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ANTHROPOMORPHIC IMAGE RECONSTRUCTION VIA
HYPOELLIPTIC DIFFUSION∗

UGO BOSCAIN† , JEAN DUPLAIX‡ , JEAN-PAUL GAUTHIER§ , AND FRANCESCO ROSSI¶

Abstract. In this paper we study a model of geometry of vision due to Petitot, Citti, and Sarti.
One of the main features of this model is that the primary visual cortex V1 lifts an image from
R2 to the bundle of directions of the plane. Neurons are grouped into orientation columns, each of
them corresponding to a point of this bundle. In this model a corrupted image is reconstructed by
minimizing the energy necessary for the activation of the orientation columns corresponding to regions
in which the image is corrupted. The minimization process intrinsically defines a hypoelliptic heat
equation on the bundle of directions of the plane. In the original model, directions are considered both
with and without orientation, giving rise, respectively, to a problem on the group of rototranslations of
the plane SE(2) or on the projective tangent bundle of the plane PTR2. We provide a mathematical
proof of several important facts for this model. We first prove that the model is mathematically
consistent only if directions are considered without orientation. We then prove that the convolution
of an L2(R2,R) function (e.g., an image) with a two-dimensional (2D) Gaussian is generically a
Morse function. This fact is important since the lift of Morse functions to PTR2 is defined on a
smooth manifold. We then provide the explicit expression of the hypoelliptic heat kernel on PTR2

in terms of Mathieu functions. Finally, we present the main ideas of an algorithm which allows us
to perform image reconstruction on real nonacademic images. A very interesting point is that this
algorithm is massively parallelizable and needs no information on where the image is corrupted.
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1. Introduction. In this paper we study a model of geometry of vision due to
Petitot, Citti, and Sarti. The main reference for the model is the paper [15]. Its first
version can be found in [39]. This model was also studied by the authors of the present
paper in [10], by Hladky and Pauls [24], and, independently, by Duits and coworkers in
a series of papers covering mostly contour completion [17] and contour enhancement
[18, 19]. This model has been called the pinwheel model by Petitot himself; see [37].
See also [38, 44] and references therein.

To start with, assume that a grey-level image is represented by a function I ∈
L2(D,R), where D is an open bounded domain of R2. The algorithm that we present
here is based on three crucial ideas coming from neurophysiology:

1. It is widely accepted that the retina approximately smooths the images by
making the convolution with a Gaussian function (see, for instance, [28, 33, 36]
and references therein), equivalently solving a certain isotropic heat equation.
Moreover, smoothing by the same technique is a widely used method in image
processing. Then, it is an interesting question in itself to understand generic
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properties of these smoothed images. Our first result (proved in the appendix)
is that, given G(σx, σy), the two-dimensional (2D) Gaussian centered in (0, 0)
with standard deviations σx, σy > 0, the smoothed image

f = I ∗G(σx, σy) ∈ L2(R2,R) ∩ C∞(R2,R)

is generically a Morse function (i.e., a smooth function having as critical
points only nondegenerate maxima, minima, and saddles). This has interest-
ing consequences, as explained in the following.
Remark 1. In several applications, the convolution is made with a Gaussian of
small standard deviations. Equivalently, the smoothed image can be obtained
as the solution of an isotropic heat equation with small final time.
Remark 2. These results can be generalized to non-Gaussian filters and even
to nonlinear smoothing processes. See, for instance, [16] for some of these
generalizations.

2. The primary visual cortex V1 lifts the image from R2 to the bundle
of directions of the plane PTR2. In a simplified model1 (see [15] and
[38, p. 79]), neurons of V1 are grouped into orientation columns, each being
sensitive to visual stimuli at a given point a of the retina and for a given
direction p on it. The retina is modeled by the real plane, i.e., each point
is represented by a ∈ R2, while the directions at a given point are modeled
by the projective line, i.e., p ∈ P 1. Hence, the primary visual cortex V1 is
modeled by the so-called projective tangent bundle PTR2 := R2 × P 1. From
a neurological point of view, orientation columns are in turn grouped into
hypercolumns, each being sensitive to stimuli at a given point a with any
direction. In the same hypercolumn, relative to a point a of the plane, we
also find neurons that are sensitive to other stimuli properties, such as colors.
In this paper, we focus only on directions, and therefore each hypercolumn is
represented by a fiber P 1 of the bundle PTR2. See Figure 1.1.
The space PTR2 has the topology of R2 × P 1 (it is a trivial bundle) and its
points are triples (x, y, θ), where (x, y) ∈ R2, θ ∈ R/(πZ).
The smoothed image f : R2 → R is lifted to a a function f̄ defined as follows:

f̄(x, y, θ) =

{
f(x, y) if θ is the direction of the level set of f ,

0 otherwise.

It follows that f̄ has support on a set Sf ⊂ PTR2. The following fact consti-
tutes our second result. If f is a Morse function (which happens generically
due to the smoothing of the retina as explained above), then Sf is an embed-
ded surface in PTR2; see Proposition 19.

3. If the image is corrupted or missing on a set Ω ⊂ D (i.e., if I is defined on
D \ Ω), then the reconstruction in Ω is made by minimizing a given cost.
This cost represents the energy that the primary visual cortex should spend
in order to excite orientation columns which correspond to points in Ω and
hence are not directly excited by the image. An orientation column is easily
excited if it is close to another (already activated) orientation column sensitive
to a similar direction in a close position (i.e., if the two are close in PTR2).

1For example, in this model we do not take into account the fact that the continuous space of
stimuli is implemented via a discrete set of neurons.
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Fig. 1.1. A scheme of the primary visual cortex V1.

When the image to be reconstructed is a curve, this gives rise to a sub-
Riemannian problem (i.e., an optimal control problem linear in the control
and with quadratic cost) on PTR2, which we briefly discuss in sections 2.3,
2.4, 2.5.2

When the image is not just a curve, the reconstruction is made by considering
the diffusion process naturally associated with the sub-Riemannian problem
on PTR2 (described by a hypoelliptic heat equation). Such a reconstruction
makes use of the function f̄ as the initial condition in a suitable way. The
reconstructed image is then obtained by projecting the result of the diffusion
from PTR2 to R2.

In this paper we study this model, providing a mathematical proof of several key
facts and adding certain important details with respect to its original version given
in [15, 44]. The main improvements are the following:

(A) As already mentioned, we start with any function I ∈ L2(D,R), and we
prove that after convolution with a Gaussian of standard deviations3 σx = σy,
generically, we are left with a Morse function f ∈ L2(R2,R)∩C∞(R2,R) (see
the appendix). This smoothing process is important for guaranteeing certain
regularity of the domain of definition of the lifted function f̄ .

(B) Our definition of the lift is suitable to all smooth functions, since we don’t
require conditions like nondegenerate gradient (as in [15]) or more compli-
cated conditions on the so-called non-Legendrian solitary points (as in [24,
Thm. 1.6]).

2In particular, this sub-Riemannian structure has an underlying contact structure. To the best
of our knowledge, the first time in which the visual cortex was modeled as a contact structure was
in [25].

3We fix σx = σy to guarantee invariance by rototranslations of the algorithm.
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(C) Recall that PTR2 can be seen as the quotient of the group of rototranslations
of the plane SE(2) � R2 × S1 by Z2, where the quotient is the identification
of antipodal points in S1. In the first version of this model [15] the image is
lifted on SE(2) (i.e., directions are considered with orientation), while in the
second one [44] it is lifted on PTR2 (i.e., directions are considered without
orientation). The next contribution of our paper is to show that the problem
of reconstruction of images for smooth functions is well-posed on PTR2 while
it is not on SE(2). First, on PTR2 the lift is unique, while on SE(2) it is
not, since level sets of the image are not oriented curves. Second, the problem
on SE(2) cannot be interpreted as a problem of reconstruction of contours
(see Remarks 4 and 13 and [10]). Third, as proved in Proposition 19, the
domain Sf of the lift of a Morse function f is much more natural on PTR2

than on SE(2). On PTR2 it is a manifold, while on SE(2) it is a manifold
with a boundary (for a continuous choice of the orientation of the level sets
of f). The boundary appears on minima, maxima, and saddles of f . In the
diffusion process, starting with an initial condition which is concentrated on
a manifold is much more natural than starting with an initial condition which
is concentrated on a manifold with a boundary.

(D) We show that the sub-Riemannian structure over PTR2 is not trivializable,
which means that it cannot be specified by a single global orthonormal frame
as in [44]. For a detailed discussion of this issue see Remark 6 and [10].

(E) We give the expression of the hypoelliptic heat kernel over PTR2, while, pre-
viously, it was known only on SE(2) (see [4]; see also [17, 18], where it was
found independently).

(F) We provide an effective algorithm for image reconstruction that looks un-
expectedly efficient on real nonacademic examples, as shown in section 3.3.
Moreover, our algorithm has the good feature of being massively paralleliz-
able (see section 3). This is just the materialization of the classical fact that
the noncommutative Fourier transform disintegrates the regular representa-
tion over SE(2). Moreover, the algorithm does not need information about
where the original image is corrupted.

Other numerical methods to compute hypoelliptic diffusion on SE(2) for image
processing have been developed, for instance, group convolution methods (see [14,
18, 20]) finite differences [15, 44, 21],4 and finite elements methods. (See [18, 19].
These last works are related to the noncommutative Fourier transform on SE(2) and
are extensions of the works by August [7].) Most of these works are about contour
enhancement.

Remark 3. Notice that from the very beginning of the algorithm, we deal with
the intensity of the image. Other related algorithms [15, section 3.3], [24] are instead
composed of two reconstruction steps. After the lift of the image, these algorithms
have to deal with a surface in SE(2) or PTR2 with a hole, corresponding to the
corrupted part. The first reconstruction step is thus to fill the hole as a surface,
without considering the intensity of the image. The second reconstruction step is
then to put the intensity on the reconstructed part. See Remarks 15 and 22.

The results of our algorithm can be compared to those of psychological experi-
ments. Moreover, they can be useful for reconstructing the geometry of an image as
a preliminary step of exemplar-based methods (see [12]).

4Notice that classical finite difference methods “hardly work” to compute hypoelliptic diffusion.
This is due to the diffusion at different scales on different directions as a consequence of the non-
ellipticity of the diffusion operator.
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Notice that an alternative technique of image processing (in particular for con-
tour completion) based on physiological models of the visual cortex was proposed by
Mumford [32] and then developed in [17, 18, 19]. In these models, contours (or level
sets of an image) are considered with orientation, and a nonisotropic diffusion is as-
sociated to an optimal control problem with drift having elastica curves as solutions.
We briefly compare the method presented in this paper with the one by Mumford in
section 2.8.1.

The structure of the paper is the following. In section 2 we present in detail
the sub-Riemannian structure defined on PTR2. We then define the corresponding
hypoelliptic diffusion, which is one of the main tools used in the algorithm of image
reconstruction, and we find explicitly the corresponding kernel on PTR2. At the end,
we present in detail the mathematical algorithm.

Section 3 is devoted to the discussion about the numerical integration of the
hypoelliptic evolution and to the presentation of samples.

The appendix is devoted to the detailed proof that, generically, the convolution of
an L2 function over a bounded domain D ⊂ R2 with a Gaussian G is a Morse function.
In particular, we prove that the set of functions I ∈ L2(D), whose convolution with a
Gaussian is a Morse function in L2(D), is residual (i.e., it is a countable intersection of
open and dense sets). We then prove that the set of functions I ∈ L2(D) such that I∗G
restricted to a compact K ⊂ R2 is a Morse function is open and dense. Notice again
that the proof can be adapted to any reasonable smoothing process, not only Gaussian.

2. The mathematical model and the algorithm.

2.1. Reconstruction of a curve. In this section we briefly describe an algo-
rithm for reconstructing interrupted planar curves. The main interest of this section
is the definition of the sub-Riemannian structure over PTR2, from which we are going
to define the subelliptic diffusion equation. The main reference for this algorithm is
[15], where the lift of a planar curve was defined on SE(2) rather than on PTR2. The
same problem, stated for curves on the 2D sphere, was studied in [11].

Consider a smooth function γ0 : [a, b] ∪ [c, d] → R2 (with a < b < c < d)
representing a curve that is partially hidden or deleted in (b, c). We assume that
starting and ending points never coincide, i.e., γ0(b) 	= γ0(c), and that initial and
final velocities γ̇(b) and γ̇(c) are well defined and nonvanishing.

We want to find a curve γ : [b, c] → R2 that completes γ0 in the deleted part
and that minimizes a cost depending on both the length and the curvature Kγ of γ.
Recall that

Kγ =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
,

where (x, y) are the components of γ.
The fact that γ completes γ0 means that γ(b) = γ0(b), γ(c) = γ0(c). It is also

reasonable to require that the directions of tangent vectors coincide, i.e., γ̇(b) ≈
γ̇0(b), γ̇(c) ≈ γ̇0(c), where

v1 ≈ v2 if it exists α ∈ R \ {0} such that v1 = αv2.(2.1)

Remark 4. Notice that we have required boundary conditions on initial and
final directions without orientation. The problem above can also be formulated by
requiring boundary conditions with orientation, i.e., substituting in (2.1) the condition
α ∈ R+. However, this choice does not guarantee existence of minimizers for the cost
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Fig. 2.1. A trajectory with two cusps.

we are interested with; see [10] and Remark 6 below. An alternative model in which
boundary conditions on directions are required with orientation is that of Mumford.
See section 2.8.1.

In this paper we are interested in the minimization of the following cost, defined
for smooth curves γ in [b, c]:

J [γ] =

∫ c

b

√
‖γ̇(t)‖2 + ‖γ̇(t)‖2K2

γ(t) dt.(2.2)

This cost is interesting for several reasons:
• It depends on both length and curvature of γ. It is small for curves that are
straight and short.

• It is invariant by rototranslation (i.e., under the action of SE(2)) and by
reparametrization of the curve, as should be any reasonable process of recon-
struction of interrupted curves.

• Minimizers for this cost do exist in the natural functional space in which this
problem is formulated, without involving sophisticated functional spaces or
curvatures that become measures. Indeed, in [10] we proved the following.
Proposition 5. For every (xb, yb), (xc, yc) ∈ R2 with (xb, yb) 	= (xc, yc) and
vb, vc ∈ R2\ {0}, the cost (2.2) has a minimizer over the set

D :=

⎧⎪⎨⎪⎩γ ∈ C 2([b, c],R2) s.t.

√
‖γ̇(t)‖2(1 +K2

γ(t)) ∈ L1([b, c],R),

γ(b) = (xb, yb), γ(c) = (xc, yc),
γ̇(b) ≈ vb, γ̇(c) ≈ vc.

⎫⎪⎬⎪⎭ .(2.3)

Remark 6. In [34, 42, 43], it has been proved that minimizers for the cost
(2.2) are analytic functions for which γ̇ = 0 at most for two isolated points.
At these points the limit of ‖γ̇(t)‖Kγ(t) is well defined. They are cusp points,
i.e., points at which γ̇ becomes opposite. See Figure 2.1.
Notice that at cusp points the limit direction (regardless of orientation) is
well defined. In [10] it is proved that if boundary conditions are required
with orientation, then the cost (2.2) has no minimum over the set D .

However, the most interesting aspect from the modeling point of view is that this
cost is a Riemannian length for lifts of planar curves over PTR2 (more precisely, J [γ]
is a sub-Riemannian length; see below). In the spirit of the model by Petitot, Citti,
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and Sarti, this is the most natural distance that one can define on PTR2. Indeed, this
distance takes into account the fact that two configurations (x1, y1, θ1) and (x2, y2, θ2)
are close to each other if they are both close in the planar coordinates (x, y) and in
the angle coordinate θ.

Apparently, this cost is a good model for describing the energy necessary to
excite the orientation columns that are not directly excited by the image (since they
correspond to the corrupted part of the image). Indeed, it is a standard fact in
sub-Riemannian geometry (see section 2.2) that the minimization of the cost J [γ] is
equivalent to the minimization of the energy-like cost

E [γ] =

∫ c

b

(‖γ̇(t)‖2 + ‖γ̇(t)‖2K2
γ(t)

)
dt.

The term ‖γ̇(t)‖2 models the energy necessary to activate horizontal connections,
while the term ‖γ̇(t)‖2K2

γ(t) models the energy necessary to activate vertical connec-
tions; see Figure 1.1. This is much more evident in the optimal control formulation of
section 2.3, where ‖γ̇(t)‖2 is the control responsible for the “straight movements on
R2” and ‖γ̇(t)‖2K2

γ(t) is the control corresponding for the “rotational movements on
R2.” Other models for these energies are of course possible, but our choice appears
to be the most natural since it provides a well-posed variational problem.

Finally, a key consequence of this choice of cost is the following: we have a
diffusion equation naturally associated with the variational problem. This diffusion
equation can be used to reconstruct more complicated images than just curves. We
use this diffusion as the key tool for the reconstruction algorithm.

Remark 7. One could argue that there is no reason to give the same weight to
the length term ‖γ̇‖ and the curvature term ‖γ̇(t)‖2K2

γ(t). However, if we define the
cost

Jβ [γ] :=

∫ c

b

√
‖γ̇(t)‖2 + β2‖γ̇(t)‖2K2

γ(t) dt

with a fixed β 	= 0, and if we consider a homothety (x, y) �→ (βx, βy) and the cor-
responding transformation of a curve γ = (x(t), y(t)) to γβ = (βx(t), βy(t)), then it
is easy to prove that Jβ [γβ ] = β2J1 [γ] = β2J [γ]. Therefore the problem of mini-
mizing Jβ is equivalent to the minimization of J with a suitable change of boundary
conditions.

Although the mathematical problem is equivalent by changing β, this parameter
will play a crucial role in the following; see Remark 21.

Another interesting feature is the uniqueness of this sub-Riemannian distance.
Beside the possibility of adding on the curvature term a weight β that can be removed
via a homothety, it is the unique sub-Riemannian distance for lift of planar curves on
PTR2 that is invariant under the action of SE(2). See Proposition 14 below.

2.2. Sub-Riemannian manifolds. In this section we recall some standard defi-
nitions of sub-Riemannian geometry that we use in the following. We start by recalling
the definition of sub-Riemannian manifold.

Definition 8. An (n,m)-sub-Riemannian manifold is a triple (M,�,g), where
• M is a connected smooth manifold of dimension n;
• � is a smooth distribution of constant rank m < n satisfying the Hörmander
condition, i.e., � is a smooth map that associates to q ∈ M an m-dim sub-
space; �(q) of TqM , and ∀ q ∈M we have

span {[X1, [. . . [Xk−1, Xk] . . . ]](q) | Xi ∈ VecH(M)} = TqM,
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where VecH(M) denotes the set of horizontal smooth vector fields on M , i.e.,

VecH(M) = {X ∈ Vec(M) | X(q) ∈ �(q) ∀ q ∈M} ;

• gq is a Riemannian metric on �(q), that is, smooth as a function of q.
A Lipschitz continuous curve q(·) : [0, T ] → M is said to be horizontal if q̇(t) ∈

�(q(t)) for almost every t ∈ [0, T ]. Given a horizontal curve q(·) : [0, T ] → M , the
length of q(·) is

l(q(·)) =
∫ T

0

√
gq(t)(q̇(t), q̇(t)) dt.(2.4)

The distance induced by the sub-Riemannian structure on M is the function

d(q0, q1) = inf{l(q(·)) | q(0) = q0, q(T ) = q1, q(·) horizontal}.

The connectedness assumption for M and the Hörmander condition guarantees
the finiteness and the continuity of d(·, ·) with respect to the topology of M (Chow’s
theorem; see, for instance, [6]). The function d(·, ·) is called the Carnot–Carathéodory
distance and gives to M the structure of metric space (see [8, 23]).

It is a standard fact that l(q(·)) is invariant under reparametrization of the curve
q(·). On one side, if an admissible curve q(·) minimizes the so-called energy functional

E(q(·)) =
∫ T

0

gq(t)(q̇(t), q̇(t)) dt,

with fixed T (and initial and final fixed points), then v =
√
gq(t)(q̇(t), q̇(t)) is constant

and q(·) is also a minimizer of l(·). On the other hand, a minimizer q(·) of l(·) such
that v is constant is a minimizer of E(·) with T = l(q(·))/v.

A geodesic for the sub-Riemannian manifold is a curve q(·) : [0, T ] →M such that
for each sufficiently small interval [t1, t2] ⊂ [0, T ], q(·)|[t1,t2]

is a minimizer of E(·). A
geodesic for which gq(t)(q̇(t), q̇(t)) is identically equal to one is said to be arclength
parametrized.

Locally, the pair (�,g) can be specified by assigning a set of m smooth vector
fields spanning � that are, moreover, orthonormal for g, i.e.,

�(q) = span {X1(q), . . . , Xm(q)}, gq(Xi(q), Xj(q)) = δij .(2.5)

Such a set {X1, . . . , Xm} is called a local orthonormal frame for the sub-Riemannian
structure. When (�,g) can be defined by m globally defined vector fields as in (2.5),
we say that the sub-Riemannian manifold is trivializable.

Given an (n,m)-trivializable sub-Riemannian manifold, the problem of finding a
curve minimizing the energy between two fixed points q0, q1 ∈M is naturally formu-
lated as the following optimal control problem:

q̇(t) =

m∑
i=1

ui(t)Xi(q(t)) ,(2.6)

ui(.) ∈ L∞([0, T ],R),

∫ T

0

m∑
i=1

u2i (t) dt→ min,

q(0) = q0, q(T ) = q1.(2.7)
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It is a standard fact that this optimal control problem is equivalent to the minimum
time problem with controls u1, . . . , um satisfying u1(t)

2 + · · · + um(t)2 ≤ 1 in [0, T ].
When the sub-Riemannian manifold is not trivializable, the equivalence to the optimal
control problem (2.6)–(2.7) is just local.

When the manifold is analytic and the orthonormal frame can be assigned by m
analytic vector fields, we say that the sub-Riemannian manifold is analytic. In this
paper we deal with an analytic sub-Riemannian manifold.

A sub-Riemannian manifold is said to be of three-dimensional (3D) contact type
if n = 3, m = 2 and for every q ∈ M we have span{�(q), [�,�](q)} = TqM . This is
the case that we study in this paper. For details, see [5].

Remark 9. As a consequence of the invariance by reparametrization of the cost
(2.4), it is equivalent to state the minimization problem in the space of Lipschitz or
absolutely continuous curves (i.e. for ui(·) ∈ L∞([0, T ],R) or for ui(·) ∈ L1([0, T ],R)).
See [10, Lemma 1].

2.2.1. Left-invariant sub-Riemannian manifolds. In this section we present
a natural sub-Riemannian structure that can be defined on Lie groups. Throughout
the paper, notations are adapted to group of matrices only. For general Lie groups,
by gv with g in the Lie group G and v in the Lie algebra L, we mean (Lg)∗(v), where
Lg is the left-translation on the group.

Definition 10. Let G be a Lie group with Lie algebra L, and let P ⊆ L be a
subspace of L satisfying the Lie bracket generating condition

Lie P := span {[p1, [p2, . . . , [pn−1, pn]]] | pi ∈ P} = L.

Endow P with a positive definite quadratic form 〈., .〉. Define a sub-Riemannian
structure on G as follows:

• The distribution is the left-invariant distribution

�(g) := gP;

• the quadratic form g on � is given by

gg(v1, v2) := 〈g−1v1, g
−1v2〉.

In this case we say that (G,�,g) is a left-invariant sub-Riemannian manifold.
In the following we define a left-invariant sub-Riemannian manifold by choosing

a set of m vectors {p1, . . . , pm} which form an orthonormal basis for the subspace
P ⊆ L with respect to the metric from Definition 10, i.e., P = span {p1, . . . , pm} and
〈pi, pj〉 = δij . We thus have

�(g) = gP = span {gp1, . . . , gpm}
and gg(gpi, gpj) = δij . Notice that every left-invariant sub-Riemannian manifold is
trivializable.

2.3. Lift of a curve on PTR2 and the sub-Riemannian problem. Consider
a smooth planar curve γ : [b, c] → R2. This curve can be naturally lifted to a curve
γ̄ : [b, c] → PTR2 in the following way. Let (x(t), y(t)) be the Euclidean coordinates
of γ(t). Then the coordinates of γ̄(t) are (x(t), y(t), θ(t)), where θ(t) ∈ R/(πZ) is the
direction of the vector (x(t), y(t)) measured with respect to the vector (1, 0). In other
words,

θ(t) = arctan

(
ẏ(t)

ẋ(t)

)
mod π.(2.8)
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Of course we can extend by continuity the definition to points where γ̇(t̄) = 0 but
limt→t̄ θ(t) is well defined. We assume the following hypothesis:

[H] θ : [b, c] → R/(πZ) is absolutely continuous.
Notice that θ̇ = ‖γ̇‖Kγ; hence hypothesis [H] is equivalent to requiring that

‖γ̇‖Kγ ∈ L1([b, c],R).
The requirement that a curve (x(t), y(t), θ(t)) satisfies the constraint (2.8) under

[H] can be slightly generalized by requiring that (x(t), y(t), θ(t)) be an admissible
trajectory of the control system on PTR2:⎛⎝ ẋ

ẏ

θ̇

⎞⎠ = u1(t)

⎛⎝ cos(θ)
sin(θ)
0

⎞⎠+ u2(t)

⎛⎝ 0
0
1

⎞⎠(2.9)

with u1, u2 ∈ L1([b, c],R). Indeed, each smooth trajectory γ satisfying [H] is an
admissible trajectory of (2.9).

Since u1(t)
2 = ‖γ̇(t)‖2, u2(t)2 = θ̇2 = ‖γ̇(t)‖2Kγ(t)

2, we have

J [γ] =

∫ c

b

√
u1(t)2 + u2(t)2 dt.

Hence, the problem of minimizing the cost (2.2) on the set of curves D is (slightly)
generalized considering the optimal control problem (here q(·) = (x(·), y(·), θ(·)))

q̇ = u1(t)X1(q) + u2(t)X2(q),(2.10)

X1(q) =

⎛⎝ cos(θ)
sin(θ)
0

⎞⎠ , X2(q) =

⎛⎝ 0
0
1

⎞⎠ ,(2.11)

l(q(·)) =
∫ c

b

√
u1(t)2 + u2(t)2 dt→ min,(2.12)

q(b) = (xb, yb, θb), q(c) = (xc, yc, θc),(2.13)

(xb, yb) 	= (xc, yc), u1, u2 ∈ L1([b, c],R).(2.14)

Remark 11. Notice that there are admissible trajectories q(·) = (x(·), y(·), θ(·))
of the control system (2.10) for which the condition θ(t̄) = limt→t̄ arctan(

ẏ(t)
ẋ(t) ) is not

verified (consider, for instance, the trajectory x(t) = 0, y(t) = 0, θ(t) = t) or such
that x(·) or y(·) fail to be smooth. However, it has been proved in [10] that minimizers
of (2.10)–(2.14) are minimizers of (2.2) on the set D , and they are smooth.

Remark 12 (nontrivializability). A certain abuse of notation appears in formulas
(2.9), (2.12), and (2.13), as in [44]. Indeed, the vector field X1 is not well defined on
PTR2. For instance, it takes two opposite values in θ and θ+π, which are identified.
A correct definition of the sub-Riemannian structure requires two charts:

• Chart A: θ ∈]0 + kπ, π + kπ[, k ∈ Z, x, y ∈ R.

q̇ = uA1 (t)X
A
1 (q) + u2(t)X2(q), XA

1 =

⎛⎝ cos(θ)
sin(θ)
0

⎞⎠ ,

l(q(·)) =
∫ c

b

√
uA1 (t)

2 + u2(t)2 dt.
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• Chart B: θ ∈]− π/2 + kπ, π/2 + kπ[, k ∈ Z, x, y ∈ R.

q̇ = uB1 (t)X
B
1 (q) + u2(t)X2(q), XB

1 =

⎛⎝ cos(θ)
sin(θ)

0

⎞⎠ ,

l(q(·)) =
∫ c

b

√
uB1 (t)

2 + u2(t)2 dt.

One can check that the two charts are compatible and that this sub-Riemannian
structure is nontrivializable, while PTR2 is parallelizable.

Since the formal expressions of XA
1 and XB

1 are the same, while they are defined
on different domains, one can proceed with a single chart (however, one should bear in
mind that u1 changes sign when passing from Chart A to Chart B in R×R×]π/2, π[).
In the following, since we study a “sum of squares” hypoelliptic diffusion on this
sub-Riemannian structure, the problem disappears.

This sub-Riemannian manifold is of 3D contact type: the distribution has dimen-
sion 2 over a 3D manifold and

span{X1(q), X2(q), [X1, X2](q)} = TqPTR
2.

2.4. The sub-Riemannian problem on SE(2). It is convenient to lift the
sub-Riemannian problem on PTR2 (2.10)–(2.14) on the group of rototranslation of
the plane SE(2) to take advantage of the group structure. It is the group of matrices
of the form

SE(2) =

⎧⎨⎩
⎛⎝ cos(θ) − sin(θ) x

sin(θ) cos(θ) y
0 0 1

⎞⎠ ∣∣∣∣∣ θ ∈ R/(2πZ),
x, y ∈ R

⎫⎬⎭ .

In the following we often denote an element of SE(2) by g = (x, y, θ).
A basis of the Lie algebra of SE(2) is {p1, p2, p3}, with

p1 =

⎛⎝ 0 0 1
0 0 0
0 0 0

⎞⎠ , p2 =

⎛⎝ 0 −1 0
1 0 0
0 0 0

⎞⎠ , p3 =

⎛⎝ 0 0 0
0 0 1
0 0 0

⎞⎠ .

We define a trivializable sub-Riemannian structure on SE(2) as presented in
section 2.2.1: consider the two left-invariant vector fields Xi(g) = gpi with i = 1, 2,
and set

�(g) = span {X1(g), X2(g)} , gg(Xi(g), Xj(g)) = δij .

In coordinates, the optimal control problem

ġ ∈ �(g), l(g(.)) =

∫ c

b

√
gg(t)(ġ, ġ) dt→ min,(2.15)

g(b) = (xb, yb, θb), g(c) = (xc, yc, θc),(2.16)

(xb, yb) 	= (xc, yc)(2.17)

has the form (2.10)–(2.14), but θ ∈ R/(2πZ). Notice that the vector field (cos(θ),
sin(θ), 0) is well defined on SE(2).
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θ

x

y

θ

γ̇

γ̇

γ̇

Fig. 2.2. A case in which θ ∈ R/(2πZ) is not the direction (with orientation) of γ̇.

Remark 13. It is worth mentioning that the problem (2.15)–(2.17) (i.e., the
problem (2.10)–(2.14) with θ ∈ R/(2πZ)) cannot be interpreted as a problem of
reconstruction of planar curves where initial and final positions and initial and final
directions of velocities (with orientation) are fixed. For instance, consider the curve
starting from (x, y, θ) = (0, 0, 0) and corresponding to controls u1(t) = π/2−t, u2(t) =
1. The corresponding trajectory in the (x, y) plane is (− cos(t) + 1

2 (π − 2t) sin(t) +

1, π sin2
(
t
2

)
+ t cos(t) − sin(t)). Notice that this trajectory has a cusp at time t =

π/2. For t ∈ [0, π/2[ we have that θ is the angle with respect to (1, 0) of the vector
(ẋ(t), ẏ(t)), while for t ∈]π/2, π], it is not. See Figure 2.2.

The control problem (2.10)–(2.14) defined on PTR2 is left-equivariant under the
action of SE(2). Indeed, topologically, PTR2 can be seen as the quotient of SE(2) by
Z2 (in other words, SE(2) is a double covering of PTR2). In coordinates, (x, y, θ) ∈
PTR2 corresponds to the two points (x, y, θ), (x, y, θ + π) ∈ SE(2). Also, there is a
natural transitive action of SE(2) on PTR2 given by⎛⎝ cos(θ) − sin(θ) x

sin(θ) cos(θ) y
0 0 1

⎞⎠
︸ ︷︷ ︸

∈SE(2)

⎛⎝ x′

y′

θ′

⎞⎠
︸ ︷︷ ︸
∈PTR2

=

⎛⎝ cos(θ)x− sin(θ)y + x′

sin(θ)x + cos(θ)y + y′

θ′ + θ

⎞⎠ ,

︸ ︷︷ ︸
∈PTR2

where θ′ + θ is intended modulo π. The orthonormal frame for the sub-Riemannian
structure on PTR2 given by X1 and X2 in formula (2.10) is indeed left-equivariant
under the action of SE(2).

In other words, given (x, y, θ) ∈ PTR2 such that g ∈ SE(2) satisfies (x, y, θ) =
g(0, 0, 0), we have

X1(x, y, θ) = gp1, X2(x, y, θ) = gp2.(2.18)

The following proposition can be checked directly.
Proposition 14. Let (PTR2,�,g) be a sub-Riemannian manifold, and assume

that it is left-equivariant under the natural action of SE(2). This means that if
{F1, F2} is an orthonormal frame for the sub-Riemannian structure, then

F1(x, y, θ) = gF1(0, 0, 0), F2(x, y, θ) = gF2(0, 0, 0),(2.19)

where g ∈ SE(2) is such that (x, y, θ) = g(0, 0, 0). Then, up to a change of coordinates
and a rotation of the orthonormal frame, we have that

F1(x, y, θ) =

⎛⎝ cos(θ)
sin(θ)
0

⎞⎠ , F2(x, y, θ) =

⎛⎝ 0
0

1/β

⎞⎠(2.20)

for some β > 0.
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Cut Locus

Part of the cut locus due to topological reasons

seen as a full torus with no boundary

Id

R
2 seen as an open disc

S1

SE(2) ∼ R
2 × S1

Fig. 2.3. The cut locus of the Sachkov synthesis, i.e., the set of points where geodesics lose
optimality for the sub-Riemannian problem on SE(2) (seen as the product of an open disc in R2

times S1). Notice that the cut locus is adjacent to the starting point, as it always occurs in sub-
Riemannian geometry.

Notice that the problem of finding curves minimizing the length for the sub-
Riemannian problem on PTR2, for which an orthonormal frame is given by (2.20), is
equivalent to the optimal control problem (2.10), with the cost (2.4).

2.5. The Sachkov synthesis. The solution of the minimization problem (2.10)–
(2.14) on PTR2 can be obtained from that of the problem on SE(2) (2.15)–(2.17).
The latter has been studied by Sachkov in a series of papers [34, 42, 43] (the first in
collaboration with Moiseev).

Sachkov computed the optimal synthesis for the problem. More precisely he
computed the geodesics starting from the identity and, for each geodesic, the cut
time, i.e., the time where it loses optimality. Thanks to the group structure, optimal
geodesics starting from other points are just translations of these. In Figure 2.3 the
cut locus of the Sachkov synthesis is shown.

The complete optimal synthesis and the description of the cut locus for the prob-
lem formulated on PTR2 have not been computed. However, as noticed by Sachkov,
if we want to find the optimal trajectory joining (x, y, θ) to (x̄, ȳ, θ̄) in PTR2, it
is enough to find the shortest path among the four optimal trajectories joining the
following points in SE(2):

• (x, y, θ) to (x̄, ȳ, θ̄),
• (x, y, θ + π) to (x̄, ȳ, θ̄),
• (x, y, θ) to (x̄, ȳ, θ̄ + π),
• (x, y, θ + π) to (x̄, ȳ, θ̄ + π).
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?
?

?

Fig. 2.4. The problem of connecting level sets.

Moreover, Sachkov built a numerical algorithm for curve reconstruction on PTR2.
In this paper, we will not elaborate on the subject of reconstruction of curves. For
our purpose of image reconstruction, only the sub-Riemannian structure is important,
since it allows us to define intrinsically a nonisotropic diffusion process.

2.6. The hypoelliptic heat kernel. When the image is not just a curve, one
cannot use the algorithm described above, in which curves are reconstructed by solv-
ing a sub-Riemannian problem with fixed boundary conditions. Indeed, even if a
corrupted image is thought of as a set of interrupted curves (the level sets), it is
unclear how to connect the different components of the level set among them (see
Figure 2.4).

Moreover, if the corrupted part contains the neighborhood of a maximum or
minimum, then certain level sets are completely missing and cannot be reconstructed.

Remark 15. The difficulty of reconstructing a portion of an image containing
a maximum or a minimum is also the main drawback of methods based on sub-
Riemannian minimal surfaces. These algorithms (see [15, 24, 44]) consider the bound-
ary of the lift of the corrupted part as a closed curve γ in the space SE(2) or PTR2.
They then “fill the hole” with the surface that has boundary γ and minimizes the sur-
face area computed with respect to the sub-Riemannian metric. As clearly explained
in [24], this method can fail for three main reasons: the minimal surface does not exist
(depending on the regularity of γ), it can be nonunique, or it can even can exist but
its projection on R2 does not coincide with the corrupted part (either not covering
the whole part or covering also a part of the noncorrupted image).

A second problem is that, even if the surface exists and is computed, one has to
choose how to diffuse the intensity of the image on the reconstructed surface. See [24,
Def. 7.3] for the introduction of an “interpolation” function ft and a “disambiguation”
function F .

We then use the original image as the initial condition for the nonisotropic dif-
fusion equation associated with the sub-Riemannian structure. This idea was first
presented in [15].

Roughly speaking, first we consider all possible admissible paths by replacing the
controls in (2.10) by independent Wiener processes. Then, we consider the diffusion
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equation which describes the density of the probability of finding the system in the
point (x, y, θ) at time t.

More precisely, let {X1, . . . , Xm} be an orthonormal frame of a sub-Riemannian
manifold, and consider the stochastic differential equation

dqt =

m∑
i=1

Xi(q)t dw
i
t,

where the wi are independent Wiener processes. It is a standard result that, due to
the Hörmander condition, the stochastic process admits a probability density φ(q, t)
that satisfies the Fokker–Planck-like diffusion PDE5

∂tφ(q, t) =

m∑
i=1

X2
i φ(q, t).(2.21)

For more details, see, e.g., [31, 35].
Roughly speaking, the relation among the sub-Riemannian geodesics and the

corresponding diffusion equation is the following: for small time the diffusion occurs
mainly along optimal geodesics.

For instance, a result due to Leandre [29, 30] states that if pt(q1, q2) is the heat
kernel associated to (2.21), then for t→ 0 we have that −t log pt(q1, q2) → d(q1, q2)

2/4,
where d(·, ·) is the Carnot–Carathéodory distance. For other results in this direction
see [9, 27] and reference therein.

In our case, this diffusion equation is

∂tφ(x, y, θ, t) = ΔHφ(x, y, θ, t),(2.22)

where

ΔH = (X1)
2 + (X2)

2 = (cos(θ)∂x + sin(θ)∂y)
2 + ∂2θ .

Since at each point (x, y, θ) we have

span {X1, X2, [X1, X2]} = T(x1,x2,θ)PTR
2,

the Hörmander theorem [26] implies that the operator ΔH is hypoelliptic.
The diffusion described by (2.22) is highly nonisotropic. Indeed, one can estimate

the hypoelliptic heat kernel in terms of the sub-Riemannian distance (see, for instance,
[4]) that is highly nonisotropic as a consequence of the ball-box theorem (see, for
instance, [8]).

Remark 16. Notice that the subelliptic diffusion equation corresponding to the
sub-Riemannian structure (2.15)–(2.17) on SE(2), has the same form (2.22). The
only difference is that on SE(2), θ ∈ R/(2πZ).

Remark 17. In [4] it has been proved that the Laplacian ΔH is intrinsic on
SE(2), meaning that it does not depend on the choice of the orthonormal frame for
the sub-Riemannian structure. One can easily prove that this is the case also for ΔH

on PTR2.

5We emphasize here the fact that the PDE is not stochastic.
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2.7. The hypoelliptic heat kernel on SE(2). The hypoelliptic heat kernel
for (2.22) on SE(2) was computed in [4, 17]. More precisely, thanks to the left-
invariance of X1 and X2, (2.22) admits a right-convolution kernel pt(.); i.e., there
exists pt such that

etΔHφ0(g) = φ0 ∗ pt(g) =
∫
G

φ0(h)pt(h
−1g)μ(h)(2.23)

is the solution for t > 0 of (2.22) with initial condition φ(0, g) = φ0(g) ∈ L1(SE(2),R)
with respect to the Haar measure μ.

We have computed pt on SE(2) in [4]:

pt(g) =

∫ +∞

0

λ

(
+∞∑
n=0

ea
λ
nt

〈
cen

(
θ,
λ2

4

)
,Xλ(g)cen

(
θ,
λ2

4

)〉

+

+∞∑
n=1

eb
λ
nt

〈
sen

(
θ,
λ2

4

)
,Xλ(g)sen

(
θ,
λ2

4

)〉)
dλ.(2.24)

Here λ indexes the unitary irreducible representations of the group, and

Xλ(g) : L2(S1,C) → L2(S1,C),

Xλ(g)ψ(α) = eiλ(x cos(α)−y sin(α))ψ(α+ θ)

is the representation of the group element g = (x, y, θ) on L2(S1,C).
The functions sen and cen are the 2π-periodic Mathieu cosines and sines, and

〈φ1, φ2〉 :=
∫
S1 φ1(α)φ2(α) dα. The eigenvalues of the hypoelliptic Laplacian are aλn :=

−λ2

4 − an(
λ2

4 ) and bλn := −λ2

4 − bn(
λ2

4 ), where an and bn are characteristic values for
the Mathieu equation. For details about Mathieu functions see, for instance, [3,
Chapter 20].

Since the operator ∂t−ΔH is hypoelliptic, the kernel is a C∞ function of (t, g) ∈
R+ ×G. Notice that pt(g) = etΔHδId(g).

The kernel (2.24) has been obtained by using the generalized Fourier transform.
Once again, we refer to [4] for a detailed description of the generalized Fourier trans-
form and the method to compute the kernel.

2.8. The hypoelliptic heat kernel on PTR2. SE(2) is a double covering of
PTR2. Corresponding to a point (x, y, θ) ∈ PTR2 are the two points (x, y, θ) and
(x, y, θ+ π) in SE(2). From the next proposition it follows that we can interpret the
hypoelliptic heat equation on PTR2 as the hypoelliptic heat equation on SE(2) with
a symmetric initial condition. It permits us also to compute the heat kernel on PTR2

starting from the one on SE(2).
Proposition 18. Let φ0 ∈ L1(SE(2),R), and assume that φ0(x, y, θ) = φ0(x, y, θ+

π) a.e. Then the solution at time t of the hypoelliptic heat equation (2.22) on SE(2),
having φ0 as initial condition at time zero, satisfies

φ(t, x, y, θ) = φ(t, x, y, θ + π).(2.25)

Moreover, if φ0 ∈ L1(PTR2,R), then the solution at time t of the hypoelliptic heat
equation on PTR2 (2.22) having φ0 as initial condition at time zero is given by

φ(t, x, y, θ) =

∫
PTR2

φ0(x̄, ȳ, θ̄)Pt(x, y, θ, x̄, ȳ, θ̄) dx̄ dȳ dθ̄,(2.26)
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where

Pt(x, y, θ, x̄, ȳ, θ̄) := pt((x̄, ȳ, θ̄)
−1 ◦ (x, y, θ)) + pt((x̄, ȳ, θ̄)

−1 ◦ (x, y, θ + π)).(2.27)

In the right-hand side of (2.27), the group operations are intended in SE(2).
Proof. Define the element Π = (0, 0, π) ∈ SE(2), and observe the following

properties:
• Π is idempotent.
• Property (2.25) reads as φ0(gΠ) = φ0(g).
• The kernel pt(g) satisfies pt(Πg) = pt(gΠ). Indeed, call g = (x, y, θ) and
observe that, given a real function ψ(α), we have

Xλ (Π ◦ g)ψ(α) = Xλ ((−x,−y, θ))ψ(α)
= Xλ ((x, y, θ + π))ψ(α) = Xλ (g ◦Π)ψ(α).

Recalling the explicit expression of pt given in (2.24), we have pt(Πg) =
pt(gΠ). But pt is real, and hence the equality follows.

We compute now φ(t, gΠ) in SE(2) with φ0 satisfying (2.25), and we prove that
φ(t, gΠ) = φ(t, g). Indeed,

φ(t, gΠ) =

∫
G

φ0(h)pt(h
−1gΠ) dh =

∫
G

φ0(lΠ)pt(Π
−1l−1gΠ) d(lΠ)

=

∫
G

φ0(l)pt(ΠΠ−1l−1g) dl = φ(t, g).

We now prove the expression (2.26) for φ(t, [g]) ∈ L1(PTR2,R) for initial data
φ0([g]), where [g] is an element of PTR2, the class containing g and gΠ in SE(2).
Consider the function ψ0(g) ∈ L1(SE(2),R) defined by ψ0(g) = φ([g]) that clearly
satisfies (2.25). Consider the unique solution ψ(t, g) of the hypoelliptic equation
(2.22) that is given by ψ(t, g) = ψ0 ∗ pt(g). Since ψ(t, g) = ψ(t, gΠ), the function
φ(t, [g]) := ψ(t, g) is well defined.

It remains to show that φ defined above is the solution of (2.22) on PTR2. Indeed,
∂tφ = ∂tψ = ΔHψ. Since the vector fields defining ΔH on both SE(2) and PTR2

coincide, then the differential operators ΔH defined on SE(2) and PTR2 coincide,
and hence ΔHψ = ΔHφ. Thus φ satisfies (2.22). Since φ(0, [g]) = φ0([g]), φ is the
(unique) solution.

The explicit expression (2.26) is a direct consequence of the definition φ(t, [g]) :=
ψ(t, g) and of the explicit expression of ψ given in (2.23). Indeed,

φ(t, [g]) = ψ(t, g) =

∫
SE(2)

ψ0(h)pt(h
−1g)dh =

∫
R2

∫ 2π

0

ψ0(h)pt(h
−1g) dh

=

∫
R2

∫ π

0

ψ0(h)pt(h
−1g) + ψ0(hΠ)pt((hΠ)

−1g) dh

=

∫
PTR2

φ0(h)
(
pt(h

−1g) + pt(h
−1gΠ)

)
dh.

The expression (2.26) is recovered by writing g = (x, y, θ), h = (x̄, ȳ, θ̄) and recalling
that gΠ = (x, y, θ + π).
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2.8.1. Oriented vs. nonoriented approach. One of the key points of the
algorithm presented in this paper is that directions are considered without orientation.
As mentioned above, this choice is forced by well-posedness arguments when using the
sub-Riemannian cost. Other approaches which consider directions with orientation
are possible, but with a different cost. The most celebrated is the one due to Mumford
[32], which in control language reads as

q̇ =

⎛⎝ cos(θ)
sin(θ)
0

⎞⎠+ u(t)

⎛⎝ 0
0
1

⎞⎠ ,

∫ c

b

(1 + β2u(t)2) dt =

∫ c

b

(1 + β2K2
γ(t)) dt→ min,

q(b) = (xb, yb, θb), q(c) = (xc, yc, θc).

Here (x, y, θ) ∈ R2 × S1. Notice that this variational problem has the same form as
the one treated in this paper (i.e., (2.10)–(2.11) for the energy functional

∫ c

b
(u1(t)

2 +
β2u2(t)

2) dt), but with forcing u1 to be 1 and taking θ ∈ S1 instead of P 1. In this way,
trajectories are parametrized by arclength for the Euclidean metric on R2 and not for
the sub-Riemannian one, and, as a consequence, there are no cusps. Notice, however,
that since the energy functional is not invariant by reparametrization, geodesics have
a different expression. (These geodesics are “elastica” curves; see also [40, 41].)

With a procedure similar to that described in section 2.6, one can naturally
associate a diffusion equation to this model. Then, one gets a diffusion equation with
drift, namely,

∂tφ(x, y, θ, t) =
(
X1 + (X2)

2
)
φ(x, y, θ, t) =

(
cos(θ)∂x + sin(θ)∂y + ∂2θ

)
φ(x, y, θ, t).

The level set of the image can be oriented, for instance, on the left (or on the right)
of the gradient of the initial condition. This choice is well defined when the initial
condition is a Morse function. In practice, people consider both diffusions with pos-
itive and negative drift to have a more “symmetric” inpainting. This approach was
followed in [18, 19] for contour enhancement.

Apparently, in the community, some researchers prefer Mumford’s model, while
others prefer the Petitot–Citti–Sarti model presented in this paper. Mumford’s model
has the advantage of not producing cusps (which are not observed in psychological
experiments; see [38]), while the model presented in this paper has the advantage of
treating horizontal and vertical connections at the same level and allows for a more
natural lift of the image.

2.9. The mathematical algorithm. In this section we describe the main steps
of the mathematical algorithm for image reconstruction. In the next section we give
some guidelines for numerical implementation.

Step 1: Smoothing of Ic. Assume that the grey level of a corrupted image
is described by a function Ic : Dc := D2 \ Ω → [0,∞[. The set Ω represents the
region where the image is corrupted. The subscript “c” means “corrupted.” After
making the convolution with a Gaussian of standard deviations σx = σy > 0,6 we get
a smooth function defined on R2, which is generically a Morse function:

fc = Ic ∗G(σx, σy).
We recall that a smooth function fc : R

2 → R is said to be Morse if it has only isolated
critical points with nondegenerate Hessian. Roughly speaking, a Morse function is a
function whose level sets are locally like those of Figure 2.5.

6Ic is considered to be zero outside Dc. Moreover, we assume σx = σy to guarantee invariance
by rototranslations of the algorithm.
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diffeomorphic to level sets

of a linear function
Maximum or minimum Saddle point

Fig. 2.5. Level sets of a Morse function.

c

level sets of f
All directions are associated

α

c

f

Fig. 2.6. Lift of an image with a maximum point.

Step 2: The lift of fc : R2 → R to a function f̄c : PTR2 → R. This is made
by associating to every point (x, y) of R2 the direction θ ∈ R/(πZ) of the level set of
fc at the point (x, y). This direction is well defined only at points where ∇fc 	= 0.
At points where ∇fc = 0, we associate all possible directions (see Figure 2.6). More
precisely, we define the lifted support Sf , associated with the function f , as

Sf = {(x, y, θ) ∈ R2 × P 1 s.t. ∇fc(x, y) · (cos(θ), sin(θ)) = 0},

where the dot means the standard scalar product on R2. Let Π : Sf → R2 be the
standard projection (x, y, θ) ∈ Sf → (x, y) ∈ R2. Notice that if ∇fc(x, y) 	= 0, then
Π−1(x, y) is a single point, while if ∇fc(x, y) = 0, then Π−1(x, y) = R/(πZ).

Let us study the set Sf when fc is a Morse function. If (x, y) ∈ R2 is such that
∇fc(x, y) 	= 0 and U is a small enough open neighborhood of (x, y), then the lift of
Sf is an orientable manifold in U × P 1. See Figure 2.7 A. If (x, y) is an isolated
maximum of fc, and U is a small enough open neighborhood of (x, y) having a level
set of fc as boundary, then Sf is a Möbius strip in U × P 1. See Figure 2.7 B. The
same happens when (x, y) is an isolated minimum or saddle point of fc. Indeed we
have the following proposition.

Proposition 19. If fc : R2 → R is a Morse function, then Sf is an embedded
2D submanifold of R2 × P 1.

Proof. Consider the surface S̄ ∈ SE(2) given by the equation

g(x, y, θ) := cos(θ)∂xfc + sin(θ)∂yfc = 0.(2.28)
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Fig. 2.7. In figure A, we draw the support of the lift of a linear function with nonvanishing
gradient. Figure B presents the support of the lift of a function in a neighborhood of a maximum
point.

If (x, y, θ) ∈ S̄, then (x, y, θ + π) ∈ S̄ as well, and S̄ is a double covering of Sf . It is
enough to show that S̄ is a surface.

At points (x, y, θ) ∈ S̄ where ∇fc 	= 0, dg is nonzero. Indeed, ∂θg = 0 would
imply that the vector ∇fc 	= 0 is orthogonal to two nonzero vectors. At points where
∇fc = 0, we have (

∂xg
∂yg

)
= Hfc ·

(
cos(θ)
sin(θ)

)
,(2.29)

which cannot be zero since the Hessian Hfc of fc is nondegenerate by the Morse
assumption.

Step 3: Lift of fc to a distribution in R2×P 1 supported on Sf . Consider
the distribution on R2 × P 1:

f̄c(x, y, θ) = fc(x, y)δ(g),

where δ(g) is the Dirac-delta distribution associated with g(x, y, θ) := cos(θ)∂xfc +
sin(θ)∂yfc in the sense of [22, p. 222]. This distribution is supported on Sf and is
canonically defined by fc. Notice that this choice is not crucial, and there are other
possibilities. For example, in [44] the Dirac delta is replaced by a power of the cosine
of the angle, centered on the angle θ.

Remark 20. This step is formally necessary for the following reason. The surface
Sf is 2D in a 3D manifold, and hence the real function fc defined on it is vanishing
a.e. as a function defined on PTR2. Thus the hypoelliptic evolution of fc (that is,
Step 4 following) produces a vanishing function. Multiplying fc by a Dirac-delta is a
natural way to obtain a nontrivial evolution.
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Step 4: Hypoelliptic evolution. Fix T > 0. Compute the solution at time T
to the Cauchy problem,{

∂tφ(x, y, θ, t) = ((cos(θ)∂x + sin(θ)∂y)
2 + β2∂2θ )φ(x, y, θ, t),

φ(x, y, θ, 0) = f̄c(x, y, θ).
(2.30)

Remark 21. In the formula above, the Laplacian is given by X2
1 +β

2X2
2 , and thus

it depends on the fixed parameter β. This means that we use evolution depending on
the cost Jβ rather than J . Tuning this parameter will provide better results for the
reconstruction algorithm.

Step 5: Projecting down. Compute the reconstructed image by choosing the
maximum value on the fiber,

fT (x, y) = max
θ∈P 1

φ(x, y, θ, T ).

Again other choices are possible for this projection.
Remark 22. The algorithm depends on two parameters. The first is the time of

the evolution T , and the second is the relative weight β in formula (2.30). A variant
of this algorithm consists of reiterating the steps above for very short diffusion times.
This idea was already presented in [15] for building a minimal surface.

Remark 23. One main feature of this algorithm is that it does not need the
knowledge of the corrupted part. As a consequence the diffusion acts also in the
noncorrupted region. The larger the diffusion time, the more modified the image
in the noncorrupted region. This is very visible when comparing Figure 3.1 (small
diffusion time) and Figure 3.2 (large diffusion time). This is one of the weak points
of this completion process that certainly takes place in the V1 cortex as a low-level
process. It is the counterpart of the global character of the method.

However, due to the highly nonisotropic character of the diffusion, this effect is
not too visible from a global point of view.

Modifications of the algorithm which keep the original image unmodified are sug-
gested in [15, 44] by admitting the diffusion in the corrupted part only. Also, in
the standard PDE-based image processing inpainting algorithms, this problem disap-
pears. Indeed, one solves a (stationary) elliptic-like problem on the corrupted part
with Neumann boundary conditions, not an evolution equation. See, e.g., [13].

3. Numerical implementation and results. First, we present the main lines
of the algorithm used in our simulations.

3.1. Steps 2–3: Lift of an image. The formal definition of the lifted function
is hard to realize numerically for two reasons: the discretization of the angle variable
θ and the presence of a delta function.

Both issues are solved by changing the definition of the lifted function:

f̄c(x, y, θ) = fc(x, y)φ(∇fc(x, y), θ),
where φ(0, θ) = 1/(2ε)∀ θ ∈ R/(πZ), and φ(v, θ) = φ1(arg(v)− θ), where φ1(β) is the
π-periodic function assuming the following values over the interval [0, π]:

φ1(β) :=

{
1/(2ε) if β ∈ [π2 − ε, π2 + ε

]
,

0 otherwise

for a fixed ε > 0.
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Since the space is discretized, the nonzero values of f̄c are no longer defined
over a set of null measure, and hence the discretized hypoelliptic diffusion gives a
nonvanishing function ∀ T > 0. Thus, it is not necessary to perform Step 3.

3.2. Step 4: Hypoelliptic evolution. In this section we give the crucial ideas
for computing efficiently the hypoelliptic evolution (2.30). Here 〈., .〉 is the scalar
product in R2, and Rθ is the rotation operator of angle θ.

First of all, the main feature of the noncommutative Fourier transform is to
disintegrate the regular representation of SE(2). This was the main ingredient of the
computation of the hypoelliptic heat kernel in [4]. Using the Fourier transform again,
the hypoelliptic heat equation is transformed into a family of parabolic equations.
These are more suitable for standard numerical methods.

Roughly speaking, the noncommutative Fourier transform f̂(Λ) of the function
f(x, y, θ) =: f(X, θ), for Λ ∈ R2, is an operator meeting:

[f̂(Λ)ψ](θ) =

∫
R2

∫
S1

f(X,α)ψ(α + θ)dαe2πi〈R−θΛ,X〉dX = ˜(f ∗θ ψ)(R−θΛ),(3.1)

where ∗θ is the convolution with respect to the angular variable and ˜ is the 2D
Fourier transform with respect to the spatial variables X = (x, y).

Then it is natural to consider the Fourier transform with respect to X . Indeed,
apply this transform u→ ũ to the initial value problem{

∂tu = ΔHu,
u(0, X, θ) = f̄c(X, θ)

(3.2)

that gives {
∂tũ = β2∂2θ ũ− 4π2(x cos(θ) + y sin(θ))2ũ,

ũ(0, X, θ) = ˜̄fc(X, θ).(3.3)

Hence, for each point in the Fourier space, we have to solve an evolution equation
with a Mathieu right-hand term.

It is easy to solve explicitly (3.3) over PTR2, i.e., with θ ∈ R/π. This simply
divides the computation time by 4.

This is the principle of the algorithm, which is massively parallelizable, since we
can solve simultaneously (3.3) at each point of the Fourier space.

3.3. Results of image reconstruction. In this section we provide results of
image reconstruction using the algorithm presented above. For these examples, we
have tuned the parameters β, that is, the relative weight, and T , the final time of
evolution.

Notice again that this algorithm processes the image globally and does not need
information on where the image is corrupted. The counterpart is that it modifies the
noncorrupted part too.

We present three results:
• Figure 3.1 shows an image which is corrupted in a small area. Then the dif-
fusion can be applied for a rather small time avoiding an important diffusion
effect in the noncorrupted part.

• Figure 3.2 shows a strongly corrupted image. In this case a larger diffusion
time is necessary to “inpaint” completely the corrupted part. The diffusion
effect is clearly much more important. However, in our opinion the result is
surprisingly good.
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Fig. 3.1. Reconstruction of an image corrupted on a small portion. Here the diffusion is applied
for a small time.

Fig. 3.2. Reconstruction of an image deeply corrupted. A larger time of diffusion is necessary.

• The residual vertical and horizontal stripes in Figure 3.2 are not due to nu-
merical discretization (they do not occur in Figure 3.1). They are the result
of the diffusion of the original (white) grid. This is again a consequence of
the fact that the diffusion process is global, as explained in Remark 23. In
the spirit of global completion, this drawback is more or less unavoidable.

• Due to pixelization of the image, one could think that corruption along the
diagonal is the worst situation. Figure 3.3 show that this is not the case.

Appendix. Genericity of Morse properties of Gaussian convolution. In
this appendix, we prove that, generically, the convolution of an L2 function over a
bounded domain D ⊂ R2 with a Gaussian G is a Morse function. In particular, we
first prove in Theorem 26 that the set of functions I ∈ L2(D,R), the convolution of
which with a Gaussian is a Morse function, is residual7 in L2(D,R). We then prove
in Theorem 28 that the set of functions I ∈ L2(D,R), such that I ∗G restricted to a
compact K ⊂ R2 is a Morse function, is open and dense.

7We recall that a subset of a topological space is residual when it is a countable intersection of
open and dense sets.
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Fig. 3.3. Reconstruction of an image corrupted on the diagonal.

Definition 24. Let Z, Y be C1 manifolds, F : Z → Y a C1 map, and W ⊂ Y
a submanifold. We say that F is transversal to W at z ∈ Z, in symbols F �∩ zW , if,
where y = F (z), either y 	∈W or y ∈W and

1. the inverse image (TzF )
−1(TyW ) splits, and

2. the image (TzF )(TzZ) contains a closed complement to TyW in TyY .
We say that F is transversal to W , in symbols F �∩W , if F �∩ zW for every z ∈ Z.

We recall that a closed subspace F of a Banach space E splits when there exists
a closed subspace G such that E = F ⊕G.

Remark 25. If E is Hilbert, then every closed subspace splits. See [2, Prop. 2.1.15].
Theorem 26. Let D be a bounded domain of the plane R2. Fix σx, σy > 0.

Consider the convolution map8

Γ :

{
L2(D,R) → C∞(R2),

I �→ I ∗G,

where G is the Gaussian centered at (0, 0),

G(x, y) :=
1

2πσxσy
e
− x2

2σ2
x
− y2

2σ2
y .

Let X :=
{I ∈ L2(D,R) s.t. Γ(I) is a Morse function

}
. Then, X is residual in

L2(D,R).
Proof. The proof relies on parametric transversality theorems. The version we

use is Abraham’s formulation (see [1, Th. 19.1]), recalled in the following.
Theorem 27. Let A, X, Y be C r manifolds, ρ : A → C r(X,Y ) a C r represen-

tation, W ⊂ Y a submanifold, and evρ : X × A → Y the evaluation map. Define
AW ⊂ A by AW = {a ∈ A | ρa�∩W}. Assume that

1. X has a finite dimension n and W has a finite codimension q in Y ,
2. A and X are second countable,
3. r > max {0, n− q},
4. evρ�∩W .

Then, AW is residual in A.

8I is considered to be zero outside D.
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We apply Theorem 27 with A = L2(D,R), X = R2, r = 2. We choose Y =
R2 × R× R2 × R3 and ρ the 2-jets of Γ(I), i.e.,

ρ :

{
A → C r(X,Y ),
I �→ (Π1,Π2,Γ(I), ∂xΓ(I), ∂yΓ(I), ∂2xxΓ(I), ∂2xyΓ(I), ∂2yyΓ(I)),

where

Π1 :

{
X → R

(x, y) �→ x
and Π2 :

{
X → R

(x, y) �→ y

are the canonical projections.
We fix

W =
{
(x, y, a, p1, p2, q1, q2, q3) ∈ Y s.t. (x, y) ∈ R2, p1 = p2 = 0, q1q3 − q22 = 0

}
.

A function I ∈ C2(R2) is a Morse function if and only if

evρ(x, y, I) = ρI (x, y) = (x, y,Γ(I)(x, y), ∂xΓ(I)(x, y), ∂yΓ(I)(x, y),
∂2xxΓ(I)(x, y), ∂2xyΓ(I)(x, y), ∂2yyΓ(I)(x, y))

does not belong to W ∀ (x, y) ∈ R2.
Note that W is not a manifold. However, it is an algebraic set, and hence it is

a finite union of manifolds. In the following, we apply theorem 27 as if W were a
manifold, with the understanding that the theorem is applied to each component.

We now verify each of the conditions 1–4 in Theorem 27. Condition 1 holds
with n = 2 and q ≥ 3 for each component of W . Condition 2 holds, since A and X
are separable metric spaces and hence second countable. Condition 3 holds for each
component of W .

Now we verify condition 4, that is, the transversality condition evρ �∩ W . Fix
x, y, I such that evρ(I, (x, y)) ∈ W . Condition 1 in Definition 24 holds because of
Remark 25. We now verify condition 2 in Definition 24, where Z = R2 × A. In the
following, we prove that (T(x,y,I)evρ)(T(x,y,I)(R2 ×A)) is the whole Tevρ(x,y,I)Y . The
map T(x,y,I)evρ has the following triangular form:

T(x,y,I)evρ =

⎛⎝ 1 0 ∗
0 1 ∗
0 0 TIevρ(x, y, I)

⎞⎠ .(3.4)

We are left to prove that the tangent mapping TIevρ(x, y, I) is surjective in R×R2×R3

for arbitrary (x, y) fixed. After a suitable change of coordinate, we can assume that
σx = σy = 1 and that (0, 0) ∈ D. Let ε > 0 such that D ⊃ Q := [−ε, ε] × [−ε, ε].
Define the function in L2(D,R),

δI(x̄, ȳ) = c0 + c1x̄+ c2ȳ + c3x̄
2 + c4x̄ȳ + c5ȳ

2

G(x − x̄, y − ȳ)
,

restricted toQ and zero inD\Q. The map ρ is linear in I, and thus TIevρ(x, y, I) [δI] =
evρ(x, y, δI). Consider the linear operator

evρ(x, y, δI) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∫
Q δI(x̄, ȳ)G(x − x̄, y − ȳ) dx̄dȳ∫
Q
δI(x̄, ȳ)∂1G(x− x̄, y − ȳ) dx̄dȳ∫

Q
δI(x̄, ȳ)∂2G(x− x̄, y − ȳ) dx̄dȳ∫

Q δI(x̄, ȳ)∂211G(x− x̄, y − ȳ) dx̄dȳ∫
Q
δI(x̄, ȳ)∂212G(x− x̄, y − ȳ) dx̄dȳ∫

Q δI(x̄, ȳ)∂222G(x− x̄, y − ȳ) dx̄dȳ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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as a function of the six variables (c0, . . . , c5), and consider the linear system evρ(x, y, δI)
= (a, p1, p2, q1, q2, q3), where (a, p1, p2, q1, q2, q3) ∈ Y is fixed. A direct computation

shows that the determinant of the system is 65536ε28

164025σ8
xσ

8
y
> 0, and thus the system

always has a solution; i.e., TIevρ(x, y, I) is surjective.
By applying Theorem 27, we get AW residual in A. We now prove that AW = X.

Since I ∈ X implies evρ(x, y, I) 	∈ W , ρI �∩W , hence A ⊃ X.
Now let us prove the inclusion A ⊂ X. Let I ∈ A and fix (x, y) ∈ R2.

Nonintersection claim. ρI(x, y) 	∈W .
Proof of the claim. By contradiction, let

w = evρ(x, y, I) ∈W.

Since ρI �∩ (x,y)W ,
(
T(x,y)ρI

) (
T(x,y)R

2
)
contains a closed complement to TwW in

TwY .
Observe that

dim
(
T(x,y)ρI

) (
T(x,y)R

2
) ≤ dim

(
T(x,y)R

2
)
= 2

and codimTwW ≥ 3, thus
(
T(x,y)ρI

) (
T(x,y)R

2
)
cannot contain a closed complement

to TwW in TwY . This is a contradiction.
By applying the claim for each (x, y) ∈ R2, we get that ρI is a Morse func-

tion.
Theorem 28. Let K be a compact subset of R2 with nonempty interior. Under

the hypothesis of Theorem 26, the set XK := {I ∈ L2(D,R) s.t. ρI|K is a Morse func-

tion} is open and dense in L2(D,R).
Proof. Applying the openness of the nonintersection theorem [1, Th. 18.1] and

using the nonintersection claim, we get that XK is an open subset of L2(D,R). Since
XK ⊃ X and X is dense, the conclusion holds.
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[39] J. Petitot and Y. Tondut, Vers une neuro-géométrie. Fibrations corticales, structures de

contact et contours subjectifs modaux, Math. Inform. Sci. Humaines, 145 (1999), pp. 5–101.
[40] Y. Sachkov, Maxwell strata in the Euler elastic problem, J. Dyn. Control Syst., 14 (2008),

pp. 169–234.
[41] Y. Sachkov, Conjugate points in the Euler elastic problem, J. Dyn. Control Syst., 14 (2008),

pp. 409–439.
[42] Y. Sachkov, Conjugate and cut time in the sub-Riemannian problem on the group of motions

of a plane, ESAIM Control Optim. Calc. Var., 16, pp. 1018–1039.
[43] Y. L. Sachkov, Cut locus and optimal synthesis in the sub-Riemannian problem on the group

of motions of a plane, ESAIM Control Optim. Calc. Var., 17 (2011), pp. 293–321.
[44] G. Sanguinetti, G. Citti, and A. Sarti, Image completion using a diffusion driven mean

curvature flow in a sub-Riemannian space, in Proceedings of the Third International Con-
ference on Computer Vision Theory and Applications (VISAPP’08), Funchal, Portugal,
2008, pp. 22–25.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


