
v̂ )

0
ρ2(t, L− sv̂)∆vv̂ds+

∫ ∆t(1+ ∆v
v̂ )

∆t
ρ2(t, L− sv̂)v̂2ds

−
∫ ∆t

0
2f∗(t+ s)

(
v̂(ρ(t, L− s(v̂ + ∆v))− ρ(L− sv̂))

+ ∆v(ρ(t, L− s(v̂ + ∆v)))
)
ds

]
,

lim
∆t→0+

1
∆t

[∫ ∆t

0
ρ2(t, L− sv̂)∆vv̂ds+

∫ ∆t(1+ ∆v
v̂ )

∆t
ρ2(t, L− sv̂)(v̂2 + ∆vv̂)ds

−
∫ ∆t

0
2f∗(t+ s)

(
v̂(ρ(t, L− s(v̂ + ∆v))− ρ(t, L− sv̂))

+ ∆v(ρ(t, L− s(v̂ + ∆v)))
)
ds

]
.

Taking the limit as ∆t→ 0+, we get

ρ2(t, L−)v̂∆v + ρ2(t, L−)�̂v(v̂ + ∆v)
∆v

�̂v
− 2f∗(t+)[v̂(����

ρ(t, L−) −����
ρ(t, L−))]− 2f∗(t+)∆vρ(t, L−)

= ρ2(t, L−)v̂∆v + ρ2(t, L−)(v̂ + ∆v)∆v − 2f∗(t+)∆vρ(t, L−),
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hence,
J1 = 2ρ2(t, L−)v̂ + ρ2(t, L−)∆v − 2f∗(t+)ρ(t, L−),

thus
lim

∆v→0+
J1 = 2ρ2(t, L−)v(t+)− 2f∗(t+)ρ(t, L−).

Case 2. I2 = (t′, t′ + s′). If s ∈ [0, s′] then Out(t′ + s) = ρ(t′, x(s))v(t′ + s) and
Out′(t′+ s) = ρ((t′, x(s)−∆v∆t))v(t′+ s). After decomposing J2 as was done for J1
in (12) and plugging in the expression of the outflows, we have

J2 = lim
∆t→0+

1
∆t

[∫ s′

0
v2(t′ + s)

(
ρ2(t′, x(s)−∆v∆t)− ρ2(t′, x(s))

)
ds

−
∫ s′

0
2f∗(t′ + s)v(t′ + s)

(
ρ(t′, x(s)−∆v∆t)− ρ(t′, x(s))

)
ds

]
.

(14)

Applying the change of variable s→ x(s) (see (11)), it holds

J2 = lim
∆t→0+

1
∆t

[∫ L

0+
v(t′ + s(x))

(
ρ2(t′, x−∆v∆t)− ρ2(t′, x)

)
dx

−
∫ L

0+
2f∗(t′ + s(x))

(
ρ(t′, x−∆v∆t)− ρ(t′, x)

)
dx

]
.

Notice that this change of variable is justified by Lemma A.1 of the appendix. Using
Lemma A.2 of the appendix, we get

lim
∆v→0+

J2 = −
∫ L

0+
v((t′ + s(x))+) dρ2

x(t′, x)

+ 2
∫ L

0+
f∗((t′ + s(x))+) dρx(t′, x).

Case 3. I3 = (t′ + s′, t′ + s′′). If s ∈ [s′, s′′] then Out(t′ + s) = ρ(t′, x(s))v(t′ + s)
and

Out′(t′ + s) = v(t′ + s)
g(s)

v̂ + ∆v
, g(s) = In

(
t′ − x(s)

v̂ + ∆v

)
.

After decomposing J3 as was done for J1 in (12) and plugging in the expression of
the outflows, we get

lim
∆t→0+

1
∆t

[∫ s′′

s′
v2(t′ + s)

g2(s)
(v̂ + ∆v)2 − ρ

2(t′, x(s))v2(t′ + s)

− 2f∗(t′ + s)
(
v(t′ + s)

g(s)
v̂ + ∆v

− ρ(t′, x(s))v(t′ + s)
)]

ds.

Observe that lim∆t→0+ s′ = lim∆t→0+ s′′ = τ−1(t′)−−t′ and
∫ s′′
s′
v(t′+σ)dσ = ∆v∆t,

then

∆v J3 =
∆v

v(τ−1(t′)−)
v2(τ−1(t′)−)In2(t′−)

[(
1

v̂ + ∆v

)2

−
(

1
v̂

)2
]

− ∆v
v(τ−1(t′)−)

2f∗(τ−1(t′)−)v(τ−1(t′)−)In(t′−)
(

1
v̂ + ∆v

− 1
v̂

)
,

(15)
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thus
lim

∆v→0+
J3 = 0.

Case 4. I4 = (t′ + s′′, t′ + s′′′). If s ∈ [s′′, s′′′] then we compute

Out(t′ + s) =
h(s)
v̂
v(t′ + s) h(s) = In

(
t′ − x(s)

v̂

)
,

and

Out′(t′ + s) = v(t′ + s)
g(s)

v̂ + ∆v
, g(s) = In

(
t′ − x(s)

v̂ + ∆v

)
.

We decompose J4 as was done with J1 in (12), plug in the expression of the outflows,
and use the equality

∫ s′′′
s′′

v(t′ + σ) dσ = v̂. Then, denoting ṽ = v(τ−1(t′)−), we have

∆vJ4 =
v̂

ṽ

[
ṽ2In2(t′−)

[(
1

v̂ + ∆v

)2

−
(

1
v̂

)2
]
− 2f∗(τ−1(t′)−)ṽIn(t′−)

[
1

v̂ + ∆v
− 1
v̂

]]
.

By passing to the limit, we get

lim
∆v→0+

J4 = 2f∗(τ−1(t′)−)
In(t′−)
v̂

− 2
ṽ

v̂2 In(t′−)2.

Lemma 2.12 and Remark 2.13 allow us to prove the following.

Proposition 2.14. For every K > 0 and C > 0, the functional J is Lipschitz
continuous on Ω := {v ∈ BV([0, T ], [vmin, vmax]) : TV(v) ≤ K} endowed with the
norm ‖v‖L1 .

Proof. Let v, ṽ ∈ Ω. Then v− v′ is in BV([0, T ], [vmin, vmax]) and can be approx-
imated by piecewise constant functions. This means the v − v′ can be approximated
in BV by needle-like variations as in Lemma 2.12. The right-hand side of (10) is
uniformly bounded (since v ∈ Ω and ρ ∈ BV with uniformly bounded variation).
Therefore we conclude that |J(v)− J(v′)| ≤ C‖v − v′‖L1 for some C > 0.

This allows us to prove the following existence result.

Proposition 2.15. Problem 2.7 admits a solution.

Proof. Ω = {v ∈ BV([0, T ], [vmin, vmax]) : TV(v) ≤ K} ∩ {v ∈ L∞([0, T ],
[vmin, vmax]) : ‖v‖∞ ≤ C} is compact in L1 (see, e.g., [4]), and J is Lipschitz continu-
ous on Ω, thus there exists a minimizer of Problem 2.7.

3. Control policies. In this section, we define three control policies for the time-
dependent maximal speed v. The first, called the instantaneous policy, is defined
by minimizing the instantaneous contribution for the cost J(v) at each time. We
will show that such a control policy does not provide a global minimizer due to
delays in the control effect on the cost for Problem 2.7. In particular, due to the
bound v ∈ [vmin, vmax]) the instantaneous minimization may induce a larger cost at
subsequent times. Then, we introduce a second control policy, called the RE policy.
Such a policy uses a random path along a binary tree, which corresponds to the upper
and lower bounds for v, i.e., v = vmax and v = vmin.

Finally, we introduce an effective strategy, which is one of the main results of
the paper. More precisely, a third control policy is searched using a GDM. The
classical GDM is based on computing the gradient w.r.t. the control space variable,



TRAFFIC REGULATION VIA CONTROLLED SPEED LIMIT 2947

in finite or infinite-dimensional setting, and then using steepest descent. We use
a different approach and replace the gradient with cost variations computed with
respect to needle-like variations in the control policy. This is in line with the spirit of
the Pontryagin maximum principle for optimal control problems. Therefore the key
ingredient to define the third policy is the explicit computation of the gradient given
in section 2.

3.1. Instantaneous policy.

Definition 3.1. Consider Problem 2.7. Define the instantaneous policy as fol-
lows:

(16) v(t) := P[vmin,vmax]

(
f∗(t−) · v(τ(t)−)

In(τ(t)−)

)
,

where the projection P[vmin,vmax] : R→ R is the function

(17) P[a,b](x) :=

 a for x < a,
x for x ∈ [a, b],
b for x > b.

Notice that this would be the optimal choice if f∗ and In would be constant; see
Remark 2.9. The instantaneous policy can also be written directly in terms of the
input-output map defined in Proposition 2.5. As we will show later, the instantaneous
policy is not optimal in general, i.e., it does not provide an optimal solution v for
Problem 2.7. Clearly, it provides the solution in the case of vmin sufficiently small
and vmax sufficiently big so that the projection operator reduces to the identity, i.e.,
v(t) = P[vmin,vmax](

f∗(t−)
ρ(L−) ) = f∗(t−)

ρ(L−) for all times. Indeed, in this case the output
Out(t) coincides with f∗(t), hence the cost J(v) is zero.

3.2. RE policy. The RE policy is defined as follows.

Definition 3.2. Given the extreme values for the maximal speed, vmax and vmin,
and a time step ∆t, the RE policy draws sequences of velocities from the set {vmax, vmin}
corresponding to control policy values on the intervals [i∆t, (i+ 1)∆t].

Notice that maximal speeds according to this algorithm can be generated for all
times, independently of the corresponding solution, in contrast to the instantaneous
policy which is based on the maximal speed at previous times. We will use numerical
optimization to choose the best among the generated random policies, showing in
particular that the instantaneous policy is not optimal in general.

3.3. Gradient method. We use needle-like variations and the analytical ex-
pression in (10) to numerically compute one-sided variations of the cost. We consider
such variations as estimates of the gradient of the cost in L1. More precisely, we give
the following definition.

Definition 3.3. The gradient policy is the result of a first-order optimization
algorithm to find a local minimum to Problem 2.7 using the GDM and the expression
in (10), stopping at a fixed precision tolerance.

We will show that the gradient method gives very good results compared to the
other policies taking into account the computational complexity.

4. Numerical simulations. In this section we show the numerical results ob-
tained by implementing the policies described in section 3. The numerical algorithm
for all the approaches is composed of two steps:
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1. Numerical scheme for the conservation law (1). The density values are com-
puted using the classical Godunov scheme, introduced in [23].

2. Numerical solution for the optimal control problem, i.e., computation of the
maximal speed using the instantaneous control, RE policy and gradient de-
scent.

Let ∆x and ∆t be the fixed space and time steps, and set xj+ 1
2

= j∆x, the cell
interfaces such that the computational cell is given by Cj = [xj− 1

2
, xj+ 2

2
]. The center

of the cell is denoted by xj = (j − 1
2 )∆x for j ∈ Z at each time step tn = n∆t for

n ∈ N. We fix J the number of space points and T the finite time horizon. We now
describe in detail the two steps.

4.1. Godunov scheme for hyperbolic PDEs. The Godunov scheme is a first
order scheme, based on an exact solution to Riemann problems. Given ρ(t, x), the
cell average of ρ in the cell Cj at time tn is defined as

(18) ρj =
1

∆x

∫ x
j+ 1

2

x
j− 1

2

ρ(tn, x)dx.

Then, the Godunov scheme consists of two main steps:
1. Solve the Riemann problem at each cell interface xj+ 1

2
with initial data

(ρj , ρj+1).
2. Compute the cell averages at time tn+1 in each computational cell and obtain
ρj .

Remark 4.1. Waves in two neighboring cells do not intersect before ∆t if the
following Courant–Friedrichs–Lewy condition holds:

(19) ∆tmax
j∈Z
|f ′(ρj)| ≤

1
2

min
j∈Z

∆x.

The Godunov scheme can be expressed in conservative form as

(20) ρn+1
j = ρnj −

∆t
∆x

(
F (ρnj , ρ

n
j+1, v

n)− F (ρnj−1ρ
n
j , v

n)
)
,

where vn is the maximal speed at time tn. Additionally, F (ρnj , ρ
n
j+1, v

n) is the Go-
dunov numerical flux that in general has the following expression:

(21) F (ρnj , ρ
n
j+1, v

n) =
{

minz∈[ρn
j ,ρ

n
j+1] f(z, vn) if ρnj ≤ ρnj+1,

maxz∈ρn
j+1,ρ

n
j
f(z, vn) if ρnj+1 ≤ ρnj .

For clarity, we included as an argument for the Godunov scheme, the maximal velocity
so that the dependence of the scheme on the optimal control could be explicit.

4.2. Velocity policies. The next step in the algorithm consists of computing a
control policy v that can be used in the Godunov scheme with the different approaches
introduced in section 3. In particular, for the instantaneous policy approach we
compute the velocity at each time step using the instantaneous outgoing flux. Instead,
using the other two approaches, the RE and the GDM, we compute beforehand the
value of the velocity at each time step and then use it to solve the conservation law
with the Godunov scheme.
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vmax

vmax

vmax vmin

vmin

vmax vmin

vmin

vmax

vmax vmin

vmin

vmax vmin

Fig. 5. The first branches of the binary tree used for sampling the velocity.

4.2.1. Instantaneous policy. We follow the control policy described in sub-
section 3.1 for the instantaneous control. At each time step, the velocity vn+1 is
computed using the following formula:

(22) vn+1 = v(tn+1) = P[vmin,vmax]

(
f∗(tn)
ρnJ

)
.

4.2.2. RE policy. To compute for each time step the value of the velocity, we
use a randomized path on a binary tree; see Figure 5. With such a technique, we
obtain several sequences of possible velocities. For each sequence the velocities are
used to compute the fluxes for the numerical simulations. We then choose the sequence
that minimizes the cost.

Remark 4.2. Notice that the control policy RE may have a very large total varia-
tion, thus it might not respect the bounds on TV given in Problem 2.7. Therefore the
found control policies may not be allowed as a solution of this problem. However, we
implement this technique for comparison with the results and performances obtained
by the GDM.

4.2.3. Gradient descent method. We first numerically compute one-sided
variations of the cost using (10). Then, we use the classical GDM [3] to find the
optimal control strategy and to compute the optimal velocity that fits the given
outflow profile, as described in Algorithm 1.

Algorithm 1 Algorithm for the gradient descent and computation of the optimal
control.

Input data: Initial and boundary condition for the PDE and initial velocity
Fix a step tolerance ε and find a suitable step size α
while |Ji+1 − Ji| ≤ ε do

Compute numerically cost variations ∇Ji

Update the optimal velocity vi+1 = vi − α∇Ji

Compute the new densities using the Godunov scheme
Compute the new value of the cost functional

end while

Remark 4.3. One might be interested in solving the optimal control problem by
applying an adjoint method, as is classical for finite-dimensional control systems.
Unluckily, for the problem described here by a partial differential equation, adjoint
equations are still unknown.

One might then discretize the dynamics, solve the finite-dimensional problem with
an adjoint equation, and finally pass to the limit. While we showed in [18] that one
can find minimizers by discretization for some specific mean-field equations, there is
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Fig. 6. Speed obtained by using the instantaneous policy (top, left), RE policy (top, right), and
the GDM (bottom) for a target flux f∗ = 0.3.

Table 1
Value of the cost functional and the average velocity for the different policies.

Method Cost Functional Average Speed
Fixed speed v = vmax = 1.0 873.0786 1.0
Fixed speed v = vmin = 0.5 785.2736 0.5

Instantaneous policy 850.3704 0.7867
Minimum of RE policy 723.6733 0.7597

Gradient method 735.0565 0.5241

no evidence that such a technique could work for the problem described here. In
particular, there is no evidence that the sequence of minimizers of the discretized
problem converge to the minimizer of the original one.

4.3. Simulations. We set the following parameters: L = 1, J = 100, T =
15.0, ρcr = 0.5, ρmax = 1, vmin = 0.5, vmax = 1.0. Moreover, the input flux at the
boundary of the domain is given by In = min (0.3 + 0.3 sin(2πtn), 0.5). We choose two
different target fluxes f∗ = 0.3 and f∗ = |(0.4 sin(tπ − 0.3))|. The initial condition is
a constant density ρ(0, x) = 0.4. We use oscillating inflows to represent variations in
typical inflow of urban or highway networks at the 24 h time scale.

4.3.1. Test I: Constant outflow. In Figure 6, we show the time-varying speed
obtained by using the instantaneous policy (left) and by using the GDM (bottom). In
each case, we notice that due to the oscillating input signal the control policy is also
oscillating. We are aware, however, that from a practical point of view, the solution
where the speed changes at each time step might be unfeasible. Nonetheless, these
policies can be seen as a periodic change of maximal speed for different time frames
during the day when the time horizon is scaled to the day length.

In Table 1, we see the different results obtained for the cost functional computed
at the final time for the different policies. For comparison, we also put the results of
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Fig. 7. Histogram of the distribution of the value of the cost functional for the RE policy. We
run 1000 different simulations.

Fig. 8. Difference between the real outgoing flux and the target constant flux, computed with
the instantaneous policy (top, left), the gradient method (top, right) and the RE policy (bottom).

the simulations with a constant speed equal to the minimum and maximal velocity
bounds. The instantaneous policy is outperformed by the RE policy and by the
gradient method. For the RE policy, in the table we put the minimal value of the cost
functional computed by the algorithm. In Figure 7 we can see the distribution of the
different values of the cost functional over 1000 simulations. Moreover, in Figure 8,
we can see the differences between the actual outflow obtained and the target one for
all methods.

We also compared the CPU time for the different simulations approaches (see
Table 2). As expected, the RE policy is the least performing while the instantaneous
policy is the fastest one. In addition, we computed the TV(v) for each one of the
policies obtaining the following results:
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Table 2
CPU Time for the simulations performed with the different approaches.

Method CPU Time (s)
Instantaneous policy 32.756

RE policy 7577.390
Gradient method 1034.567

Fig. 9. Speed obtained by using the instantaneous policy (top, left), RE policy (top, right), and
the GDM (bottom) and the gradient GDM (bottom) for a sinusoidal target flux.

• Instantaneous policy: TV(v) = 12.6904
• RE: TV(v) = 753.5
• GDM: TV(v) = 70.81333.

4.3.2. Test II: Sinusoidal outflow. In Figure 9, we show the optimal velocity
obtained by using the instantaneous policy and by using the GDM with a sinusoidal
outflow. We show in Figure 10 the histogram of the cost functional obtained for the
RE policy and in Figure 11 we compare the real outgoing flux with the target one.
In Table 3, different results obtained for the cost functional computed at the final
time for the different policies are shown. Also in this case the instantaneous policy is
outperformed by the other two. The CPU times give results similar to the previous
test.

5. Conclusions. In this work, we studied an optimal control problem for traffic
regulation on a single road via variable speed limit. The traffic flow is described
by the LWR model equipped with the Newell–Daganzo flux function. The optimal
control problem consists in tracking a given target outflow in free flow conditions.
We proved the existence of a solution for the optimal control problem and provided
explicit analytical formulas for cost variations corresponding to needle-like variations
of the control policy. We proposed three different control policy designs: instantaneous
depending only on the instantaneous downstream density, random simulations, and
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Fig. 10. Histogram of the distribution of the value of the cost functional for the RE policy. We
run 1000 different simulations.

Fig. 11. Difference between the real outgoing flux and the target sinusoidal flux, computed with
the instantaneous policy (top, left), the RE (top, right) and the gradient method (bottom).

Table 3
Value of the cost functional for the different policies.

Method Cost functional Average speed
Fixed speed v = vmax = 1.0 1.3979e+ 03 1.0
Fixed speed v = vmin = 0.5 843.3395 0.5

Instantaneous policy 458.8874 0.7917
Minimum of RE policy 303.8327 0.7512

Gradient method 307.6889 0.6001
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gradient descent. The latter, based on numerical simulations for the cost variation,
represents the best compromise between performance, computational cost, and total
variation of the control policy.

Future works will include the study of this problem in the case of congestion and
the extension to second order traffic flow models.

Appendix A.

Lemma A.1. Let β, T > 0 and ϕ ∈ BV([0, T ],R+) be given.
Define L :=

∫ T
0 ϕ(σ) dσ and the function x : [0, T ] → [0, L] by x(s) := L −∫ s

0 ϕ(σ)dσ, that is invertible. Define α ≥ β and the function t̄ :
(
0, Lα

]
→ [0, L] such

that t̄(∆t) is the unique solution of
∫ t̄(∆t)

0 ϕ(σ)dσ = L− α∆t.
It then holds

lim
∆t→0+

1
∆t

[∫ t̄(∆t)

0
ϕ2(s)

(
ψ(x(s)− β∆t)− ψ(x(s))

)
ds

]

= lim
∆t→0+

1
∆t

[∫ L

0+
ϕ(s(x))

(
ψ(x− β∆t)− ψ(x)

)
dx

]
.

(23)

Proof. The change of variable s→ x(s) inside the integral gives

lim
∆t→0+

1
∆t

[∫ t̄(∆t)

0
ϕ2(s)

(
ψ(x(s)− β∆t)− ψ(x(s))

)
ds

]

= lim
∆t→0+

− 1
∆t

∫ α∆t

L

ϕ(s(x))
(
ψ(x− β∆t)− ψ(x)

)
dx,

(24)

lim
∆t→0+

1
∆t

∫ L

0+
ϕ(s(x))

(
ψ(x− β∆t)− ψ(x)

)
dx

− lim
∆t→0+

1
∆t

∫ α∆t

0+
ϕ(s(x))

(
ψ(x(s)− β∆t)− ψ(x(s))

)
dx,

(25)

where s(x) is uniquely determined by the invertibility of the function x(s). Observe
that we need to specify the 0+ extremum in the integral, since the limit will provide
Dirac terms inside the integral. We want to now prove that the last addendum tends
to zero. Denote by ψx the distributional derivative of ψ, which is a measure, and
decompose it as in the continuous (AC + Cantor) and Dirac part. By integrating ψx,
we write ψ = ψ̃ +

∑
imiχ[xi,L] with ψ̃ a continuous function, mi > 0,

∑
imi < +∞,

and xi ∈ [0, L] . Hence, by the mean value theorem applied to ψ̃, we have

lim
∆t→0+

1
∆t

∫ α∆t

0+
ϕ(s(x))

∣∣∣ψ̃(x(s)− β∆t)− ψ̃(x(s))
∣∣∣dx

≤ lim
∆t→0+

‖ϕ‖∞α
∣∣∣ψ̃(x̃− β∆t)− ψ̃(x̃)

∣∣∣ = 0,
(26)

where x̃ ∈ (0, α∆t) is a point (depending on ∆t) and the limit is zero as a consequence
of the continuity of ψ̃. The remaining term in (25) is then

lim
∆t→0+

1
∆t

∫ α∆t

0+
ϕ(s(x))

∑
xi∈(0,α∆t]

mi(χ[xi−β∆t,L] − χ[xi,L]) dx

= lim
∆t→0+

1
∆t

∑
xi∈(0,α∆t]

ϕ(s(xi)−)miβ∆t ≤ lim
∆t→0+

β‖ϕ‖∞
∑

xi∈(0,α∆t]

mi.
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Since ψ is in BV the quantity
∑
xi∈(0,α∆t]mi tends to zero as ∆t tends to zero, thus

we conclude.

Lemma A.2. Let ϕ,ψ ∈ BV([a− ε, b+ ε],R), then

lim
∆t→0+

1
∆t

∫ b

a

ϕ(x)
(
ψ(x− C∆t)− ψ(x)

)
dx = −C

∫ b

a

ϕ(x+)dψx(x),(27)

where the integral in the right-hand side is defined in Definition 2.10.

Proof. We decompose the measure ψx as ψx = ` dλ +
∑
imiδxi , where λ is the

Lebesgue measure, ` the Radon–Nikodym derivative of ψx w.r.t. λ, mi > 0, and∑
imi < +∞. We approximate ψ by piecewise continuous functions ψn defined as the

integrals of ψnx = ` dλ+
∑
i≤N(n)miδxi

, where N(n) is chosen such that
∑
i>N(n)mi <

1
n .

Define I(n) = ∪N(n)
i=1 [xi, xi +C∆t] and by Ic its complement in [a, b]. Notice that

for x ∈ [xi, xi + C∆t] we have ψn(x− C∆t)− ψn(x) = −mi −
∫ x
x−C∆t ` dλ while on

Ic there are no jumps so ψn(x− C∆t)− ψn(x) = −
∫ x
x−C∆t ` dλ. We thus can write

lim
∆t→0+

1
∆t

∫ b

a

ϕ(x)
(
ψn(x− C∆t)− ψn(x)

)
dx

= lim
∆t→0+

1
∆t

N(n)∑
i=1

∫ xi+C∆t

xi

ϕ(x)
(
ψn(x− C∆t)− ψn(x)

)
dx

+
∫
Ic

ϕ(x)
(
ψn(x− C∆t)− ψn(x)

)
dx

= lim
∆t→0+

1
∆t

N(n)∑
i=1

(−mi)
∫ xi+C∆t

xi

ϕ(x)dx− 1
∆t

∫ b

a

ϕ(x)
∫ x

x−C∆t
` dλ dx.(28)

Since ϕ is in BV we can write

lim
∆t→0+

1
∆t

∫ b

a

ϕ(x)
(
ψn(x− C∆t)− ψn(x)

)
dx

= −
N(n)∑
i=1

miϕ(x+)−
∫ b

a

ϕ(x)d(`λ)

= −
∫ b

a

ϕ(x+)d

N(n)∑
i=1

miδxi
+ `λ

 = −
∫ b

a

ϕ(x+)dψnx

Now, the following estimates hold:∣∣∣∣∣ 1
∆t

∫ b

a

ϕ(x)
(
ψn(x− C∆t)− ψn(x)

)
dx− 1

∆t

∫ b

a

ϕ(x)
(
ψ(x− C∆t)− ψ(x)

)
dx

∣∣∣∣∣
=

∣∣∣∣∣ 1
∆t

∫ b

a

ϕ
(
ψn(x− C∆t)− ψ(x− C∆t)

)
−
(
ψn(x)− ψ(x)

)
dx

∣∣∣∣∣.
We can write ψn(x−C∆t) = ψ(a)+

∫ x−C∆t
a

dψnx and ψ(x−C∆t) = ψ(a)+
∫ x−C∆t
a

dψx,
which gives us

=

∣∣∣∣∣ 1
∆t

∫ b

a

ϕ(x)

(∫ x−C∆t

a

drn −
∫ x

a

drn

)
dx

∣∣∣∣∣,
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where rn = ψ − ψn. Taking the limit for ∆t→ 0+,∣∣∣∣∣ 1
∆t

∫ b

a

ϕ(x)
(
ψn(x− C∆t)− ψn(x)

)
dx− 1

∆t

∫ b

a

ϕ(x)
(
ψ(x− C∆t)− ψ(x)

)
dx

∣∣∣∣∣
≤

∣∣∣∣∣ 1
∆t

∫ b

a

ϕ(x)
(
−
∫ x

x−C∆t
drn

)
dx

∣∣∣∣∣
≤ ‖ϕ‖∞

1
∆t

∣∣∣∣∣
∫ b

a

∫ x

x−C∆t
drndx

∣∣∣∣∣ ≤ ‖ϕ‖∞ 1
n
.

The last inequality holds true because∫ x

x−C∆t
drn =

∑
i

mi

∫ x

x−C∆t
dδxi =

∑
i

miχ[xi,xi+C∆t].

Thus we get

lim
∆t→0+

1
∆t

∫ b

a

ϕ
(
ψ(x− C∆t)− ψ(x)dx

)
= O

(
1
n

)
+
∫ b

a

ϕ(x+)dψnx .

Let us now estimate the quantity∣∣∣∣∣
∫ b

a

ϕ(x+)dψnx −
∫ b

a

ϕ(x+)dψx

∣∣∣∣∣.
Recalling that ψn(x − C∆t) = ψ(a) +

∫ x−C∆t
a

dψnx and ψ(x − C∆t) = ψ(a) +∫ x−C∆t
a

dψx we get ∣∣∣∣∣∣
∫ b

a

ϕ(x+)d

 ∑
i≥N(n)

miδxi

∣∣∣∣∣∣ ≤ ‖ϕ‖∞ 1
n
.

Passing to the limit in n we conclude.
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[22] P. Goatin, S. Göttlich, and O. Kolb, Speed limit and ramp meter control for traffic flow
networks, Eng. Optim., 48 (2016), pp. 1121–1144.

[23] S. K. Godunov, A finite difference method for the numerical computation of discontinuous
solutions of the equations of fluid dynamics, Math. Sb., 47 (1959), pp. 271–290.

[24] M. Gugat, M. Herty, A. Klar, and G. Leugering, Optimal control for traffic flow networks,
J. Optim. Theory Appl., 126 (2005), pp. 589–616.

[25] A. Hegyi, B. De Schutter, and J. Hellendoorn, Model predictive control for optimal co-
ordination of ramp metering and variable speed limits, Transport. Res. Part C, 13 (2005),
pp. 185–209.

[26] A. Hegyi, B. De Schutter, and J. Hellendoorn, Optimal coordination of variable speed
limit to suppress shock waves, IEEE Trans. Intell. Transport. Syst., 6 (2005), pp. 102–112.

[27] A. Hegyi and S. P. Hoogendoorn, Dynamic speed limit control to resolve shock waves on
freeways - Field test results of the SPECIALIST algorithm, in 13th International IEEE
Annual Conference on Intelligent Transportation Systems, IEEE, Piscataway, NJ, 2010,
pp. 519–524.

[28] A. Hegyi, S. P. Hoogendoorn, M. Schreuder, and H. Stoelhorst, The expected effectivity
of the dynamic speed limit algorithm SPECIALIST - a field data evaluation method, in
Proceedings of the European Control Conference, IEEE, 2009, pp. 1770–1775.

[29] A. Hegyi, S. P. Hoogendoorn, M. Schreuder, H. Stoelhorst, and F. Viti, SPECIALIST:
A dynamic speed limit control algorithm based on shock wave theory, in Proceedings of
the 11th International IEEE Conference on Intelligent Transportation Systems, IEEE,
Piscataway, NJ, 2008, pp. 827–832.

[30] Z. Hou, J.-X. Xu, and H. Zhong, Freeway traffic control using iterative learning control-based
ramp metering and speed signaling, IEEE Trans. Veh. Technol., 56 (2007), pp. 466–477.

[31] D. Jacquet, M. Krstic, and C. Canudas De Wit, Optimal control of scalar one-dimensional
conservation laws, in Proceedings of the 2006 American Control Conference, IEEE, Pis-
cataway, NJ, 2006, pp. 5213–5218.
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