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Abstract— The evoluted set at time T is the union of all
images of an initial set A via the flow at times t ∈ (0, T ). Its
regularity is for interest for control, being the attainable set
in several relevant examples.

We first show that it is not sufficient for A to have negligible
boundary (i.e. zero Lebesgue measure) to ensure that the
evoluted set has negligible boundary too. Instead, we prove
that such property holds when A is a C1,1 domain.

I. INTRODUCTION AND MOTIVATION

The study of the attainable set starting from a point is a
crucial problem in control theory, starting from the classical
orbit, Rashevsky-Chow and Krener theorems, see [1], [2],
[3]. If the initial state is not precisely identified, but lies in a
given set, the problem gets even more complicated. The goal
of this article is to study such problem in a first, simplified
setting.

Here, we consider a fixed vector field v(x) acting on sets
via the flow Φtv it generates. Given an initial set A, we aim
to describe the evoluted set At, that is the set of points
reached at times τ ∈ (0, T ). It was studied e.g. in [4], [5],
[6], [7] and in [8, Lemma 1.1]. Its precise definition is given
in Definition 2 below.

A first question needs to be answered:

(P)

If the initial set A has a negligible boundary (i.e.
its Lebesgue measure is zero), does the evoluted set
have a negligible boundary too?

The first, striking result of this article is to provide a
negative answer to (P). We show an example of A that
has negligible boundary and such that the boundary of the
evoluted set is not negligible. Even more surprisingly, the
counterexample relies on very low regularity of A, while
the vector field v is constant (so extremely regular).

We then turn our attention to find regularity properties of
A that ensure that the evoluted set keeps having negligible
boundary. We find that it is sufficient for A to be a C1,1
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domain, which definition is recalled below. Our main result
is the following.

Theorem 1: Let A ⊂ Rn be a bounded C1,1 domain and
v : Rn → Rn be a globally Lipschitz vector field. Then,
for every t > 0, the boundary of the evoluted set At is
negligible.

Problem (P) is even more interesting when it is
interpreted in terms of densities. Assume to have an initial
state that is a probability measure on A, e.g. because the
initial configuration is not precisely identified, and consider
A to be some form of “safety region”. If the measure
is absolutely continuous with respect to the Lebesgue
measure, are we sure that time modulations of the flow
do not concentrate along the boundary, then eventually
giving a non-zero probability of being close to unsafe
configurations? This problem has been addressed in [8],
[9], where examples are presented too. This is also one of
the main motivations and future applications of the result
presented here: develop a theory describing the reachable
set starting from a measure under control action. See
further results in this direction in [10], [11].

The structure of the article is the following. In Section II,
we will precisely define the evoluted set At and show via a
counterexample that (P) is false, in general. In Section III,
we will prove the main result of the article, that is Theorem
1. We will draw some conclusions and future directions of
research in Section IV.

II. DEFINITION AND PROBLEM STATEMENT

In this article, we consider a fixed autonomous vector
field v : Rn → Rn that is globally Lipschitz continuous. It
is then standard to define the corresponding flow Φtv(x0),
that is the function that to each pair (x0, t) associates the
unique solution to the Cauchy problem:{

ẋ(t) = v(x(t)),

x(0) = x0.

The definition naturally passes to sets: given A ⊂ Rn, we
have

Φvt (A) := {Φvt (x0) s.t. x0 ∈ A}.

The main object studied in this article is defined here.
Definition 2 (Evoluted set): Given a bounded set A ⊂

Rn and a time t > 0, the evoluted set is the set

At :=
⋃

τ∈(0,t)

Φvτ (A).

A graphical description is given in Figure 1.
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Fig. 1. The evoluted set At (in gray).

In terms of control systems, the evoluted set can be either
seen as the reachable set from A with times in (0, t), or as
the reachable set at time t of the control system:

ẋ(τ) = u(τ)v(x(τ)), u(τ) ∈ (0, 1).

See standard results about the geometry of the reachable set
from one point in [1], [2], [3].

Remark 3: One can define the evoluted set even for
infinite time t = +∞, as

A+∞ :=
⋃
τ>0

Φvτ (A).

In this case, Theorem 1 cannot be applied. See a more
general result for this case in [7].

Notation: We denote with Br(x) = {z ∈ Rn | |z − x| <
r} the n-dimensional ball of radius r. We denote with Ln
the Lebesgue measure in Rn and with Hn−1 the Hausdorff
measure. We also denote with ∂A the boundary of the set
A, i.e. Ā \ int(A), that is the set of points in the closure of
A not belonging to its interior. Here, the standard topology
of Rn is used, unless a different topology is specified.

A. A counterexample to (P)

A first key result of this article is that the statement
(P) is false, in general. This is provided by the following
counterexample.

We endow R3 with coordinates (x, y, z), and we denote
by L2 the Lebesgue measure in the (x, y)-plane in what
follows. We consider an Osgood curve (see the precise def-
inition in [12]) Γ in the (x, y)-plane given by {z = 0}. For
our purpose, it is sufficient to recall that an Osgood curve
is a Jordan curve, i.e. the image of an injective continuous
map from the circle S1 to R2, satisfying L2(Γ) > 0. As
a consequence, the interior set A of Γ with respect to the
topology of the (x, y)-plane is a well-defined set.

We now consider A and Γ as subsets of R3. Notice that
A∪Γ is closed with respect to the topology of R3. Clearly,
∂A = A ∪ Γ, and therefore L3(∂A) = 0. Let v : R3 → R3

be given by v(x, y, z) = (0, 0, 1) for every (x, y, z) ∈ R3,
i.e. v = ∂z . It is clear that the flow of v is the translation
(x, y, z)→ (x, y, z+t), hence At = A×[0, t]. Therefore for

every t > 0 the boundary ∂(At) contains (A ∪ Γ) × (0, t).
It then holds

L3(∂(At)) ≥ L3(Γ× [0, t]) = L2(Γ) · t > 0.

See a graphical description of the counterexample in
Figure 2.
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Fig. 2. A counterexample to (P) .

This proves that (P) is false, in general. One can then
hope to prove (P) under the additional hypothesis that
A is open. We now slightly modify the previous example
to provide a counterexample to (P) even with A open.
Consider the distance function to Γ for points of A, i.e.,
the function d : R2 → R given by:

d(x, y) :=

{
inf

(x1,y1)∈Γ
|(x, y)− (x1, y1)| (x, y) ∈ A,

0 (x, y) 6∈ A.

It is clear that d is Lipschitz, by the triangular inequality.
Define then the open set B := {(x, y, z) ∈ R3 | (x, y) ∈

A,−d(x, y) < z < d(x, y)}. The boundary ∂B is composed
of three pieces, namely ∂B = S+ ∪ S− ∪ Γ, where

S± := {(x, y,±d(x, y)) | (x, y, 0) ∈ A}

are the graphs of Lipschitz functions from a two-
dimensional set, yielding that L3(S±) = 0. By using the
same vector field v(x, y, z) = (0, 0, 1), we have that Bt

coincides with B ∪ At ∪ Φvt (B). We then conclude that
∂(Bt) contains Γ× [0, t], and thus again L3(∂(Bt)) > 0.

III. PROOF OF THE MAIN RESULT

In this section, we prove the main Theorem 1. We find the
right regularity condition on A ensuring that (P) is satisfied,
by proving that it holds when A is a C1,1 domain. We recall
the definition here.

Definition 4: A C1,1 domain A is an open set which
boundary is locally the graph of a C1 function with Lip-
schitz derivative.



A. Preliminary results

The proof of the main result relies on the study of some
preliminary cases, that are described in this section.

We first prove some topological properties of the evoluted
set At. We begin stating some basic properties.

Lemma 5: Let A ⊂ Rn be a bounded set, and v : Rn →
Rn be a globally Lipschitz vector field. Then:

1) If 0 < t1 < t2, then At1 ⊂ At2 ;
2) For every B ⊂ Rn, A ⊂ B implies At ⊂ Bt for every

t > 0;
3) If A is open, then At is open for every t > 0;
4) if A is open, then A ⊂ At and Φvt (A) ⊂ At.

Proof: The first two statements are obvious from the
definition of the evoluted set. For statement (3), consider
the map h : (0, t) × A → (0, t) × Rn given by h(τ, x) :=
(τ,Φvτ (x)). Since v is a Lipschitz vector field, then Φvτ is
an homeomorphism, hence h is an open map. Recalling that
the projection π : (τ, x) 7→ x is an open map, and noticing
that

At = π(h((0, t)×A)),

we conclude that At is open as well. For statement (4),
let x ∈ A and Bε(x) ⊂ A, that exists since A is open.
Consider the trajectory Φvτ (x) and observe that there exists
τ ∈ (0, t) sufficiently small to have Φv−τ (x) ∈ Bε(x) ⊂ A,
hence x = Φvτ (Φv−τ (x)) ∈ At. Since x is generic, it holds
A ⊂ At. The inclusion Φvt (A) ⊂ At is similar, by observing
that Φvt (A) is open.

We also have the following property of the closure of the
evoluted set.

Lemma 6: Let A ⊂ Rn be a bounded set, and v : Rn →
Rn be a Lipschitz vector field. Then, for every t > 0,

At =
⋃

τ∈[0,t]

Φvτ (A).

As a consequence, At is compact.
Proof: We begin by proving the ⊂ inclusion. If x ∈

At, there exist by definition sequences (tn)n∈N ⊂ (0, t)
and (xn)n∈N ⊂ A such that x = limn→∞Φvtn(xn). By
compactness of [0, t] and At, also t0 := limn→∞ tn ∈ [0, t]
and x0 := limn→∞ xn ∈ A exist. We are now going to
show that

x = Φvt0(x0) ∈ Φvt0(A) = Φvt0(A),

completing the claim. Given ε > 0, there exist
n1(ε), n2(ε), n3(ε) ∈ N such that

‖x− Φvtn(xn)‖ ≤ ε/3 for every n ≥ n1(ε), (1)
‖Φvtn(xn)− Φvtn(x0)‖ ≤ ε/3 for every n ≥ n2(ε), (2)
‖Φvtn(x0)− Φvt0(x0)‖ ≤ ε/3 for every n ≥ n3(ε). (3)

Indeed (1) follows by construction, (2) is a consequence of
the Gronwall inequality, and (3) is due to che continuity of
t 7→ Φvt (x0). By the triangular inequality, we deduce for
every n > n(ε) := max{n1(ε), n2(ε), n3(ε)} that ‖x −
Φvt0(x0)‖ ≤ ε, and we conclude by the arbitrariness of the
parameter.

We pass to the ⊃ inclusion. Let x ∈
⋃
τ∈[0,t] Φvτ (A) =⋃

τ∈[0,t] Φvτ (A). Then there are y0 ∈ A and t0 ∈ [0, t] such
that x = Φvt0(y0). Since y0 ∈ A, there exists a sequence
{yn}n∈N contained in A and converging to y0. By continuity
we deduce that

x = lim
n→∞

Φvt0(yn).

Now, if t0 ∈ (0, t) we are done since all the points
{Φvt0(yn)}n∈N are in At. Then it remains to treat the cases
t0 ∈ {0, t}. We only treat the case t0 = 0, the other
being analogous: in particular x = y0 = limn→∞ yn.
Define tm := t/2m for m ∈ N, and observe that yn =
limm→∞Φvtm(yn) ∈ At for every n ∈ N. Since x can be
realised as a limit of points in the closed set At, we conclude
that x ∈ At as well, as desired.

We end this section with the following crucial result.
Lemma 7: Let A ⊂ Rn be an open bounded set, and

v : Rn → Rn be a globally Lipschitz vector field. Then, for
every t > 0, there holds the inclusion

∂(At) ⊂ ∂A ∪ Φvt (∂A) ∪
(
(∂A)t \At

)
. (4)

Proof: Since At is open, it holds

∂(At) = At \At = ∪τ∈[0,t]Φvτ (A) \At,

where we used Lemma 6. Let x ∈ ∂(At) and τ ∈ [0, t]
such that x ∈ Φvτ (A). By Lemma 5, statement 4, we have
At ⊃ Φvτ (A) for all τ ∈ [0, t]. We then write

x ∈ Φvτ (A) \At ⊂ Φvτ (A) \ Φvτ (A) = Φvτ (∂A),

where we used that Φvτ is an homeomorphism. This implies

∂(At) ⊂ ∂A ∪ Φvt (∂A) ∪ ((∂A)t).

Recalling again ∂(At) = At \At, thus ∂(At)∩At = ∅, we
recover (4).

B. The Lebesgue measure of evoluted sets

Thanks to (4), the key point to prove Theorem 1 is to
estimate (∂A)t \At. With this goal, in this section we study
two cases: vector fields close to zero and vector fields far
from zero.

Lemma 8: Let C ⊂ Rn be a bounded set of Hausdorff
dimension n− 1, and v : Rn → Rn be a globally Lipschitz
vector field with Lipschitz constant Lv . Then for every t >
0, it holds

Ln(Ct) ≤ t‖v‖L∞(Ct)e
(n−1)LvtHn−1(C), (5)

where Lv is the Lipschitz constant of v, and ‖v‖L∞(Ct) its
L∞ norm over Ct.

Proof: The statement follows from the estimates

‖Φvt (x)− Φvt (y)‖ ≤ eLvt‖x− y‖, and (6)
‖Φvτ1(x)− Φvτ2(x)‖ ≤ |τ1 − τ2|‖v‖∞, (7)

which are valid for every t ∈ (0,+∞), τ1, τ2 ∈ [0, τ ], and
every pair of points x, y ∈ B. Indeed, equation (6) implies
that for every τ ∈ (0, t) it holds

Hn−1(Φvτ (B)) ≤ e(n−1)LvtHn−1(B),



while (7) yields, for every τ1, τ2 ∈ (0, t), that

dist
(
Φvτ1(B),Φvτ2(B)

)
≤

inf
{
d(Φvτ1(x),Φvτ2(y)) | x, y ∈ B

}
≤

{
d(Φvτ1(x),Φvτ2(x)) | x ∈ B

}
≤ t‖v‖∞,

and we prove (5).
The next lemma is the key technical result that we will

use in the sequel. For its proof, we take fully advantage of
the C1,1 regularity of the domain.

Lemma 9: Let t > 0, A ⊂ Rn be a bounded C1,1 domain
and x ∈ ∂A. Let r > 0 be such that

Hn−1(∂A ∩ ∂Br(x)) = 0 (8)

and v(y) 6= 0 for all y ∈ Br(x). Define W := A ∩ Br(x).
It then holds

Ln

(
(∂W )t \W t

)
= 0.

Proof: Let t > 0 be given. Notice that, by assumption
(8) and Lemma 8, it holds

Ln((∂W ∩∂A∩∂Br(x))t) ≤ t ·Hn−1(∂A∩∂Br(x)) = 0.

Our result then follows by showing that

Ln

(
(∂W \ (∂A ∩ ∂Br(x)))t \W t

)
= 0.

For notation’s sake we will set Z := ∂W \ (∂A ∩ ∂Br(x))
in the rest of the proof. The proof is based on a sequence
of inclusions.

Step 1. For every ε > 0, define the sets:

Zε :=
{
z ∈ Z | φvη(z) 6∈W, ∀ η ∈ (−ε, ε)

}
,

and

Z0 := lim inf
ε→0

Zε =
⋃
ε0>0

⋂
0<ε<ε0

Zε =
⋃
ε0>0

Zε0 ,

where the last equality follows since Zε′ ⊂ Zε whenever
ε′ > ε > 0. We stress that Z0 ⊂ Z, and that the following
explicit description holds:

Z0 =
{
z ∈ Z | ∃ ε > 0 s. t. Φvη(z) 6∈W, ∀ η ∈ (−ε, ε)

}
.

We now claim that

Zt \W t ⊂ Zt0. (9)

Let y ∈ Zt \W t, and pick z ∈ Z and t0 ∈ (0, t) such that
y = Φvt0(z). Assume by contradiction that z 6∈ Z0. Then,
we can find a sequence {ηi}i∈N of times converging to zero,
and such that Φvηi(z) ∈W for every i ∈ N. If we choose ηi
so small that 0 < t0 − ηi < t, we conclude that

y = Φvt0(z) = Φvt0−ηi(Φ
v
ηi(z)) ∈W

t.

This is a contradiction. Then z ∈ Z0, hence y ∈ Zt0. As y
is arbitrary, the inclusion is proved.

Step 2. Consider the function defined on ∂A by

f(y) :=< v(y), ν(y) >,

where < ., . > is the standard scalar product in Rn and ν(y)
is the outer normal vector to ∂A in y. Since A is C1,1, then

ν(y) exists for all y ∈ ∂A and is a Lipschitz function. Since
v is a Lipschitz function too, the scalar product is Lipschitz.

Remark 10: The regularity of f is the only crucial point
of the proof in which we use that A is a C1,1 domain.

Define C := {x ∈W s.t. f(x) = 0}. We aim to prove

Zt0 ⊂ Ct, (10)

by proving that Z0 ⊂ C. Indeed, if x ∈ Z0 \ C, it satisfies
f(x) 6= 0. As a consequence, v(x) does not lie in the tangent
space Tx(∂A). By linearization, Φvτ (x) ∈W for some small
(positive or negative) times τ , hence x 6∈ Z0. Then Z0 \ C
is empty and the inclusion is proved.

Step 3. By regularity of f , it holds that C is a Lipschitz
domain in ∂A. It then has a boundary ∂C with respect to the
topology of ∂A, that is of dimension n−2. We denote with
C̊ = C \ ∂C the interior of C with respect to the topology
of ∂A. Define D := ∂C ∪ (∂C)t ∪ C̊. We aim to prove

Ct ⊂ D, (11)

i.e. that the evolution of C̊ can be neglected.
Before proving it, we recall an auxiliary result.
Lemma 11: If y ∈ C̊, then there exists ε > 0 such that

Φvτ (y) ∈ C̊ for all τ ∈ (−ε, ε).
Proof: The proof is classical: restrict v as a vector

field on C̊ ⊂ ∂A only, that is well defined as vectors of
v belong to the tangent bundle TC̊. Then find an integral
curve starting from y for such restricted vector field. Such
curve is also an integral curve of the vector field v defined
on the whole Rn, hence Φvτ (y) coincides with such curve
by uniqueness. By construction, this implies Φvτ (y) ∈ C̊.

We are now ready to prove the inclusion (11). If x ∈ ∂C,
then Φvτ (x) ∈ (∂C)t ⊂ D for all τ ∈ (0, t). If instead
x ∈ C̊, consider the set T of times τ ∈ [0, t] such that
Φvτ (x) ∈ C̊. If T = [0, t], then Φvτ (x) ∈ C̊ ⊂ D for all τ ∈
(0, t). Otherwise, apply Lemma 11 to points of Φvτ (x) and
observe that T is strictly contained in [0, t], it is open and it
contains 0. Then choose ε > 0 as the infimum of [0, t] \ T .
This already shows that Φvτ ∈ C̊ ⊂ D for all τ ∈ [0, ε).
By continuity it also holds f(Φvε(x)) = 0 but Φvε(x) 6∈ C̊,
hence Φvε(x) ∈ ∂C ⊂ D. By standard composition of times,
it then holds

Φvτ (x) = Φvτ−ε(Φ
v
ε(x)) ∈ (∂C)t ⊂ D

for all τ ∈ (ε, t), hence Φvτ (x) ∈ D for all τ ∈ (0, t). Since
this property holds for any x ∈ C, it holds Ct ⊂ D.

Conclusion. By inclusion (9)-(10)-(11) and by mono-
tonicity of the Lebesgue measure, it holds

Ln

(
(∂W )t \W t

)
≤ Ln

(
∂C ∪ (∂C)t

)
+ Ln

(
C̊
)
.

Since ∂C has Hausdorff dimension n−2, it holds Ln(∂C∪
(∂C)t) = 0 by (5). Since it holds C̊ ⊂ ∂A by definition
and ∂A has Hausdorff dimension n−1, then its n-Lebsegue
measure is zero.



C. Proof of Theorem 1

We are now ready to prove our main result. Fix t > 0 from
now on. Thanks to (4), our goal is to prove Ln((∂A)t\At) =
0.

Since ∂A is the boundary of a bounded set, it is compact.
We now define a covering for it, separated in two parts: the
covering of points with nonzero vector field and the one of
points with zero vector field.

For each point x satisfying v(x) 6= 0, there exists a
ball Br(x)(x) such that v(x) 6= 0 on the whole closed
ball Br(x)(x), by continuity. Moreover, eventually slightly
reducing the radius, we can always assume that (8) is
satisfied: this is a consequence of the coarea formula, see
e.g. [13, Thm 2.93]. We denote the set of all these balls by

Ω := {Br(x) s.t. v(y) 6= 0 ∀y ∈ Br(x)(x) and (8) holds}.

For points x such that v(x) = 0, the construction is a bit
more complicated. Define

Z := {x ∈ A s.t. v(x) = 0}.

If Z is nonempty, for a fixed ε > 0 define the open
neighborhood of Z as

Zε := {y ∈ Rn s.t. d(y,Z) < ε}.

We now cover ∂A with open sets in Ω∪{Zε}. Since ∂A
is compact, we extract a finite subcovering. It is either of
the form Zε ∪

⋃n
i=1Br(xi)(xi) if Z is nonempty, or of the

form
⋃n
i=1(Br(xi)(xi). Eventually considering Zε = ∅, we

only study the first case. By intersecting the covering with
∂A itself, we have

∂A ⊂ (Zε ∩ ∂A) ∪
n⋃
i=1

(Br(xi)(xi) ∩ ∂A).

By following the notation of Lemma 9, we define Wi :=
A∩Br(xi)(xi). Observe that Br(xi)(xi)∩ ∂A ⊂ ∂Wi \Wi,
by using the fact that Wi is open. It then holds

Ln((∂A)t \At) ≤ Ln((Zε ∩ ∂A)t) +
n∑
i=1

Ln((∂Wi)
t \At).

Remark that we did not remove At from the first term,
thus estimating the Lebesgue measure from above. We first
observe that

Ln((∂Wi)
t \At) ≤ Ln((∂Wi)

t \W t
i ) = 0

for each i = 1, . . . , n. Indeed, it holds Wi ⊂ A, hence W t
i ⊂

At due to Lemma 5, statement 2. Moreover, hypothesis of

Lemma 9 are satisfied, in particular due to the choice of
Br(xi)(xi) ensuring (8). Then

Ln((∂A)t \At) ≤ Ln((Zε ∩ ∂A)t)

We are then left to estimate Ln((Zε∩∂A)t), for which we
aim to apply Lemma 8. With this goal, we need to estimate
the L∞ norm of v on the evoluted set. It is clear that it
holds (Zε∩∂A)t ⊂ (Zε)t. Take x̃ ∈ (Zε)t and consider the
corresponding x = Φv−τ (y) ∈ Zε with τ ∈ (0, t), that exists
by definition of the evoluted set. By definition of Zε, there
exists y ∈ Z such that ‖x − y‖ < ε. Apply (6), recalling
that Φvτ (y) = 0 due to the fact that it is a zero of the vector
field. This implies

‖x̃− y‖ ≤ eLvτ‖x− y‖ ≤ eLvtε,

where Lv is the Lipschitz constant of v. Since x̃ is generic,
it holds (Zε)t ⊂ ZeLvtε. A direct computation then implies
that

‖v‖L∞((Zε)t) ≤ ‖v‖L∞(Z
eLvtε

) ≤ LveLvtε.

We are now ready to apply Lemma 8, that gives

Ln((Zε ∩ ∂A)t) ≤
t‖v‖L∞((Zε)t)e

(n−1)LvtHn−1(Zε ∩ ∂A)

≤ tLvenLvtεHn−1(∂A).

Since tLvenLvtHn−1(∂A) is a fixed finite quantity and
the estimate holds for any ε > 0, then Ln((Zε ∩ ∂A)t) = 0
and the result follows.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we studied the evoluted set and proved that,
under suitable hypothesis, its boundary has zero Lebesgue
measure. Such result is of particular interest for the use
of flows of ordinary differential equations when the initial
datum is not reduced to a point but is a probability density.

Future directions of research on this topic will include the
case of infinite time horizon and the discussion of weaker
regularity properties for the initial datum to ensure that the
boundary of the evoluted set is negligible. Applications to
control of partial differential equations of transport type, via
the method of characteristics, will be also studied.
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