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Abstract

Bounded-confidence models in social dynamics describe multi-agent systems, where each individual
interacts only locally with others. Several models are written as systems of ordinary differential equations
with discontinuous right-hand side: this is a direct consequence of restricting interactions to a bounded
region with non-vanishing strength at the boundary. Various works in the literature analyzed properties of
solutions, such as barycenter invariance and clustering. On the other side, the problem of giving a precise
definition of solution, from an analytical point of view, was often overlooked. However, a rich literature
proposing different concepts of solution to discontinuous differential equations is available. Using several
concepts of solution, we show how existence is granted under general assumptions, while uniqueness may
fail even in dimension one, but holds for almost every initial conditions. Consequently, various properties
of solutions depend on the used definition and initial conditions.

1 Introduction
In the last decades, researchers from many different fields explored the behavior of large systems of active
particles or agents. The latter, also called self-propelled, intelligent or greedy, refers to entities with capability
of decision making and, usually, of altering the energy or other otherwise conserved quantities of the system.
Examples include dynamics of opinions in social networks, animal groups, networked robots, pedestrian dy-
namics and language evolution. The dynamics is written as an Ordinary Differential Equation (ODE in the
following) in large dimension and various mean-field, kinetic and hydrodynamic limit descriptions were studied
in the literature, see [1, 5, 11, 12, 16, 17, 23, 27] and references therein.

One of the main phenomena is self-organization of the whole system, stemming from simple interaction rules
at particle level. Such interaction rules are often motivated by relationships among agents and thus referred
to as social dynamics [3, 29, 30]. The most common self-organized configurations are: consensus [26], i.e. all
agents reaching a common state; alignment, i.e. agents reach consensus on a subset of the state variables [10];
clustering, i.e. agents grouping in a small number of well-separated states [21, 25].

Our attention is focused on bounded-confidence models, where each agent interact only with agents located
within a bounded surrounding zone [9, 19, 24]. One of the most well-known of such model is the Hegselmann-
Krause with agents interacting is placed within a given distance, see [7, 20]. A general model can be written
as follows:

ẋi =

N∑
j=1

aij(‖xi − xj‖)(xj − xi) with aij(r) =

®
φij(r) if r ∈ [0, 1)

0 if r ∈ [1,+∞)
, (1)

where xi ∈ Rn is the state of agent i (e.g. position, opinion, speed), N the number of agents. Functions
φij : [0, 1] → R+ represents the strength of interaction between agent i and j, that are supposed to be
symmetric (i.e. φij = φji) from now on. The original model corresponds to φij ≡ 1 and was written in discrete
time. However, many extensions were considered in continuous time. As a consequence, we have the following
crucial observation: the right hand side of (1) is a discontinuous function. For this reason, one needs to carefully
select a concept of solution to such discontinuous ODE. In our opinion, such aspect has been often overlooked
in the extensive literature about bounded-confidence models, with some notable exceptions, such as [6, 8, 13].

The study of ODEs with discontinuous right-hand side, dating back to Caratheodory, has played a crucial
role in mathematical analysis and in control theory. We refer to [15, 18, 32] for an extensive overview of
the subject. In this article, we will make use of the main concepts of solutions that have been defined in
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this context, and in particular we will discuss: classical, Caratheodory, Filippov, Krasovskii, Clarke-
Ledyaev-Sontag-Subbotin (briefly CLSS), and stratified solutions. We recall the precise definition of
such solutions in Section 2.1 below.

It is easy to prove that classical solutions may not exist, but that they enjoy uniqueness. Instead, the first
surprising result about solutions of the Hegselmann-Krause model will be the following.

Theorem 1 Consider (1) with φij Lipschitz continuous and φij = φji. Then, there exists a solution (global
in time) for every initial condition and for every definition of solution, except for classical.
Uniqueness of solutions does not hold for any of the definitions, except for classical (and for stratified for a
fixed stratification). Nevertheless, uniqueness holds for almost every initial data for every definition.

The proof of the positive result can be found in Section 8. Many examples, provided in the following sec-
tions, will show that the discontinuity can generate parameteric families of solutions. The latter may be of
combinatorial complexity in terms of the number of agents N and the dimension of the state space n.

After solving the questions about existence and uniqueness, we will focus on some properties of such solu-
tions. In the rich literature about social dynamics models, some crucial properties of solutions were explored.
Among them, we want to recall the following:

P1) The barycenter x̄ = 1
N

∑
i xi is invariant along trajectories.

P2) For every solution x(·), x(t) converges for t → ∞ to x∞ = (x∞1 , . . . , x
∞
N ) ∈ RnN , x∞i ∈ Rn, such that

for every 1 ≤ i, j ≤ N either x∞i = x∞j or ‖x∞i − x∞j ‖ ≥ 1. This property is called clustering and the
number of distinct agents among x∞i is the number of clusters.

P3) The asymptotic state x∞ of P2) only depends on the initial data of the trajectory. In particular, the
number of clusters only depends on the initial condition.

As we will see, each of such properties may fail to hold, depending on the concept of solution used. Indeed,
our second main result is the following.

Theorem 2 Consider (1) with φij Lipschitz continuous, φij = φji, then the following holds.
Classical solutions satisfy P1-2-3).
Caratheodory, Filippov, Krasovskii and CLSS solutions satisfy P1-P2) but not P3), in general.
Stratified solutions satisfy P1-2-3) for a fixed stratification, but x∞ in P3) depends on the stratification.

The proof of Theorem 2 is given in Section 8.
It is remarkable to observe that both solutions and their properties drastically vary when replacing aij in (1)
even in a single point, e.g. by choosing aij(1) = 1. Indeed, the following last main result holds.

Theorem 3 Consider (1) with φij Lipschitz continuous, φij = φji, and aij(r) replaced by

aij(r) =

®
1 if r ∈ [0, 1],

0 if r ∈ (1,+∞).
(2)

The sets of Krasovskii and Filippov solutions coincide with the ones of (1).
The sets of classical, Caratheodory, CLSS and stratified solutions are different in the two cases.
All statements of Theorems 1 and 2 hold true in this case too.

This theorem shows that one cannot consider the right-hand side of an ODE as a L∞ function, since the struc-
ture of the solution actually depends on the chosen representative. The proof of Theorem 3 is given in Section 8.

The structure of the article is the following. In Section 2 we provide notations and definitions, including the
various concepts of solution for discontinuous ODEs. Section 3 presents the generalized Hegselmann-Krause
model and various general properties, while Section 4 deals with the linear case in R, already providing various
examples of violating uniqueness and properties P1-2-3). Section 5 deals with the multidimensional case,
providing other counterexamples. In Section 6, we prove uniqueness for almost every initial datum, while
Section 7 focuses on the clustering property P2). Finally, Section 8 contains the proofs of the main Theorems.
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2 Notations and definitions
In this article, we denote by λm the Lebesgue measure on Rm. For x ∈ Rm, B(x, r) is the ball of radius r > 0
centered at x and B(r) = B(0, r) is the ball centered at the origin. A cone K ⊂ Rm is a set with 0 ∈ K and
such that α ·K = {αx : x ∈ K} ⊂ K for every α > 0. Given an embedded manifold M ⊂ Rm, the symbol ∂M
denotes the topological boundary. Given A ⊂ Rm, we set

co(A) =

{∑̀
i=1

αixi : ` ∈ N, λi ∈ [0, 1],
∑
i

λi = 1, xi ∈ A

}

the convex hull of A, and denote by co(A) its closure.
We denote by AC([0, T ],Rm) the space of absolutely continuous functions on a time interval [0, T ]. Recall that
every absolutely continuous function is differentiable for almost every time, i.e. except for times on a set of
zero Lebesgue measure.

We also introduce the following:

Definition 2.1 A set Γ ⊂ Rm, Γ = ∪mΓ
i=1Mi, with mΓ ∈ N ∪ {+∞} and Mi being C1 embedded manifold of

dimension ni ≤ m, is stratified if:

i) The family Mi is locally finite: given a compact K, it holds K ∩Mi 6= ∅ only for finite many i.

ii) for i 6= j it holds Mi ∩Mj = ∅, and if Mi ∩ ∂Mj 6= ∅ then Mi ⊂ ∂Mj and ni < nj.

We call maxi ni the dimension of the stratified set Γ.

Remark 2.2 For simplicity we used the definition of topological stratification, even if the examples we consider
will admit Whithney or Boltianskii-Brunovsky stratification. We refer the reader to [22, 28, 31] for a discussion
of the different concepts and the role played for discontinuous ordinary differential equation and optimal feedback
control.

An autonomous Ordinary Differential Equation (briefly ODE) is written as:

ẋ(t) = f(x(t)) (3)

where x ∈ Rm and f : Rm → Rm is a measurable and locally bounded function (defined at every point). The
different concepts of solution will be discussed in the next Section 2.1.

A multifunction on Rm is a function V : Rm → P(Rm), with P(Rm) being the powerset of Rm, i.e. the set
of subsets of Rm. Given a multifunction V , one can consider the differential inclusion:

ẋ(t) ∈ V (x(t)). (4)

A solution is an absolutely continuous function x(·) which satisfies (4) for almost every t.
We define the Hausdorff distance dH on the powerset of Rm as follows: given x ∈ Rm and A,B ⊂ Rm we

set d(x,A) = inf{d(x, y) : y ∈ A} and dH(A,B) = sup{d(x,A), d(y,B) : x ∈ B, y ∈ A}. A multifunction V
is continuous if it is continuous for the Hausdorff distance, while V is upper semicontinuous at x if for every
ε > 0 there exists δ > 0 such that V (y) ⊂ V (x) +B(ε) for every y with |x− y| < δ.
A continuous multifunction V is also upper semicontinuous. It is well known that if V is upper semicontinuous
with compact convex values, then the corresponding differential inclusion (4) admits solutions for every initial
condition, see [2]. More precisely, we have the following:

Proposition 2.3 Assume that the multifunction V in (4) is upper semicontinuous and, for every x ∈ Rm,
V (x) is a nonempty, compact and convex subset of Rm. Then for every initial condition x0 there exists a
solution to (4). Moreover, if V satisfies supv∈V (x) |v| ≤ C(1 + ‖x‖) for some C > 0, then for every x0 ∈ Rm
and T > 0, the set of solutions to (4) with initial condition x(0) = x0 is a nonempty, compact, connected subset
of AC([0, T ],Rm).
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2.1 Solutions to discontinuous ordinary differential equations
Given the ODE (3) with f discontinuous, it is convenient to define the associated Filippov multifunction as:

F (x) =
⋂
δ>0

⋂
λm(N)=0

co{f(y) : y ∈ (x+Bδ \N)}. (5)

We have the following proposition, see [2].

Proposition 2.4 Consider an ODE (3) with f measurable and locally bounded. Then the corresponding Fil-
ippov multifunction F defined by (5) is upper semicontinuous with nonempty, compact and convex values, thus
the differential inclusion ẋ ∈ F (x) admits solutions for every initial condition.

Similarly, the Krasovskii multifunction, associated to (3), is defined as:

K(x) =
⋂
δ>0

co{f(y) : y ∈ (x+Bδ)}, (6)

and it shares the same regularity as the Filippov one; thus, solutions exist to the corresponding differential
inclusion for every initial condition.

Remark 2.5 We will mostly consider examples of ODEs for which Filippov and Krasovsky multifuction coin-
cide, so we will mainly focus on the Filippov definition. However, the set of solutions may differ significantly
in the general case, as shown by Example 2.9 below.

To define a third concept of solution, we introduce the following:

Definition 2.6 A stratification S for the ODE (3) is a quadruplet (Γ, N1, N2,Σ) with Γ = Rm stratified,
N1 ∪N2 = {1, . . . ,mΓ}, N1 ∩N2 = ∅ and Σ : N2 → N1 such that the following holds:

• the manifolds Mi, i ∈ N1, are called type I cells and the manifolds Mj, j ∈ N2, are called type II cells.

• if Mi is of type I, then f(x) ∈ TxMi for every x ∈Mi and f restricted to Mi is smooth.

• if Mj is of type II, then for every x ∈ Mj there exist ε > 0 and a unique absolutely continuous curve
ξx : [0, ε[→ Rm with ξx(0) = x, ξx(t) ∈MΣ(j) for t ∈]0, ε[ and ξ̇x(t) = f(ξx(t)) for every t ∈]0, ε[.

Many definitions of solutions for (3) are then available, most of which coincide when f is sufficiently regular
(e.g. locally Lipschitz). We summarize in the following definition the concepts we are considering in the rest
of the paper.

Definition 2.7 Given the ODE (3) and T > 0 we define the following:

1. A classical solution is a function x : [0, T ]→ Rm, which is differentiable and satisfies (3) at every time
t ∈ [0, T ] (with one-sided derivatives at 0 and T ).

2. A Caratheodory solution is an absolutely continuous function x : [0, T ] → Rm which satisfies (3) at
almost every time t ∈ [0, T ].

3. A Filippov solution is an absolutely continuous function x : [0, T ]→ Rm, which satisfies:

ẋ ∈ F (x(t))

for almost every time t ∈ [0, T ], with F given by (5).

4. A Krasovskii solution is is an absolutely continuous function x : [0, T ]→ Rm, which satisfies:

ẋ ∈ K(x(t))

for almost every time t ∈ [0, T ], with K given by (6).
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5. A limit of sample-and-hold solution or Clarke-Ledyaev-Sontag-Subbotin (briefly CLSS) solu-
tion is a continuous function x : [0, T ]→ Rm, which is uniform limit of continuous and piecewise smooth
functions xν , ν ∈ N, for which there exist 0 = t0ν < t1ν < · · · < tmνν = T such that ẋν(t) = f(xν(tjν)) for
t ∈ [tjν , t

j+1
ν [, j = 0, . . . ,mν − 1, and maxj(t

j+1
ν − tjν)→ 0 as ν →∞.

6. If S = (Γ, N1, N2,Σ) is a stratification for f , then a stratified solution generated by S is a continuous
and piecewise smooth function x : [0, T ] → Rm for which there exist 0 = t0 < t1 < t2 < · · · < t` = T
and i1, . . . , i` ∈ {1, . . . ,mΓ} such that the following holds for k = 0, . . . , ` − 1: if ik ∈ N1 then x(·) is a
classical solution on [tk, tk+1[ contained in Mik , while if ik ∈ N2 then x(tk) ∈Mik and x(·) is a classical
solution on ]tk, tk+1[ contained in MΣ(ik).

7. A solution x : [0, T ] → Rm (in one of the previous senses) is said robust if there exists a neighborhood
N of x(0) and, for every y ∈ N , a solution xy with xy(0) = y such that the following holds: for each
yν ∈ N , with yν → x(0) as ν → +∞, xyν converges to x uniformly on [0, T ].

8. A solution x : [0, T ] → Rm (in one of the previous senses) is said cone-robust if there exists a cone K
with nonempty interior, a neighborhood N of x(0) and, for every y ∈ ((x+K) ∩N), a solution xy with
xy(0) = y such that the following holds: for each yν ∈ (x + K) ∩ N , with yν → x(0) as ν → +∞, xyν
converges to x uniformly on [0, T ].

Remark 2.8 The concept of classical solution is not used for discontinuous ODEs, because of general lack of
existence. Instead, Caratheodory solutions are the one commonly used, as they are equivalent to solutions in
the integral form:

x(t) = x(0) +

∫ t

0

f(x(s)) ds.

The concepts of Filippov and Krasovskii solutions are commonly used to deal with general discontinuous ordi-
nary differential equations. They have the advantage of being based on the well-developed theory of differential
inclusions, see [2, 18].
CLSS solutions have been introduced to provide a suitable concept for discontinuous stabilizing feedbacks [14].
Notice that the sample-and-hold approximations are indeed numerical solutions provided by the explicit Euler
scheme. Thus CLSS solutions represent solutions which may be generated by a numerical scheme in the theo-
retical limit.
The concept of stratification and stratified solution is particularly convenient in optimal control theory, espe-
cially to build optimal synthesis, see [28]. The concept of robust and cone-robust are useful to isolate solutions
in the same context [22].

M1

M2

M3

Figure 1: Graphical representation of f and stratifications for Example 2.9.

The different concepts give rise to very different sets of solutions, as illustrated by next Example.
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Example 2.9 Consider the ODE (3) on R2 with initial condition x(0) = (x1(0), x2(0)) and f given by:

f(x) =

 (−1, 0) x2 > x1

(1, 1) x2 = x1

(1, 0) x2 < x1

(7)

See also Figure 1 for a graphical representation of f . Clearly for x2(0) 6= x1(0) there exists a unique solution
given by x2(t) = x2(0) and x1(t) = x1(0) ± t if x1(0) ≷ x2(0) (for all concepts). Therefore, we focus on the
initial condition for which x1(0) = x2(0) and without loss of generality we assume x1(0) = x2(0) = 0. We
notice that F ((0, 0)) = {(α, 0) : α ∈ [−1, 1]} for F defined by (5) and K(0, 0) is the convex hull of the three
points (−1, 0), (1, 1) and (1, 0) for K defined by (6). Then, the set of solutions is as follows:

• There exists a unique classical solution given by x(t) = (t, t).

• There exist two one-parameter families of Caratheodory solutions: for fixed t̄ ∈ [0,+∞] consider the
continuous function x± such that x±(t) = (t, t) on [0, t̄[ and x±(t) = (t̄± (t− t̄), t̄) on ]t̄,+∞[.

• The set of Filippov solutions is given by two one-parameter families: for fixed t̄ ∈ [0,+∞], consider the
continuous function x± such that x±(t) = (0, 0) on [0, t̄[ and x±(t) = (±(t− t̄), 0) on ]t̄,+∞[.

• The set of Krasovskii solutions includes Caratheodory and Filippov solutions, and is given by the following
infinite dimensional family. Given t̄ ∈ [0,+∞] and a Lipschitz continuous function ϕ : [0,+∞[→ R with
0 ≤ ϕ′(t) ≤ 1 for almost every t, define the continuous function xt̄,±ϕ such that xt̄,±ϕ (t) = (ϕ(t), ϕ(t)) on
[0, t̄[ and xt̄,±ϕ (t) = (ϕ(t̄)± (t− t̄), ϕ(t̄)) on [t̄,+∞[.

• The only CLSS solution coincides with the classical one.

• There exists three possible stratifications: Si, i = 1, 2, 3 defined as follows. First set M1 = {(x1, x2) :
x2 > x1}, M2 = {(x1, x2) : x2 < x1}, M3 = {(x1, x2) : x2 = x1}, Γ = R2 = ∪iMi and mΓ = 3.
The first stratification is S1 = {Γ, {1, 2}, {3},Σ1}, with Σ1(3) = 1. The only stratified solution for S1 is
x(t) = (−t, 0).
The second is S2 = {Γ, {1, 2}, {3},Σ2}, with Σ2(3) = 2. The only stratified solution for S2 is x(t) = (t, 0).
Finally, the third is S3 = {Γ, {1, 2, 3}, ∅, ∅} and the only stratified solution for S3 is x(t) = (t, t).

• No solution is robust and the only cone robust are the stratified solutions for S1 and S2.

3 The Hegselmann-Krause model
One of the most known examples of social dynamics is the celebrated Hegselmann-Krause (briefly HK) model:

ẋi =

N∑
j=1

aij(‖xi − xj‖)(xj − xi) with aij(r) =

®
φij(r) if r ∈ [0, 1)

0 if r ∈ [1,+∞).
(8)

where xi ∈ Rn, i = 1, . . . , N , φij : [0, 1] → R+ are Lipschitz continuous, and φij = φji. Each xi represents
the (possibly multidimensional) opinion of the i-th agent. To be precise, the original model was formulated
in discrete-time with φij ≡ 1, see [20]. Obviously, existence and uniqueness for the discrete time version is
granted, while (8) is the natural extension to the continuous-time case with φij arbitrary. We will provide
various examples of lack of uniqueness and some positive results. Many examples will be provided for the
special case φij ≡ 1, i.e. with linear dynamics for interacting agents, while results will be given for the general
case.

3.1 Relationships between concepts of solution
In this section, we will prove first results about the connection between different kinds of solutions. In particular,
we will prove the following result.
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Proposition 3.1 The set of Filippov solutions to (8) coincides with the set of Krasovskii solutions and contains
the set of Caratheodory solutions. The set of Caratheodory solutions includes classical, CLSS and stratified
solutions.

The system (8) can be written in standard from (3) by setting m = nN , x = (x1, . . . , xN ) ∈ RnN , f =
(f1, . . . , fN ) with fi : Rn → Rn given by (8). To prove some general properties of the system (8), we first need
to provide some definition.

Definition 3.2 Given i, j ∈ {1, . . . , N}, i 6= j, we define the subset of RnN :

Mij = {(x1, . . . , xN ) : ‖xi − xj‖ = 1}, (9)

and the union of such subsets as:
M = ∪i,j:i 6=jMij . (10)

For x ∈M we let J(x) = {J1, . . . , J`(x)} be the unique partition of {1, . . . , N} (i.e. Jk ⊂ {1, . . . , N} are disjoint
and ∪kJk = {1, . . . , N}) such that both j1 ∈ Jk and j2 ∈ Jk for some k if and only if xj1 = xj2 .

We have:

Proposition 3.3 The map f = (f1, . . . , fN ), with fi : Rn → Rn given by (8), is locally Lipschitz continuous
at every x ∈ RnN \M. Moreover, the setM is stratified.

Proof. The locally Lipschitz continuity of f outsideM follows directly from the definition of fi.
The setM is stratified by defining the strata as follows. Given any partition J = {J1, . . . , J`} of {1, . . . , N},
we set MJ = {x : J(x) = J}. Notice that dim(MJ) = `. Property i) of Definition 2.1 follows from the
finiteness of partitions of {1, . . . , N}. For property ii), write J1 ≺ J2 if the partition J1 is a strict refinement of
J2. Then it is easy to check that J1 ≺ J2 if and only ifMJ1

⊂ ∂MJ2
and, in this case, dim(MJ1

) < dim(MJ2
). 2

Proposition 3.4 Let F be the Filippov multifunction defined as in (5) for f = (f1, . . . , fN ), with fi given by
the right hand side of (8). It holds F (x1, . . . , xN ) = (F1, F2, . . . , FN ), where

Fi =

 ∑
j 6=i:‖xi−xj‖=1

αjφij(1)(xj − xi) : αj ∈ [0, 1]

+
∑

j 6=i:‖xi−xj‖<1

φij(‖xi − xj‖)(xj − xi). (11)

There exists C > 0 such that supv∈F (x) |v| ≤ C(1+‖x‖), thus for every x0 ∈ RnN and T > 0, the set of Filippov
solutions to (8) with initial condition x(0) = x0 is a nonempty, compact, connected subset of AC([0, T ],Rm).
Moreover, the Krasovskii multifunction K defined as in (6) coincides with that defined by (5), thus the set of
Krasovskii solutions coincide with the set of Fillippov solutions.
Finally, the property P1) holds for Filippov and Krasovskii solutions.

Proof. The explicit expression (11) can be verified by computation. Set Cij = supr∈[0,1] φij(r) < +∞,
i, j = 1, . . . , N , and C ′ = maxij Cij . Given x ∈ RnN , we have ‖xi − xj‖ ≤ ‖xi‖ + ‖xj‖ ≤

√
2‖x‖, thus

‖fi(x)‖ ≤ N
√

2C ′‖x‖. Finally, ‖f(x)‖ ≤ N
√

2NC ′‖x‖ and the sublinear estimate holds for F .
Now fix x ∈M and consider J(x) = {J1, . . . , J`(x)}. Define the open set

A(x) = {y : ∀k ∈ {1, . . . , `(x)}, ∀ i, j ∈ Jk, i 6= j, we have ‖yi − yj‖ > 1} .

Then f(x) = limy→x,y∈A(x) f(y). Thus, the definition of K given by (6) coincides with F given by (5).
Last statement was proved in [13] for the case n = 1, and can be easily adapted to the case n ≥ 1. Indeed,
observe that any vector field (v1, . . . , vN ) ∈ F (x) satisfies

∑N
i=1 vi = 0, thus any (convex) combination of vector

fields in F (x) satisfies it too. The barycenter x̄ is a continuous function satisfying ˙̄x =
∑N
i=1 vi = 0 for a.e.

time, then it is constant. 2

Proposition 3.5 Consider the system (8) with φij Lipschitz continuous. Then, the set of Caratheodory solu-
tions is contained within the set of Filippov and Krasovskii solutions.

7



Proof. Notice that f(x) is continuous outside M and, as in the proof of Proposition 3.4, it holds f(x) =
limy→x,y∈A(x) f(y). Therefore f(x) ∈ F (x) for all x ∈ RnN , thus we conclude.
Since a solution x(·) in Caratheodory sense satisfies the equation for almost every time, one has ˙̄x(t) = 0 for
almost every t, thus P1) holds true. 2

We are now ready to prove the inclusions given in Proposition 3.1 above.
Proof of Proposition 3.1. We proved in Proposition 3.4 that Filippov and Krasovskii solutions coincide.
We proved in Proposition 3.5 that Caratheodory solutions are included in the set of Filippov solutions. By
definition, stratified solutions are Krasovskii solutions and also satisfy the equation for almost every time, thus
they are also Caratheodory solutions. Since both CLSS and Caratheodory solutions are Lipschitz functions of
time (due to boundedness of the right hand side), one has that CLSS solutions are Caratheodory: indeed, they
can be seen as limits of Euler explicit schemes for Caratheodory solutions. Finally, it is also evident from the
Definition 2.7 (and Remark 2.8) that classical solutions are also Caratheodory ones. 2

3.2 Existence of solutions
We now deal with existence of solutions. The existence of Fillippov (and Krasovskii) solutions are guaranteed
by the general theory of differential inclusions, as recalled in Proposition 3.4. Also, CLSS solutions exist, as
they are uniform limits of Lipschitz approximated trajectories. We now prove that, for every initial datum
there exists at least one Caratheodory solution defined for all times under the more general conditions of φij
only continuous.

Proposition 3.6 Let us consider the general HK system (8) and assume that φij ∈ C([0, 1], ]0,+∞[). Then
for every initial datum x̄ ∈ RnN there exists at least one Caratheodory solution defined for all times t ≥ 0.

Proof. Given an initial condition x̄, if x̄ ∈ RnN \ M then (8) is continuous and locally bounded, thus by
Peano Theorem there exists a local (in time) solution x(·). This solution can be extended until the first time
t1M such that x1 = x(t1M) ∈M.
Given a (not directed) graph G = (V,E), with V = {v1, . . . , vn}, we consider the equation

ẋi =
∑

j:{i,j}∈E

aij(‖xi − xj‖)(xj − xi). (12)

Since (12) has a continuous right-hand side, by Peano Theorem for a fixed G and an initial condition, there
always exist a solution to (12). Thus our strategy is to construct a G so that the solution to (12) from x1 is
also a Caratheodory solution to (8).
Define I = {{i, j} : ‖x1

i − x1
j‖ = 1} and let G1 = (V1, E1) be the (not directed) graph with V1 = {v1, . . . , vn}

and {i, j} ∈ E1 if and only if |x1
i − x1

j | < 1. We now build a new graph G′1 = (V1, E
′
1), with E1 ⊂ E′1. First we

order the elements of I, then we proceed as follows by recursion on the elements of I. If {i, j} ∈ I then set:

αij = (x1
i − x1

j ) ·

Ñ ∑
(i,k)∈E1

aik(x1
k − x1

i )−
∑

(j,k)∈E1

ajk(x1
k − x1

j )

é
,

α′ij = (x1
i − x1

j ) ·

Ñ ∑
(i,k)∈E1∪{{i,j}}

aik(x1
k − x1

i )−
∑

(j,k)∈E1∪{{i,j}}

ajk(x1
k − x1

j )

é
,

where, for simplicity, we dropped the arguments in aik and ajk. We add the edge {i, j} to E1 if and only if
αij ≤ φij(1). Now, if αij > φij(1) > 0 then ‖xi − xj‖ is increasing along the solution to (12) for G = G1.
Otherwise, since α′ij = αij − 2φij(1) and αij ≤ φij(1), then α′ij < −φij(1) < 0, thus ‖xi − xj‖ is decreasing
along the solution to (12) for G obtained from G1 by adding the edge {i, j}. In both cases the dynamics given
by the graph is compatible with (8).
Let G′1 be the graph obtained at the end. We have that the solution to (12) for G = G′1 is also a Caratheodory
solution to (8) on some interval [t1M, t

1
M + δ1] with δ1 > 0.
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Let now T > 0 be the maximal time so that x(·) can be defined on [0, T ]. Assume, by contradiction, T < +∞.
Then by the boundedness of φij , we have that x(·) is Lipschitz continuous, thus we can define x(T ). Applying
the same reasoning as for x(t1M) we can extend the solution beyond T , thus reaching a contradiction. 2

As for stratified solutions, their existence is ensured by Definition 2.6 itself as proved in next Proposition.

Proposition 3.7 Let us consider the general HK system (8) with φij ∈ C([0, 1], ]0,+∞[). Then for every
stratification and initial datum x̄ ∈ RnN , there exists a unique stratified solution defined for all times t ≥ 0.

Proof. Let Mi0 be the stratum so that x̄ ∈Mi0 . If Mi0 is of type I then a local solution x(·) exists since f is
smooth on Mi0 . Let t1 = sup{t : x(t) ∈Mi0}, then by boundedness of φij there exists x1 = limt↗t1 x(t).
If Mi0 is of type II, then by definition there exists a local solution ξx̄ belonging to MΣ(i0) for positive times. In
this case we define t1 = sup{t : x(t) ∈MΣ(i0)} and, by boundedness of φijs, there exists x1 = limt↗t1 x(t).
In both cases we let Mi1 be the stratum so that x1 ∈Mi1 and proceed by recursion.
Again by boundedness of φij , we can prolong the solution for every time. Moreover, such solution is unique by
definition of stratification for (8). 2

3.3 Contractivity of the support
In this section, we prove that the support of solutions (in any of the sense given above) is weakly contractive.
This is a well-known property of Caratheodory solutions of HK models, see e.g. [8]. The proof of such property
for Krasovskii solutions on the real line can be found in [13, Proposition 3.iii]. We will give a general proof for
Krasovskii solutions in any dimension, again in the more general case of φij only continuous.

Proposition 3.8 Let x(t) = (x1(t), x2(t), . . . , xN (t)) be a solution to (8), with φij ∈ C([0, 1], ]0,+∞[), in any
of the senses given in Definition 2.7, and 0 ≤ T 1 < T 2. It then holds

co
({
x1(T 1), x2(T 1), . . . , xN (T 1)

})
⊇ co

({
x1(T 2), x2(T 2), . . . , xN (T 2)

})
. (13)

Proof. Let x(·) be a given Krasovskii solution and define the set X(t) := co ({x1(t), x2(t), . . . , xN (t)}). Also
define the sets

A(T 1) :=
{
T 2 ∈ (T 1,+∞) s.t. X(T 1) 6⊇ X(T 2)

}
.

The statement can be reformulated as following: for all T 1 ≥ 0 the set A(T 1) is empty. We prove it by
contradiction: assume that there exists A(T 1) nonempty. Since it is bounded from below by T 1 itself, it admits
an infimum T 3 ≥ T 1. We now prove the following:
Claim a) It either holds inf(A(T 1)) = T 1 or inf(A(T 3)) = T 3.

The claim is proved as follows: if T3 = T1, the first statement holds by construction. Otherwise, it holds
X(T 1) ⊇ X(T 3), since the condition is closed. Take a sequence T 2

k ∈ A(T 1) with T 2
k ↘ T 3 and observe that

X(T 1) 6⊇ X(T 2
k ) implies X(T 3) 6⊇ X(T 2

k ). Thus T 2
k ∈ A(T 3) for all k, hence T 3 = inf(A(T 3)).

Thanks to Claim a), by renaming T 3 = 0 or T 1 = 0, we assume inf(A(0)) = 0 from now on. Take now
a sequence of times tk ↘ 0 such that there exists i = 1, . . . , N for which xi(tk) 6∈ X(0). Since the number
of agents is finite, eventually passing to a subsequence, there exists a single agent (that we relabel as agent
1) satisfying x1(tk) 6∈ X(0). By continuity of x1(t), it holds x1(0) ∈ ∂X(0), that is the boundary of X(0).
Since X(0) is a n-dimensional convex polyhedron, there exists a small ball B(x1(0), ε) and a finite number of
hyperplanes passing through x1(0) identified by outer unitary vectors ν1, . . . νj such that:

• for all x ∈ X(0) it holds (x− x1(0)) · νl ≤ 0 for all l = 1, . . . , j;

• for all x ∈ B(x1(0), ε) \X(0) it holds (x− x1(0)) · νl > 0 for at least one index l = 1, . . . , j.

Since chosen unitary vectors are in finite number, eventually passing to a subsequence of tk, one can select a
single unitary vector (denoted simply as ν from now on) such that (x1(tk)− x1(0)) · ν > 0 for all tk.

We now define the functions fi := (xi(t)−x1(0))·ν, that are absolutely continuous, and f(t) := maxi=1,...,N fi(t),
that is the maximum of a finite number of absolutely continuous functions, hence absolutely continuous itself.
Since f(tk) ≥ f1(tk) > 0, for any choice of ε′ > 0 the set Aε′ := (f(t) > 0) ∩ (0, ε′) is nonempty. For almost
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every t ∈ Aε′ , one has that f, f1, . . . , fN are differentiable. Observe that, if xi(t) realizes f(t) = fi(t), then for
each j 6= i it holds

(xj(t)− xi(t)) · ν = (xj(t)− x1(0)) · ν + (x1(0)− xi(t)) · ν = fj(t)− fi(t) ≤ f(t)− f(t) = 0. (14)

We now compute ḟi(t) for t such that f(t) = fi(t) > 0 and fi(t) is differentiable. Since the Krasovskii
multifunction satisfies (11), there exist αj ∈ [0, 1] such that

ḟi(t) = ẋi(t) · ν =
∑

j 6=i:‖xi−xj‖=1

αjφij(1)(xj(t)− xi(t)) · ν +
∑

j 6=i:‖xi−xj‖<1

φij(‖xi − xj‖)(xj(t)− xi(t)) · ν ≤ 0.

Here we used (14) and positivity of φij . By Danskin Theorem [4], it holds ḟ = maxi s.t. f(t)=fi(t)
ḟi(t), hence

ḟ ≤ 0 whenever f > 0 and it is differentiable. This implies that f is never strictly positive. This contradicts
f(tk) > 0. Thus, for the chosen Krasovskii solution, (13) holds.

Since the proof holds for any Krasovskii solution, the statement holds for any definition of solution, by
recalling Proposition 3.1 above. 2

4 The linear Hegselmann-Krause model in R
Here we focus on the Hegselmann-Krause model (8) with n = 1, φij ≡ 1, i.e. on the linear case in dimension
one. Even in this simplified setting, the set of solutions is highly dependent on the choice of the definition.
Moreover, uniqueness and properties P1-2-3) may fail.

4.1 A toy example: two agents
The simplest non-trivial example of (8) is given by the case n = 1, N = 2 and φij ≡ 1, i.e. by the system:

ẋ1 = χ|x1−x2|<1(x2 − x1), ẋ2 = χ|x1−x2|<1(x1 − x2), (15)

where χ is the indicator function. We consider the initial condition:

x(0) = (x1,0, x2,0). (16)

For initial conditions such that |x1,0 − x2,0| 6= 1, the solution is unique (for all considered concepts): constant
for the case |x1,0 − x2,0| > 1 and verifying:

x1(t)− x2(t) = e−2t(x1,0 − x2,0), x1(t) + x2(t) = x1,0 + x2,0, (17)

for the case |x1,0 − x2,0| < 1.
To deal with the case |x1,0 − x2,0| = 1, we first distinguish two possible stratifications, both based on the
stratified set:

Γ = M1 ∪M2 ∪M3 (18)

with M1 = {(x1, x2) : |x1 − x2| < 1}, M2 = {(x1, x2) : |x1 − x2| > 1} and M3 = {(x1, x2) : |x1 − x2| = 1}. The
first is given by S1 = (Γ, {1, 2, 3}, ∅, ∅), and the second by S2 = (Γ, {1, 2}, {3},Σ) with Σ(3) = 1. We have the
following:

Proposition 4.1 Consider the Cauchy problem (15)-(16) with |x1,0 − x2,0| = 1. Then, the following holds:

i) The only classical solution is the constant one x(t) ≡ x(0).

ii) There is an infinite number of Caratheodory solutions parameterized by t̄: constant on the interval [0, t̄[,
and for t ≥ t̄ given by

x1(t)− x2(t) = e−2(t−t̄)(x1,0 − x2,0), x1(t) + x2(t) = x1,0 + x2,0.
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iii) Filippov (and Krasovsky) solutions coincide with Caratheodory solutions.

iv) The unique CLSS solution is the constant one.

v) The only stratified solution for S1 is the constant solution, while the only one for S2 is (17).

vi) There is no robust solution.

vii) The constant solution and (17) are the only cone-robust solutions (for any definition for which they are
solutions).

In particular the only concept of solution for which (17) is the unique solution is that of stratified solution for
the stratification S2.

Remark 4.2 If we consider the variant model (2), then (17) is the only classical, Caratheodory, CLSS and
stratified solution. This special situation of uniqueness does not occur for more than two agents, see Section
4.2.

Proof. Let us start with Filippov solutions. If x(·) is a solution, we have d |x1−x2|
dt (t) ≤ 0 for almost every t,

thus we can define t̄ = inf{t : |x1(t) − x2(t)| < 1}, possibly t̄ = +∞. For t ≥ t̄, x(·) is a solution to a linear
ODE, thus it is unique. This shows that Fillippov (and Krasovsky) solutions are those given by ii). Since they
satisfy (15) for almost every time, they are also Caratheodory solutions. This proves ii) and iii).
The only Caratheodory solution satisfying (15) for all times is the constant one, thus i) is proved. Similarly,
each sample-and-hold solution is constant, thus iv) is proved.
For S1 the cell M3 is of type I, thus the constant solution is the stratified one, while for S2 the cell M3 is of
type two and the solution must enter M1, thus it coincides with (17). This proves v).
Notice that, if we perturb the initial datum so that |x1,0− x2,0| > 1 then the only solution is the constant one,
while if perturb the initial datum so that |x1,0 − x2,0| < 1 then (17) is the only solution. This proves vi) and
vii). 2

For what concerns the solution properties P1-2-3), it is interesting to notice that some properties hold true
for all solutions. More precisely, we have the following:

Proposition 4.3 Consider the Cauchy problem (15)-(16) , then the following holds. The properties P1) and
P2) hold for all solutions. Property P3) only holds for classical, CLSS and stratified solutions.

Proof. The proof follows directly from Proposition 4.1. 2

4.2 The case of 3 agents in R
The toy example of Section 4.1 is the minimal nontrivial example one can build. Uniqueness of solution is
already lost, however the set of solutions is given by a one-parameter family and some properties, such as
invariance of the barycenter, still hold true. In this section we consider three agents in R, still with linear
dynamics, showing more complexity and a complete loss of such properties.

We consider the dynamics (8) for n = 1, N = 3 and φij = 1. The system reads as ẋ1 = χ|x1−x2|<1(x2 − x1) + χ|x1−x3|<1(x3 − x1), x1(0) = x1,0,
ẋ2 = χ|x1−x2|<1(x1 − x2) + χ|x2−x3|<1(x3 − x2), x2(0) = x2,0,
ẋ3 = χ|x1−x3|<1(x1 − x3) + χ|x2−x3|<1(x2 − x3), x3(0) = x3,0.

(19)

Notice that we can always change the order of the agents and apply a translation, thus we will assume
x1,0 ≤ x2,0 = 0 ≤ x3,0. We will distinguish the following Initial Conditions (IC for short) cases:

IC-A) x1,0 < −1 and x3,0 > 1;

IC-B) x1,0 > −1 and x3,0 < 1;

IC-C) x1,0 = −1 and x3,0 > 1 (or the symmetric case x1,0 < −1 and x3,0 = 1);
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IC-D) x1,0 = −1 and 0 < x3,0 < 1 (or the symmetric case −1 < x1,0 < 0 and x3,0 = 1);

IC-E) The most interesting case (IC-E) is when initial distances are exactly 1, i.e.

x1,0 = −1, x2,0 = 0, x3,0 = 1. (IC-E)

We have the following result for cases IC-A,B,C. See Figure 2.

Proposition 4.4 The unique solution to IC-A (for any concept of solution in Definition 2.7) is the constant
one:

x1(t) = x1,0, x2(t) = x2,0, x3(t) = x3,0.

The unique solution to IC-B (for any concept of solution in Definition 2.7, except for classical solution) is
the one in which all agents exponentially converge to the barycenter, that is invariant. Classical solutions for
x3,0 − x1,0 ≥ 1 do not exist.

The unique solution to IC-C (for any concept of solution in Definition 2.7) is the one in which x1, x2

exponentially converge to x1,0+x2,0

2 and x3 is constant. For the symmetric case, x1 is constant and x2, x3

exponentially converge to x2,0+x3,0

2 .

Proof. The proof is straightforward, by direct computation. Moreover, uniqueness of the Caratheodory so-
lution in the IC-B case with the additional constraint x3,0 − x1,0 ≥ 1 ensures the non-existence of a classical
solution: indeed, if a classical solution exists, then it coincides with the Caratheodory one, that is not C1 in
this case. 2
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Figure 2: Solutions for Initial Condition A (left), B (center), C (right).

In the remainder we focus on case (IC-E), as case IC-D and its symmetric are treatable as a sub-case. We
first define four special trajectories: xα, xβ , xγ , xδ. The first trajectory xα is the constant solution:

xα1 (t) ≡ x1,0, xα2 (t) ≡ x2,0, xα3 (t) ≡ x3,0. (20)

The second trajectory xβ is the one exponentially converging to the barycenter:

xβ1 (t) = −e−tχ[0,ln(2)[ +
−e−3(t−ln(2))

2
χ[ln(2),+∞[, x

β
2 ≡ 0, xβ3 (t) = e−tχ[0,ln(2)[ +

e−3(t−ln(2))

2
χ[ln(2),+∞[. (21)

The third trajectory xγ has the first two agents exponentially converging and the third constant:

xγ1(t) = −1 + e−2t

2
, xγ2 =

e−2t − 1

2
, xγ3 ≡ 1. (22)

Finally, the fourth trajectory xδ has the second and third agents exponentially converging and the first constant:

xδ1(t) ≡ −1, xδ2 =
1− e−2t

2
, xδ3(t) =

1 + e−2t

2
. (23)
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4.2.1 Caratheodory and Filippov solutions

We now study the family of Caratheodory solutions with initial data (IC-E). We have the following:

Proposition 4.5 Consider the Cauchy problem (19) in case (IC-E). Then the following holds:

i) The set of Caratheodory solutions is given by the union of three one-parameter families parameterized by
t̄ ∈ [0,+∞]: ®

xα(t) for t ∈ [0, t̄[,

xi(t− t̄), with i = β, γ, δ for t ≥ t̄.
(24)

ii) For the modified model (2), the set of Caratheodory solutions is given by {xi(t) : i = β, γ, δ}.

iii) All Caratheodory solutions satisfy P1-2), while P3) fails, even for the modified model (2). In particular
the final clusters’ number and positions depend on the solution: 3 clusters for xα, 1 cluster for xβ and 2
clusters for xγ (in positions − 1

2 and 1) and xδ (in positions −1 and 1
2).

See a representation of Caratheodory solutions in Figure 3.
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Figure 3: Caratheodory solutions for Initial Condition E.

Proof. It is easy to prove that all trajectories given in (24) are Caratheodory solutions of (19) with initial
data (IC-E). We now prove that there exists no other solution. With this goal, we first prove the following two
claims:

Claim a) If there exists t̄ such that |x2(t̄)−x1(t̄)| < 1 then for all t ≥ t̄ we have |x2(t)−x1(t)| < 1. The same
result holds for x2 and x3.

We prove the claim by contradiction. Assume that |x2(t̄)−x1(t̄)| < 1 and |x2(t̃)−x1(t̃)| ≥ 1 for some t̃ > t̄.
Since x1 and x2 are differentiable almost everywhere there exists t ∈ (t̄, t̃) such that |x2(t) − x1(t)| ∈

(
1
2 , 1
)
,

and |x1(·)− x2(·)| is differentiable at t with strictly positive derivative. Then, it holds:

d

dt
(x2(t)− x1(t)) = −2(x2(t)− x1(t)) + χ|x3(t)−x2(t)|<1(x3(t)− x2(t)) ≤ −2(x2(t)− x1(t)) + 1 < −2

1

2
+ 1 = 0.

This leads to a contradiction. The claim is proved.

Claim b) If there exists t̄ such that |x2(t̄)− x1(t̄)| > 1 then for all t ≥ t̄ we have x1(t) = x1(t̄) and similarly
for x2 and x3.
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The proof is easy: notice that ẋ1 = 0 and ẋ2 ≥ 0 for almost every t ≥ t̄. This implies that |x2(t̄) − x1(t̄)| is
increasing, thus the claim is proved.

We now define the times:

t12 = inf{t : |x1(t)− x2(t)| < 1}, t23 = inf{t : |x2(t)− x3(t)| < 1},

possibly equal to +∞ when sets are empty, and prove the following:

Claim c) If 0 < t12, t23 < +∞ then t12 = t23.

Assume, by contradiction, that t12 < t23 (the other case being similar). On the interval [t12, t23] we have
|x2(t)− x3(t)| ≥ 1 by definition of t23. Claim b) ensures that |x2(t)− x3(t)| = 1 for all t ∈ [t12, t23], otherwise
we would have t23 = +∞.

Take now the definition of t12 and apply Claim a), that ensures that |x2(t) − x1(t)| < 1 for all t > t12.
Merging it with |x2(t)−x3(t)| = 1 on the interval [t12, t23], we have both ẋ2(t) < 0, ẋ3(t) = 0. This contradicts
|x2(t)− x3(t)| = 1 on the same interval. This proves the claim.

We are now ready to prove i). If t12 = t23 < +∞ then by Claim a), the solution is constant on [0, t12], then
given by xβ(t − t12) on [t12,+∞[. If t12 < t23 = +∞, then the solution is constant on [0, t12] then given by
xγ(t − t12) on [t12,+∞[. Similarly, if t23 < t12 = +∞ then the solution is constant on [0, t23] then given by
xδ(t− t23) on [t12,+∞[. In the last case t12 = t23 = +∞, from Claims a) and b) we deduce ẋ1 ≡ ẋ2 ≡ ẋ3 ≡ 0,
thus the solution is the constant one xα. This proves i).

To prove ii), it is enough to notice that the constant solution is no more a Caratheodory solution. Finally,
iii) follows directly by i) and ii). 2

Remark 4.6 One might expect that solutions to (8) with φij(r) = 1 exhibit uniform exponential convergence
to their limit, in the following sense: there exist C, k > 0 such that for any trajectory x(t) it holds

‖x(t)‖ ≤ Ce−kt‖x(0)‖. (25)

Indeed, beside the points in which x(t) crosses M, the dynamics is linear. Yet, exponential convergence does
not hold for Caratheodory solutions, as Proposition 4.5 shows. Indeed, given the initial condition (IC-E), one
can wait an arbitrarily long time t̄ before starting exponential convergence to 0. Thus, a global constant C in
(25) does not exist.
This also shows that Filippov-Krasovskii solutions do not satisfy exponential convergence either, due to Propo-
sition 3.1.

4.2.2 Filippov solutions

We now study the family of Filippov solutions with initial data (IC-E). Besides Caratheodory solutions studied
above, we look for solutions x(·) such that x2(t) = x1(t) + 1 and x2(t) > x3(t)− 1 for all times t > 0. If such a
Filippov solution exists on an interval [0, T ], then x(·) must satisfy

ẋ1(t) = α(t), ẋ2(t) = −α(t) + (x3(t)− x2(t)), ẋ3(t) = (x2(t)− x3(t)) (26)

for some measurable functions α : [0, T ]→ [0, 1]. The condition x2(t) = x1(t) + 1 for all times implies

α(t) =
x3(t)− x2(t)

2
. (27)

Defining y(t) = x3(t)− x2(t), we get ẏ(t) = − 3
2y(t), thus y(t) = e−

3
2 t and the solution is given by:

x1(t) = −2

3
− 1

3
e−

3
2 t, x2(t) =

1

3
− 1

3
e−

3
2 t, x3(t) =

1

3
+

2

3
e−

3
2 t. (28)

We get the following:
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Proposition 4.7 Consider the Cauchy problem (19) with initial data (IC-E). The set of Fillippov solutions
contains the set of Caratheodory solutions and the following two-parameters families.
Given 0 ≤ t1 < t2 ≤ +∞ define a solution z(·) as follows. On the interval [0, t1] the solution is constant, on the
interval [t1, t2] the solution is given by z(t) = x(t− t1) for x(·) given by (28), and on the interval [t2,+∞[ the
solution satisfies z1(t) ≡ z1(t2), while ż2(t) = z3(t)− z2(t) = −ż3(t). The solution z converge to an asymptotic
state with the first agent at x̄1 ∈ [−1,− 2

3 ] and the other two at x̄2 = − x̄1

2 .
Given 0 ≤ t1 < t2 ≤ +∞ define a solution w(·) as follows. On the interval [0, t1] the solution is constant, on
the interval [t1, t2] the solution is given by w(t) = x(t− t1) for x(·) given by (28), and on the interval [t2,+∞[
all agents interact converging to zero.
Similarly we can define other two-parameters families by symmetry exchanging the roles of agent 1 and 3.

Proof. Claims a) and b) of Proposition 4.5 hold true for Filippov solutions using the same proof. With no-
tations as in Claim c), assume that t12 < t23 then again we conclude |x2(t)− x3(t)| = 1 and |x1(t)− x2(t)| < 1
on [t12, t23]. Therefore the solution on the interval [t12, t23] is given by x(t− t12), with x(·) given by (28). The
other claims easily follow. 2

In Figure 4, we depict representatives for Filippov solutions described in Proposition 4.7.

Figure 4: Filippov solutions for Initial Condition E.

4.2.3 Stratified solutions

In this Section we focus on stratified solutions. The latter are unique for a given stratification, but the
stratification is not unique. In particular, the final number of clusters is dependent on the initial datum but
also on the chosen stratification. Here, we build a stratification ensuring the minimal number of clusters in the
final configuration for any initial datum.

The construction of the stratification is based on a careful analysis of singularities. Since stratified solutions
satisfy the equation (19) for almost every time, then the barycenter x̄ is invariant. By eventually applying a
translation, we assume x̄ = 0 from now on. It thus holds

x3(t) = −x1(t)− x2(t). (29)

The problem of finding a stratification can be solved on R2, as the stratification in R3 can be obtained by using
(29). Define the following lines for i, j ∈ {1, 2, 3}, i 6= j:

l±ij = {(x1, x2) : xi = xj ± 1}, (30)

where we used the equality (29): this means that l±32, that are the sets x3 = x2 ± 1, is given by x2 = −x1

2 ∓
1
2 .

Similarly, l±31 are given by x1 = −x2

2 ∓
1
2 . These lines meet at 12 points, with 4 on the coordinate axes. See

Figure 5.
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The following points belong to the first orthant:

l+21 ∩ l
−
31 = (0, 1), l−21 ∩ l

−
32 = (1, 0), l−32 ∩ l

−
31 =

Å
1

3
,

1

3

ã
. (31)

Points in the third orthant are obtained by symmetry with respect to the origin.
The following points belong to the second orthant (two lie on axes, thus they are shared with other orthants):

l+21∩ l
−
31 = (0, 1), l+21∩ l

+
32 = (−1, 0), l+21∩ l

−
32 =

Å
−1

3
,

2

3

ã
, l+21∩ l

+
31 =

Å
−2

3
,

1

3

ã
, l−32∩ l

+
31 = (−1, 1). (32)

Points in the fourth orthant are obtained by symmetry with respect to the origin.
We are now ready to define the strata of our stratification.

Definition 4.8 The strata M0
1 , . . . ,M

0
12 of dimension 0 are given by the points (31), (32) and their symmetric

with respect to the origin.
The strata M1

1 , . . . ,M
1
30 of dimension 1 are given by the connected components of the lines defined in (30) after

removing the strata of dimension 0.
The strata M2

1 , . . . ,M
2
19 are given by the connected components of R2 after removing the strata of dimension 0

and 1.
The strata of dimension 0 and 1 are all of type II. Define Σ(M0

i ) = M2
j , where M2

j is such that M0
i ⊂ ∂M2

j

and M2
j is the stratum containing the point of least norm among those with such property. Similarly, define

Σ(M1
i ) = M2

j , where M2
j is such that M1

i ⊂ ∂M2
j and M2

j is the stratum containing the point of least norm
among those with such property.

We refer the reader to Figure 5 for a graphical illustration of the stratification and the dynamics in some of
the strata.

𝑙!"#

𝑙!"$

𝑙%!#

𝑙%!$

𝑙%"$

𝑙%"#

B

A

CD

E

Figure 5: Graphical representation of the stratification given in Definition 4.8.

Proposition 4.9 Consider the Cauchy problem (19) and the stratification defined in Definition 4.8. Then,
stratified solutions are unique and converge asymptotically to a configuration with the minimal number of
clusters.
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Proof. Let us start by analyzing the dynamics on the strata of dimension two.
Case A) There are six unbounded regions where |xi − xj | > 1, for all pairs i, j = 1, . . . , 3, i 6= j. See A in
Figure 5. The stratified solutions on these regions are constant.
Case B) There are other six unbounded regions where |xi − xj | < 1 for only one couple (i, j), i 6= j. The
stratified solutions verify xi(t)−xj(t)→ 0, while the remaining agent remains fixed. For the region B in Figure
5, the dynamics satisfies:

ẋ1 + ẋ2 = 0, ẋ1 − ẋ2 = −2 (x1 − x2),

thus all solutions tend to the dotted (red) line x1 = x2.
Case C) There are four bounded regions intersecting the coordinate axes but not containing the origin. For
the region marked as C in Figure 5, the dynamics is given by:

ẋ1 = −3x1, ẋ2 = x1 − x2,

thus solutions exit towards the region marked E.
Case D) There are two bounded regions not intersecting the coordinate axis. For region D in Figure 5 the
dynamics is given by:

ẋ1 = −2x1 − x2, ẋ2 = −2x2 − x1,

and solutions exit towards the region marked E.
Case E) Finally, there is a bounded region containing the origin, named E in Figure 5, where all agents are
interacting and trajectories converge to the origin.

The stratum of dimension oneM1
i have trajectories exiting to the stratum Σ(M1

i ). For instance, trajectories
from l+21 ∩ ∂B enter the region B and the same for l−21 ∩ ∂B. Trajectories from l−31 ∩ ∂B enter region C.
Similarly, trajectories from from l−32 ∩ ∂D enter the region D and the same for l+31 ∩ ∂D. Trajectories from
l+21 ∩ ∂D enter region E.

Finally, the stratum of dimension zero M0
i have trajectories exiting to the stratum Σ(M1

i ). For instance,
the trajectory from (0, 1) enters region C and the one from (−1, 1) enters region D.

We are now ready to complete the proof. For two dimensional strata the analysis is as follows. For strata
as A there is uniqueness of trajectories and three final clusters. For strata as B, trajectories never exit the
region and converge to two clusters. For all other strata, trajectories converge to the origin, which corresponds
to a unique cluster.
For one dimensional strata there are two cases. If the stratum is at the boundary of a region of type A and
a region of type B, then trajectories enter the B region and converge to two clusters. For all other strata,
trajectories converge to the origin, which corresponds to a unique cluster.
Finally, trajectories from zero dimensional strata converge to the origin, thus a unique cluster.
We conclude that all stratified trajectories converge to a configuration with the minimum number of clusters. 2

4.3 Many agents in R: Caratheodory solution
In this section, we briefly describe the combinatorial complexity of Caratheodory solutions for N agents in R
following the dynamics (8) with φij = 1. From Proposition 3.5 we know that such solutions are also solutions
in the sense of Fililppov and Krasovskii.

Fix N ∈ N \ 0 and consider an initial condition such that:

xi+1 − xi = 1, i = 1, . . . , N − 1. (33)

Such initial conditions form a one-dimensional manifold in RN . The results we state are valid for any permu-
tation of the agents numbering, so will hold for the union of N ! one-dimensional manifolds.

To compute the combinatorics related to the number of solutions we need to introduce some notation. For
the fixed number N of agents, we define the sets:

∆1(N) = {(n1, . . . , n`) : nk ∈ N,
∑
k

nk = N}, (34)

∆2(N) = {(n1, . . . , n`) : nk ∈ N,
∑
k

nk = N and nk + nk+1 ≥ 3 for k = 1, . . . , `− 1}. (35)
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In other words, ∆1(N) is formed by the ordered `-tuple of natural numbers summing up to N , while ∆2(N)
has the further restriction that no two consecutive numbers are equal to 1.
Given (n1, . . . , n`) ∈ ∆i(N), i = 1, 2, we define a partition P = {P1, . . . , P`} of {1, . . . , N} as follows:

P1 := {1, . . . , n1}, and Pk =

{
1 +

k−1∑
h=1

nh, . . . ,

k∑
h=1

nh

}
, for k = 2, . . . `

In other words, Pk+1 are the nk+1 numbers following those in P1 ∪ · · · ∪ Pk.
The corresponding solutions are described in the next propositions. See also a representation in Figure 6.
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Figure 6: Caratheodory solutions corresponding to (3, 1, 1, 2) ∈ ∆1(7) \∆2(7) (Left, see Proposition 4.10) and
(2, 1, 4) ∈ ∆2(7) (Right, see Proposition 4.11).

Proposition 4.10 Consider the ODE (8) with n = 1, φij = 1 and an initial condition satisfying (33), then the
following holds. For every (n1, . . . , n`) ∈ ∆1(N) there exists an `-dimensional parametrized family of distinct
Caratheodory solutions converging to a limit x∞ such that x∞i = x∞j for every i, j ∈ Pk, k = 1, . . . , `.

Proof. Fix (n1, . . . , n`) ∈ ∆1(N). Given t̄1 ∈ [0,+∞[ we can define a dynamics for the first n1 agents:
constant on [0, t̄1] and satisfying:

ẋ1(t) = (x2 − x1)(t), ẋi = (xi−1 − xi)(t) + (xi+1 − xi)(t), i = 2, . . . , n1 − 1, ẋn1(t) = (xn1−1 − xn1)(t),

for t ≥ t̄1. Notice that the first n1 agents eventually converge to their barycenter.
Similarly for every i, i = 2, . . . , `, given t̄i ∈ [0,+∞[ we can define a dynamics for the ni agents following
n1 + . . . + ni−1: constant on [0, t̄i] and with all ni agents interacting on [t̄i,+∞[. All ni agents will converge
to their barycenter. We thus proved the statement. 2

Proposition 4.11 Consider the variant model (2). Let n = 1, φij = 1 and an initial condition satisfying
(33), then solutions are parametrized by ∆2(N) as follows. For each (n1, . . . , n`) ∈ ∆2(N) there exists a single
Caratheodory solution converging to a limit x∞ such that x∞i = x∞j if and only i, j belong to the same Pk,
k = 1, . . . , `. Moreover, there is no other Caratheodory solution.

Proof. Given (n1, . . . , n`) ∈ ∆2(N), there exists a Caratheodory solution for (2) such that the first n1 agents
interact for all times and converge to their barycenter and, in general, the ni agents following n1 + . . .+ ni−1

interact for all times and converge to their barycenter. This corresponds to solutions constructed in the proof
of Proposition 4.10 for the case t̄i = 0, i = 1, . . . , `. Moreover, for a group with more than one agent, no
Caratheodory solution to (2) can be constant on a time interval [0, t̄], t̄ > 0, as in Proposition 4.5 case ii), due
to aij(1) = 1 forcing agents to attract each other if they keep their distance equal to 1. Similarly, we can not
have two consecutive groups consisting of only one agent.
This proves the statement.

2

18



5 Hegselmann-Krause in higher dimensions
As we have seen in Section 4, solutions may not be unique for all the concepts, except for classical, CLSS
and stratified solutions, already in dimension one. Here we show some additional complexity in the set of
Caratheodory solutions in higher dimension, as well as loss of uniqueness for CLSS solutions.

First consider (8) with n = 2, N = 4, φij = 1 with initial condition:

x1,0 = (0, 0), x2,0 = (1, 0), x3,0 = (1, 1), x4,0 = (0, 1). (36)

1 2

3

4

5

6

7

8

9

10

11

12

Figure 7: Representation of potential family of solutions for the initial data (36).

We have the following:

Proposition 5.1 The set of Caratheodory solutions to (8), with n = 2, N = 4, φij = 1, and initial datum
(36), contains 12 parametric families of solutions as follows. We refer to Figure 7 where in each box agents
connected by edges converge to their barycenter:

i) Case 1: single constant solution;

ii) Cases 2-5 and 8-12: one-parameter family. Given t̄ ∈ [0,+∞[ the solution is constant on [0, t̄] then
connected agents converge to their barycenter;

ii) Cases 6,7: family parameterized by two two-parameter sets T = A1 ∪A2, with A1 = {(t1, t2) : 0 ≤ t1, t2},
A2 = {(t1, t3) : 0 ≤ t1, t3}. If (t1, t2) ∈ A1, then the solution is constant on [0,min{t1, t2}], then agents x1

and x2 for case 6 (respectively x1 and x4 for case 7) start converging to their barycenter ( 1
2 , 0) (respectively

(0, 1
2 ) for case 7) at time t1, while agents x3 and x4 for case 6 (respectively x2 and x3 for case 7) start

converging to their barycenter ( 1
2 , 1) (respectively (1, 1

2 ) for case 7) at time t2. If (t1, t3) ∈ A2, then the
solution is as for A1 with t1 = t2 up to time t1 + t3 = t2 + t3, then for t ≥ t1 + t3 all agents interact and
converge to a unique cluster at ( 1

2 ,
1
2 ).

In particular the number of asymptotic clusters can be 1, 2, 3 or 4. There is 1 asymptotic configuration
with 4 clusters, 4 asymptotic configurations with 3 clusters, 6 asymptotic configurations with 2 clusters, and 1
asymptotic configuration with 1 cluster.

Proof. The proof follows the same arguments as in the proof of Proposition 4.10. 2

Following the logic of Proposition 4.11, we obtain the following:
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Proposition 5.2 Consider the variant system (2), with n = 2, N = 4, φij = 1. The set of Caratheodory
solutions for the initial datum (36) has 5 elements, corresponding to cases 8-12 above.

As pointed out in Section 4.2, solutions from the same initial data may converge to different clusters.
Here we show that this effect becomes more dramatic in dimension two, with different solutions converging to
arbitrarily far away clusters.

Proposition 5.3 Consider the ODE (8) with n = 2 and φij = 1. Given R > 0, there exists a system of N
agents with an initial condition such that there exists two Caratheodory solutions x1, x2 to the Cauchy Problem
with limt→∞ supi |x1

i (t)− x2
i (t)| > R.

Proof. The proof will be constructive, by recursion, by adding agents at distance 0, 1 or bigger than 1. The
solution x1 is taken to be constant, while x2 is constructed recursively by making all agents at distance 1
interact. See a representation in Figure 8.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4
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0.6

0.7

0.8

0.9

1

Figure 8: The first two steps in the proof of Proposition 5.3: 1 agent (blue) starting at (0,0), N1 = 5 agents
(green) starting at (1,0), N2 = 10 agents (black) starting at (.75,.998).

We start with a single agent x1 in position (0, 0). Then we add N1 (to be chosen) agents with the following
initial condition:

xi,0 = (1, 0), i = 2, . . . , N1 + 1. (37)

The solution x2 has all agents converging to the barycenter:

x̄1 =

Å
N1

N1 + 1
, 0

ã
,

which is close to (1, 0) for N1 sufficiently big. Notice that, since the barycenter is invariant, at every time t ≥ 0,
there exists ε = ε(t), with 0 ≤ ε ≤ 1

N1
, such that the agents are in the following position:

x1 =

Å
N1

N1 + 1
−N1 ε, 0

ã
, xi,0 =

Å
N1

N1 + 1
+ ε, 0

ã
, i = 2, . . . , N1. (38)

The final distance between the asymptotic state of the first agent along x1 and x2 is given by N1

N1+1 , which is
close to 1.
We now add N2 > N1 (to be chosen) agents in position:

(y1, y2) =

Ñ
N1

N1 + 1
+ ε2

1−N1

2
,

√
1−
Å
ε2(N1 + 1)

2

ã2
é
, (39)
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with ε2 sufficiently small to be chosen. Then the first N1 + 1 agents reach distance 1 to the other N2 agents at
the same time t such that ε(t) = ε2. We deduce that along the solution x2 all agents converges to:Ñ

N1

N1 + 1
+

N2

N2 +N1 + 1
ε2

1−N1

2
,

N2

N2 +N1 + 1

√
1−
Å
ε2(N1 + 1)

2

ã2
é

which, for N2 sufficiently large, is close to (y1, y2) of (39). Therefore the final distance between the asymptotic
state of the first agent along x1 and x2 is close to the norm of (39), which is close to

√
2 for N1 < N2 sufficiently

big and ε2 sufficiently small.
Now, by recursion, we can add N3 > N2 agents in position (y1 + 1 − ε3,1, y2 − ε3,2) choosing ε3,1 and ε3,2 so
that all 1 +N1 +N2 first agents will reach distance 1 at the same time to the other N3 agents. Reasoning as
before, we can choose N3 sufficiently big and ε3,1, ε3,2, sufficiently small so that the final distance between the
asymptotic state of the first agent along x1 and x2 is close to

√
3.

By recursion, at each step we add a new group of agents at distance close to 1 to the previous group along
alternating directions (1, 0) and (0, 1). In this way, for every ν we can choose 1 +N1 + . . .+Nν agents in initial
positions so that the final distance between the asymptotic state of the first agent along x1 and x2 is arbitrarily
close to

√
ν. Taking ν > R2 we conclude. 2

5.1 Non-uniqueness of CLSS solutions
In this section, we show that CLSS solutions may not be unique in dimension 2. We first study the easier case
of the variant model (2).

Proposition 5.4 Consider the ODE (2) with n = 2, N = 2, φij = 1 and initial condition x1(0) = (0, 0),
x2(0) = (1, 0) and x3(0) = ( 1

3 , 1). Then there exist two CLSS solutions to the associated Cauchy problem.
The ODE (8) with the same initial data has a single CLSS solution.

Proof. Consider an approximate solution x(·) having constant derivative on the intervals with endpoints
0 = t0 < t1 < · · · < tm = T , T sufficiently big, as in the Definition of CLSS solution (Definition 2.7, case 5.) If
x(ti) = 1

3 for some i, then at time ti the first agent is influenced by the third agent and the solution will tend
to a unique cluster. If x(ti) 6= 1

3 for every i, then the first agent will never interact with the third agent, so the
first two agents will converge to ( 1

2 , 0) while the third will remain constant. Since both situations can occur
with arbitrarily close times ti, there are two CLSS solutions.

It is easy to prove that the ODE (8) with the same initial data has a single CLSS solution, as the case
x(ti) = 1

3 does not change the dynamics. 2

We now prove non-uniqueness of a CLSS solution for the dynamics (8). The construction is more compli-
cated, as we study a system of 10 agents in R2 for which two Caratheodory solutions exists. We then give
two sequences of approximated solutions, each uniformly converging to one of the two Caratheodory solutions.
Detailed computations are omitted, as they can be numerically checked.

We first define the two Caratheodory solutions. We start by fixing the following constant values:

ε := 1/10, T := 1/100, B =
127

10
√

91
.

We also fix the initial data for the system:

x1(0) = (0, B − (B −
»

1− (1/2− 2ε)2)e2T ), x2(0) = (0, B + (B −
»

1− (1/2− 2ε)2)e2T ),

x3,4,5,6(0) = ((1/2− 2ε)e8T , 0), x7,8,9,10(0) = (−(1/2− 2ε)e8T , 0).

We have two Caratheodory solutions in which the groups of agents {3, 4, 5, 6} and {7, 8, 9, 10} are kept
together. The first solution x(t) is given by keeping agents 1, 2 not interacting with agents 3, . . . , 10. Thus,
agents 1,2 exponentially converge to their barycenter (0, B), following the trajectories

x1(t) = (0, B − (B −
»

1− (1/2− 2ε)2)e2T−2t), x2(t) = (0, B + (B −
»

1− (1/2− 2ε)2)e2T−2t). (40)
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The other agents exponentially converge to their barycenter (0, 0) following the trajectories

x3,4,5,6(t) = ((1/2− 2ε)e8T−8t, 0), x7,8,9,10(t) = (−(1/2− 2ε)e8T−8t, 0). (41)

A direct computation shows that, for all t ∈ (0,+∞) it holds ‖x1(t) − x2(t)‖ < 1, ‖x3(t) − x7(t)‖ < 1 and
‖x2(t)−x3(t)‖ > ‖x1(t)−x3(t)‖ ≥ 1, with ‖x1(t)−x3(t)‖ = 1 for t = T only. This already shows that (40)-(41)
is a classical and Caratheodory solution for (8).

We now define a second Caratheodory solution for (8) denoted by yi as follows:

yi(t) =



xi(t) for i = 1, . . . , 10 and t ∈ [0, T ],

Ỹ bi (t− T ) for i = 1, 2 and t ∈ [T, Tb],

Ỹ b3 (t− T ) for i = 3, 4, 5, 6 and t ∈ [T, Tb],

Ỹ b7 (t− T ) for i = 7, 8, 9, 10 and t ∈ [T, Tb],

Ỹ ci (t− Tb) for i = 1, 2 and t ∈ [Tb,+∞),

Ỹ c3 (t− Tb) for i = 3, 4, 5, 6 and t ∈ [Tb,+∞),

Ỹ c7 (t− Tb) for i = 7, 8, 9, 10 and t ∈ [Tb,+∞),

(42)

where Y b, Y c are the unique solutions of the 8D-linear systems

Ẏ b =

Ü
−9 Id2 02 4 Id2 4 Id2

Id2 −Id2 02 02

Id2 02 −5 Id2 4 Id2

Id2 02 4 Id2 −5 Id2

ê
Y b, Ẏ c =

Ü
−9 Id2 Id2 4 Id2 4 Id2

Id2 −9 Id2 4Id2 4Id2

Id2 Id2 −6 Id2 4 Id2

Id2 Id2 4 Id2 −6 Id2

ê
Y c

(43)
starting at (x1, x2, x3, x7)(T ) and (x1, x2, x3, x7)(Tb), respectively, where Tb is the first time for which ‖x2(t)−
x3(t)‖ = 1. Here, the notations Id2, 02 denote the identity and zero matrices of dimension 2, respectively. The
definition of matrices and time Tb reflect the fact that y represents the case in which agent 1 starts interacting
with agents 3, . . . , 10 at time T . This ensures that agents move closer, up to time Tb in which agent 2 also
starts interacting with all agents. It is easy to prove that y(t) is a Caratheodory solution to (8). Finally, one
can prove that there exist no other Caratheodory solutions to (8) keeping together the agents in the groups
3,4,5,6 and 7,8,9,10.

We now build two sequence of sample-and-hold solutions for (8). First fix the finite time interval [0, T̄ ] with
T̄ ∈ (T, Tb) chosen to be of the form r+1

r T with r ∈ N\{0}. This allows us to focus on the simple case in which
agent 2 does not interact with agents 3, . . . , 10. Define the parameter ∆t := T̄ /K for some K ∈ r2(N \ {0, 1})2,
i.e. K being a positive multiple of r2 and a perfect square strictly larger than 3r2. This choice ensures that
K −

√
K,K + 3

√
K, r+1

r K ∈ N and K + 3
√
K ≤ r+1

r K; these properties will be useful in the following.
Consider now the sample-and-hold solution defined on the uniform sequence tk := k∆t as

yKi (tk+1) = yKi (tk) +
∑
j 6=i

aij(‖yKi (tk)− yKj (tk)‖)(yKj (tk)− yKi (tk)), (44)

starting from yKi (0) = xi(0). Direct computations show that yK(t) converges to y(t), i.e. to the second
Caratheodory solution given above. Indeed, it is sufficient to check that, if yK(t) converges to x(t) on [0, T ],
then it holds

‖yK1 (T )− yK3 (T )‖2 = 1− 27

62500
K−1 + o(K−1) < 1

for K sufficiently large, i.e. agent 1 starts interacting with agents 3, . . . , 10. This implies that yK(t) starts
converging to the solution y(t) on [T, T̄ ], as it is the only Caratheodory solution keeping groups 3,4,5,6 and
7,8,9,10 coinciding and agent 1 interacting with them.

We now build a second sequence of sample-and-hold solutions, now converging to the Caratheodory solution
x(t). We use the standard sample-and-hold solution with uniform step ∆t = T/K defined above, up to time
∆t(K −

√
K). We then use a single time step of length 4

√
K∆t, then the necessary steps T̄−T−3

√
K

∆t of length
∆t to reach time T̄ . We denote such solution by xK(t). Direct computations show that ‖xK1 (t) − xK3 (t)‖ is
decreasing for t < (K −

√
K)∆t and increasing for t > (K + 3

√
K)∆t. Moreover, it holds

‖xK1 ((K −
√
K)∆t)− xK3 ((K −

√
K)∆t)‖ = 1 +

36

56875
K−1 + o(K−1),
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‖xK1 ((K + 3
√
K)∆t)− xK3 ((K + 3

√
K)∆t)‖ = 1 +

3186

1421875
K−1 + o(K−1).

This implies that, for K sufficiently large, the sequence xK defined above satisfies ‖xK1 (tk) − xK3 (tk)‖ > 1 for
each tk. As a consequence, for each K, there is no interaction between agent 1 and agents 3, . . . , 10. The
sequence xK then converges to the Caratheodory solution x(t).

6 Uniqueness results
In this section, we provide positive results for uniqueness. As shown in Sections 4 and 5, uniqueness fails for
most concept of solutions. However, this can be guaranteed for almost every initial data for Filippov, thus also
for Krasovskii and Caratheodory solutions.

Recall Definition 3.2 and observe that each Mij is a (smooth) manifold of codimension 1 in RnN , i.e.
dim(Mij) = nN − 1. This implies thatM is a stratified set of codimension 1.

We first need the following auxiliary result about uniqueness of Filippov solutions. It shows that uniqueness
can be lost only after reachingM.

Proposition 6.1 Let x(·), y(·) be Filippov solutions to (8) defined on the time interval [0, T ], with T > 0, that
satisfy x(t), y(t) 6∈ M for all t ∈ [0, T ) and x(T ) = y(T ). It then holds x(t) = y(t) for all t ∈ [0, T ].
Similarly if x(t), y(t) 6∈ M for all t ∈ (0, T ] and x(0) = y(0), then it holds x(t) = y(t) for all t ∈ [0, T ].

Proof. Recall that (8) is uniformly Lipschitz continuous on the open set RnM \M. For the first statement,
since x(t), y(t) 6∈ M on [0, T ), then the functions x(·) and y(·) are differentiable and satisfy (8) on [0, T ). For
every ε we can apply Gronwall Lemma backward in time on [0, T − ε[, thus getting

‖x(t)− y(t)‖ ≤ eL(T−ε)‖x(T − ε)− y(T − ε)‖.

By letting ε→ 0 we conclude.
The second statement follows similarly, by using Gronwall Lemma forward in time. 2

We then prove the following result.

Proposition 6.2 Consider the system (8) with φij Lipschitz continuous. The set of initial data x̄ ∈ RnN for
which there exist more than one Filippov solutions for (8) has zero Lebesgue measure in RnN .

Proof. Given an initial condition x̄, we define Xx̄ to be the set of solutions x(·) to (8) defined on some time
interval [0, T (x(·))[, with 0 < T (x(·)) ≤ +∞, and satisfying x(0) = x̄. We set:

tU = inf{t : ∃x(·), y(·) ∈ Xx̄, t ≤ min{T (x(·)), T (y(·))}, x(t) 6= y(t)}, (45)

thus lack of uniqueness occurs when tU < +∞. Since M is a stratified set of codimension 1, it has zero
Lebesgue measure in RnN . Thus we only need to prove that the following set has zero Lebesgue measure:

A = {x̄ ∈ RnN \M : tU < +∞}. (46)

For x̄ ∈ A, we define:
t̃ = inf{t : ∃x(·) ∈ Xx̄, x(t) ∈M}. (47)

Since (8) is Lipschitz continuous on RnN \ M, all solutions x(·) in Xx̄ coincide up to time t̃, and, since M
is closed, we have x(t̃) ∈ M. Therefore x̃ = x(t̃), with x(·) ∈ Xx̄, depends only on x̄ and not on the chosen
solution x(·) ∈ Xx̄. Now, given i, j ∈ {1, . . . , N}, i 6= j, consider the expression:

αij(x) = (xi − xj) ·

Ñ∑
k 6=i,j

ai,k(‖xi − xk‖)(xk − xi)−
∑
k 6=i,j

aj,k(‖xj − xk‖)(xk − xj)

é
(48)

and define the following sets:
M̂ij = {x ∈Mij : αij(x) ∈ {0, 2}}. (49)
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Define the set of quadruplets of indexes I ⊂ {1, . . . , N}4 by

I = {(i, j, k, l) : i 6= j, k 6= l, (i, j) 6= (k, l), (i, j) 6= (l, k)}.

Finally set:
M̂ijkl =Mij ∩Mkl, M̂ = ∪i,j:i 6=jM̂ij

⋃
∪(i,j,k,l)∈IM̂ijkl. (50)

Notice that each set M̂ij is of codimension two and the same is true for M̂ijkl if (i, j, k, l) ∈ I. Therefore M̂
is of codimension 2. We now state the following claim:
Claim a) If x̃ ∈M \ M̂, then there exists ε > 0 such that x(t) /∈M for t ∈]t̃, t̃+ ε[, and x ≡ y on [0, t̃+ ε[ for
every x(·), y(·) ∈ Xx̄.

We prove Claim a). By assumption there exists a unique (not ordered) couple {i, j}, i 6= j, such that
x̃ ∈Mij . Define the function:

θij(t) = ‖xi(t)− xj(t)‖2. (51)

Notice that θij is twice continuously differentiable on [0, t̃[ with bounded derivatives, thus we can define ξ̃ =

limt→t̃− θ̇ij(t), i.e. the left limit of the first derivative of θij at t̃.
Assume first ξ̃ > 0. Then there exists ε > 0 such that θij is strictly increasing on ]t̃ − ε, t̃[, thus θij(t) < 1 on
]t̃ − ε, t̃[. Moreover, since x(t̃) /∈ M̂, possibly restricting ε, we have that x(t) /∈ M̂ on ]t̃ − ε, t̃ + ε[. Recalling
(48), we deduce ξ̃ = αij(x̃)−2 > 0. Now, given x(·) ∈ Xx̄ for almost every t ∈]t̃, t̃+ε[ there exists β1, β2 ∈ [0, 1]
such that:

θ̇ij(t) = (xi(t)− xj(t)) ·Ñ∑
k 6=i,j

ai,k(xk(t)− xi(t))−
∑
k 6=i,j

aj,k(xk(t)− xj(t)) + β1(xj(t)− xi(t))− β2(xj(t)− xi(t))

é
,

where we omitted the arguments of ai,k and aj,k for simplicity. It follows θ̇ij(t) ≥ αij(x(t)) − 2 > 0 for ε
sufficiently small. Thus θij(t) > 1 on ]t̃, t̃+ ε[ and x(t) /∈M on the same interval. Proposition 6.1 implies that
all solutions coincide on the interval ]t̃, t̃+ ε[ and we proved Claim a) for ξ̃ > 0.
The case ξ̃ < 0 can be treated in an entirely similar way, concluding that θij < 1 on on ]t̃, t̃+ ε[. Finally, notice
that the case ξ̃ = 0 is excluded since x̃ /∈ M̂. The proof of Claim a) is finished.

We now state the next claim:
Claim b) Assume there exists x(·) ∈ Xx̄ such that x(t) /∈ M̂ for t ∈ [0, T [, T > 0. Then, it either holds

x(T ) ∈ M̂ or there exists ε > 0 such that all solutions in Xx̄ coincide in [0, T + ε).

We now prove Claim b). Given x̄, we find t̃ such that x(t) 6 inM for all t ∈ [0, t̃) and x̃ = x(t̃) ∈ M. If
x̃ ∈ M̂, then T = t̃. Otherwise, define t1M = t̃ and, using Claim a), extend x(·) on the time interval (t1M, t

2
M),

where the right extremum is given by

t2M = inf{t : t > t̃,∃x(·) ∈ Xx̄, x(t) ∈M}. (52)

If x(t2M) /∈ M̂, then we can define t3M and so on. That is, as long as the trajectory from x̄ does not reach M̂,
we can set:

tνM = inf{t : t > tν−1
M ,∃x(·) ∈ Xx̄, x(t) ∈M}. (53)

Again by Claim a), observe that the trajectory starting from x̄ is unique on all intervals [0, tνM]. Thus, if there
exists tνM > T , there exists ε > 0 such that all solutions in Xx̄ coincide in [0, T + ε).

Otherwise, assume that tνM ≤ T for all ν. Since this is an increasing and bounded function, it admits a limit
t̄ := limν→+∞ tνM. We aim to prove t̄ = T . Since pairs i, j are in finite number, there exists i, j, i 6= j, anda
subsequence, still indicated by tνM, such that x(tνM) ∈ Mij and thus θij(tνM) = 1 (see (51)). From the proof
of Claim a), we deduce that θij is continuously differentiable and not equal to 1 on every interval ]tνM, t

ν+1
M [,

and satisfies θij(tνM) = θij(t
ν+1
M ) = 1. Thus there exists τν ∈]tνM, t

ν+1
M [ such that θ̇ij(τν) = 0. From the proof

of Claim a), we have that for every ν either θ̇ij(τν) = αij(x(τν)) or θ̇ij(τν) = αij(x(τν)) − 2. Passing to the

24



limit in ν, we get x(t̄) ∈ M̂. We thus have t̄ = T , that proves the claim.

We now use Claim b) to prove the main result. Define:

t”M = inf{t : ∃x(·) ∈ Xx̄, x(t) ∈ M̂)}, (54)

and recall the definition of tU in (45). Claim b) ensures that, for tU < +∞, it holdst”M ≤ tU .
This implies that A = {x̄ ∈ RnN \ M : t”M ≤ tU < +∞}. We denote by Hr the Hausdorff measure of

dimension r in RnN . Each x(·) ∈ Xx̄, x̄ ∈ A, is Lipschitz continuous and, by Proposition 6.1, it coincides (at
least) up to t”M, thus H1+ε({x(t) : t ∈ [0, t”M], x(·) ∈ Xx̄}) = 0 for every ε > 0. By Fubini Theorem, since M̂
is of codimension 2, for 0 < ε < 1 we have:

HnN (A) ≤
∫”M (H1+ε({x(t) : t ∈ [0, t”M], x(·) ∈ Xx̄})

)
dHnN−2+ε(x̄) = 0.

Since HnN coincides with the Lebesgue measure on RnN , the set A has zero measure. 2

7 Property P2): clustering for general solutions
In this section, we discuss property P2), also called clustering, for solutions of (8). We prove that P2) holds
for Filippov solutions, even though the limit is not uniquely determined by the initial data. This implies that
P3) fails, as already shown in Section 4.

First observe that (8) can be written as a gradient flow as follows. Define

Φij(r) =

®∫ r
0
φij(s)s ds for r < 1∫ 1

0
φij(s)s ds for r ≥ 1

and observe that, if ‖xi − xj‖ 6= 1, for every i 6= j, then

ẋi = −
∑
j 6=i

∇Φij(|xi − xj |).

This suggests to define the following candidate Lyapunov function:

V (x) =
∑
i,j 6=i

Φij(|xi − xj |)

and observe that it holds V̇ (x(t)) ≤ 0 for a.e. time, since ∇V (x) · v ≤ 0 for each v ∈ F (x). We now prove the
following result about clustering.

Proposition 7.1 Let x1(t), . . . , xN (t) be a Filippov solution of (8). The following clustering properties hold:

• each agent satisfies limt→+∞ xi(t) = x∞i for some x∞i ∈ Rn;

• the limits satisfy the following: for each i 6= j it either holds x∞i = x∞j or ‖x∞i − x∞i ‖ ≥ 1.

The same result holds for the variant model (2).

Remark 7.2 One might try to use a LaSalle principle to prove this result. Even though the proof below is
based on the same ideas, we need to observe that V is not proper, it is not differentiable, and that the largest
invariant set of ∇V = 0 (for any reasonable definition of it) is never reduced to a point.

Proof. The proof is identical in the two cases (8)-(2). It is first necessary to observe that V is not proper, i.e.
it does not satisfy V (x)→ +∞ when |x| → +∞, as it depends on pairwise distances only. Nevertheless, recall
that the set Ω(t) := co(xi(t)) is weakly contracting, see Proposition 3.8. As a consequence, we have that x(t)
is a compact trajectory, hence it converges to its ω-limit, that is bounded.
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Let now x∞ = (x∞1 , . . . , x
∞
N ) being a point in the ω-limit and assume that it exists i, j such that |x∞i −x∞j | =

L ∈ (0, 1). By definition of ω-limit, it exists an increasing sequence tk → +∞ such that |xi(tk) − xj(tk)| ∈
(L − ε, L + ε) for any ε > 0. By observing that velocities for (8) are bounded, there exists a uniform δ such
that |xi(t)− xj(t)| ∈ (L− 2ε, L+ 2ε) for all t ∈ (tk − δ, tk + δ). Choose ε < 1

2 min(L, 1− L) and observe that

V (x(tk + δ))− V (x(tk − δ)) ≤ −2δφij(L− 2ε).

By eventually taking a subsequence of tk, one can always assume tk + δ < tk+1 − δ. By recalling that V is
decreasing in time, it then holds V (tk + δ) ≤ V (x(0))− 2δφij(L− 2ε)k, hence limk→+∞ V (tk + δ) = −∞. This
contradicts the fact that V is bounded from below.

We have now proved that any x∞ in the ω-limit satisfies either x∞i = x∞j or ‖x∞i −x∞j ‖ ≥ 1. We now need
to prove that the ω-limit is reduced to a point. We first define the transitive relation

i ∼ j when lim
t→+∞

xi(t)− xj(t) = 0.

It is crucial to observe that either it holds i ∼ j or lim inft→+∞ |xi(t)−xj(t)| ≥ 1. Indeed, if lim inft→+∞ |xi(t)−
xj(t)| ∈ (0, 1), there exist times tk → +∞ such that |xi(tk)− xj(tk)| ∈ (L− ε, L+ ε) with L ∈ (0, 1) and ε > 0
sufficiently small, that in turn ensure limk→+∞ V (tk + δ) = −∞ as explained above. Contradiction.

It then makes sense to define clusters C1, . . . , Ck, each being the class of equivalence of indexes i = 1, . . . N
with respect to ∼. By definition, given ε > 0, there exists a time T0 such that all agents satisfy either
|xi(t)− xj(t)| < ε or |xi(t)− xj(t)| > 1− ε for all times t > T0. Eventually translating such time, we assume
T0 = 0 from now on.

We are now ready to prove that the center of each cluster converges. Let y1 be the center of cluster C1, i.e.
y1 = 1

N1

∑
xi where N1 is the number of elements of C1. Since ẏ1 is defined for almost every time, one can

write ẏ1 by the following observation: for each index i ∈ C1, the contribution to ẋi of each agent j satisfying
‖xi − xj‖ 6= 1 is uniquely determined, while for j such that ‖xi − xj‖ = 1 there exists αij ∈ [0, 1] such that the
contribution is αijaij(xj − xi). By choosing αij = 1 for j 6∈ C1 with ‖xi − xj‖ 6= 1, one has

∫ T

0

|ẏ1(t)| dt =
1

N1

∫ T

0

∣∣∣∣∣∣ ∑i,j∈C1

aij(xj − xi) +
∑

i∈C1,j 6∈C1

αij(t)aij(xj − xi)

∣∣∣∣∣∣ ≤
≤ 0 +

1

N1

∫ T

0

∑
i∈C1,j 6∈C1

aij |xi(t)− xj(t)| ≤
1

N1(1− ε)

∫ T

0

∑
i,j 6=i

aij |xi(t)− xj(t)|2 =

=
1

N1(1− ε)

∫ T

0

−V̇ (x(t)) dt ≤ V (0)− V (T )

N1(1− ε)
< +∞.

where we first used antisymmetry for i, j ∈ C1, then we recalled that V (t) is decreasing and bounded from
below. Since ẏ1 is integrable, then y1(t) admits a limit for t→ +∞. Since xi−xj → 0 for all i, j ∈ C1 and the
center of the cluster admits a limit, then all xi converge to such limit. 2

Remark 7.3 For the system (2) final clusters may be at distance one as shown by next example with three
agents in dimension two. Consider the initial condition x1,0 = (0, ε), x2,0 = (0,−ε), and x3,0 = (1, 0), with
ε < 1

2 . The unique Caratheodory solution is given by

x1,0 = (0, εe−t), x2,0 = (0,−εe−t), x3,0 = (1, 0),

thus converging to two clusters (0, 0) and (1, 0).

8 Proof of main Theorems
In this section, we prove the three theorems stated in the introduction. Proofs actually collect results given in
previous sections.
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Proof of Theorem 1. Existence of solutions in the Filippov, Krasovskii, Caratheodory, CLSS and stratified
sense was shown in Section 3.2. Non-existence of classical solutions is well-known, as shown in the counterex-
ample in Proposition 4.4.
Uniqueness of classical solutions is standard, using Cauchy-Lipschitz argument of uniqueness. Non-uniqueness
of Filippov, Krasovskii, and Caratheodory solutions is proved by the counterexamples of Proposition 4.1.
Non-uniqueness of CLSS solutions is proved in Proposition 5.4. Uniqueness of stratified solutions for a fixed
stratification is given by definition.
Uniqueness of Filippov solutions for almost every initial data was proved in Proposition 6.2. This induces the
same result for all other concepts of solutions, due to Proposition 3.1. 2

Proof of Theorem 2. Filippov and Krasovskii solutions coincide, and they do not satisfy P3) as shown in
Proposition 4.3. They satisfy P1), as proved in Proposition 3.4. They satisfy P2), as shown in Proposition 7.1.
Classical, Caratheodory, CLSS, stratified solutions satisfy P1)-P2) due to the inclusion in Filippov solutions,
see Proposition 3.1.

Caratheodory solutions do not satisfy P3), again by Proposition 4.3. CLSS solutions do not satisfy P3), as
shown by the counterexample in Section 5.1.

Classical solutions satisfy property P3), as a direct consequence of uniqueness of the solution. Similarly,
stratified solutions for a fixed stratification are unique, by definition, thus satisfy P3). However, the asymptotic
state depends on the stratification as shown in Proposition 4.1. 2

Proof of Theorem 3. Krasovskii and Filippov multifunctions are insensitive to the value of aij(1) by
definition, thus the structure of Krasovskii and Filippov solutions does not change.
As for classical solutions, consider the Cauchy problem (15)-(16), as in Proposition 4.1. If aij(1) = 0, the
Proposition states that the only classical solution is the constant one. Instead, if aij(1) = 1, it is easy to prove
that the unique classical solution is given by

x1(t)− x2(t) = e−2t(x1,0 − x2,0), x1(t) + x2(t) = x1,0 + x2,0.

Caratheodory solutions of the variant model (2) are different than Caratheodory solutions of (8), as shown in
the examples of Poposition 5.2.
CLSS solutions are distinct in the two cases, as shown in Proposition 5.4.
For stratified solution, consider the Cauchy problem (15)-(16), as in Proposition 4.1. For (2) the first stratifi-
cation S1 is not admissible, thus stratified solutions are different than those for (8).
Proof and counterexamples for Properties P1-2-3) are identical to the study of (8).

2
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