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Abstract

Social dynamics models may present discontinuities in the right-hand side of the dynamics for multiple
reasons, including topology changes and quantization. Several concepts of generalized solutions for discon-
tinuous equations are available in the literature and are useful to analyze these models. In this chapter,
we study Caratheodory and Krasovsky generalized solutions for discontinuous models of opinion dynamics
with state dependent interactions. We consider two definitions of “bounded confidence” interactions, which
we respectively call metric and topological: in the former, individuals interact if their opinions are closer
than a threshold; in the latter, individuals interact with a fixed number of nearest neighbors. We compare
the dynamics produced by the two kinds of interactions in terms of existence, uniqueness and asymptotic
behavior of different types of solutions.

1 Introduction and summary of results
In the last decades, researchers from many different fields explored the behavior of large systems of active
particles or agents. The latter entities, also called self-propelled, intelligent or greedy, are endowed with the
capability of decision making and, usually, of altering the energy or other (otherwise conserved) quantities
of the system. Examples include dynamics of opinions in social networks, animal groups, networked robots,
pedestrian dynamics and language evolution. Their dynamics is written as an Ordinary Differential Equation
(ODE in the following) in large dimension. In order to cope with this large dimension, various mean-field,
kinetic and hydrodynamic limit descriptions were studied in the literature, see [1, 2, 8, 13, 14, 22, 25, 37] and
references therein. The interaction among agents may be restricted to specific regions due to the physical
aspects of the modeled phenomenon, giving rise to discontinuities. Even more, due to modeling choices these
discontinuities may appear naturally at multiple scales, see for instance [6, 23].

One of the main phenomena of active particles is self-organization of the whole system, stemming from
simple interaction rules at the particle level. Such interaction rules are often motivated by relationships among
agents; thus, corresponding evolutions are referred to as social dynamics [5, 40, 41]. The most common self-
organized configurations are: consensus [36], i.e. all agents reaching a common state; alignment, i.e. agents
reaching consensus on a subset of the state variables (e.g. speed) [12]; and clustering, i.e. agents grouping in a
small number of well-separated states [32, 35].

The description of social dynamics may require continuous or discrete quantities, and the corresponding
ODE may have either continuous or discontinuous vector fields. As a matter of fact, there are multiple situations
where discrete variables and discontinuities arise. A partial list includes:

– the presence of threshold effects caused by physical, communication, or psychological barriers ([30]);

– the presence of quantities taking values in discrete sets, when a finite number of choices is given (e.g.
whether and which product to buy) or when communication takes place by means of a finite set of symbols
([16, 19, 34]);

– the presence of a pattern of allowed/forbidden interactions, such as can be encoded in a graph ([5, 7]).

The latter case includes all situations where physical or cognitive constraints limit interactions to agents that are
close to each other, either spatially or behaviorally. When models are defined in discrete time, discontinuities
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of the right-hand side pose little mathematical difficulties and are easily managed or simply ignored. Instead,
discontinuities give rise to technical difficulties in continuous time, as the study of ODEs is deeply based on
the notions of continuity and differentiability. We notice that the problem of dealing with discontinuities is not
limited to the case of ODE models, but it also occurs at other scales for learning dynamics in crowds combined
with loss of symmetry features, see [6].

Even though discontinuities of some models can be avoided by defining suitable smoothed counterparts,
which feature continuous approximations of discontinuous functions, the connections between continuous and
discontinuous variants are not trivial [15]. Most importantly, discontinuities cannot always be avoided. This
is the case when the agents are allowed a finite number of choices/actions/interactions. Another, classical,
example of unavoidable discontinuity in ODEs comes from control theory. Whereas stabilizability of a system
with inputs by means of a continuous feedback law implies asymptotic controllability by means of an open-
loop control, the converse does not hold if only continuous feedback laws are considered. But if discontinuous
feedback laws are allowed, then asymptotic controllability does imply stabilizability ([3, 20]). This example
shows not only that discontinuities cannot be avoided, but they may be helpful. This result and, more generally,
all results on discontinuous ODEs depend on the notion of generalized solutions adopted: it is interesting to
analyse and compare different notions in order to deduce common features and differences. This is one of the
objectives of the present paper: we will make use of the main concepts of solutions that have been defined in
mathematical analysis and in control theory, and in particular we will discuss classical, Caratheodory, Filippov
and Krasovsky solutions. We recall the precise definitions of these solutions in Section 2.1 below.

We now describe more precisely the two opinion dynamics models that we analyze in the present chapter.
The fact that an individual influences those he communicates with, can be taken as a principle when describing
evolution of opinions. The most basic model which describes in a mathematical framework this principle is
usually referred to as DeGroot’s model (despite having earlier origin in French [29]). Its main feature is that in
a group of individuals that communicate among them, consensus is achieved. On the other hand, everyone’s
experience suggests that consensus is not always achieved among individuals. For this reason, many researchers
have proposed more complex models, aiming to describe agreement and disagreement at the same time: see
[40, 41] for a comprehensive discussion. Crucially, several of these more complex models feature discontinuities
of the right-hand side.

Here we consider a general model, which incorporates the well known Hegselmann-Krause model [30]. The
basic idea of Hegselmann and Krause is that trust towards others has some limitations. In their work, they
assume that an individual is influenced by others only if opinions are not too far from one another. Here,
we describe the fact that one’s confidence towards others is limited, by describing in two different ways the
set of neighbors of an individual. In the first setting, interactions among individuals follow Hegselmann and
Krause’s rule: one’s neighbors are individuals whose opinions do not differ too much. We call this kind of
interactions metric interactions. In the second setting, we assume that an individual follows only a fixed
number of neighbors, the ones whose opinions are the nearest to his own. We call this kind of interactions
topological interactions. Topological interactions can be motivated by the notion of Dunbar number [7, 26]
that indicates a cognitive limit in the number of significant relationships among individuals. This concept is
particularly meaningful in the contemporary world, where potential contacts and available information seem
to be unlimited.

1.1 Mathematical models and main results
In the mathematical description of the bounded confidence models, we start by considering a set V = {1, . . . , N}
of N agents (also called individuals) with states xi ∈ Rn (e.g. position, opinion, speed). Each agent i ∈ V
interacts with other agents belonging to a subset of neighbors Ni(x) ⊆ V . The subset of neighbors Ni(x)
depends on the state and induces a graph G(x) of interactions among the agents: V is the set of nodes and
(i, j) is an edge if j ∈ Ni(x). We denote the set of edges by E(x). The dynamics can be written in the following
form:

ẋi =
∑

j∈Ni(x)

a(‖xj − xi‖)(xj − xi). (1)

The function a : [0,+∞[→ [0,+∞[ satisfies the following hypotheses:

• a is Lipschitz continuous;
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• a(r) > 0 for r > 0;

• a is not decreasing.

The function a represents the strength of interactions among agents. A more general model could be written
with interaction functions aij that depend on the pair of neighbors. Most results stated in this article remain
valid in this more general setting, provided that interactions are symmetric (aij = aji). Depending on how
neighbors Ni(x) are chosen, one obtains different bounded confidence models. From now on, we will use the
notations Nm

i , N
t
i for the set of neighbors for the metric and topological versions, that we make explicit below.

In the metric bounded confidence model agent i’s neighbors are those whose state is not too far from his
own, namely

Nm
i (x) = {j ∈ V : ‖xj − xi‖ < 1}.

This choice implies that interactions between agent i and j are symmetric, i.e. agent i is influenced by agent
j if and only if agent j is influenced by agent i. We then write the metric bounded confidence dynamics as
follows:

ẋi =
∑

j∈Nm
i (x)

a(‖xj − xi‖)(xj − xi). (2)

As already mentioned, the first and best known version of the metric bounded confidence model is Hegselmann-
Krause’s [10, 30, 44], which corresponds to a ≡ 1 and was originally written in discrete time with states xi ∈ R.
Its continuous-time counterpart was first studied in [11].

The topological bounded confidence model is obtained when agent i interacts only with a fixed number κ of
neighbors, where 1 ≤ κ ≤ N − 1. More precisely, for every agent i ∈ V , her neighborhood N t

i (x) is defined
in the following way. The elements of V \ {i} are ordered by increasing values of ‖xj − xi‖; then, the first
κ elements of the list (i.e. those with smallest distance from i) form the set N t

i (x) of current neighbors of i.
Should a tie between two or more agents arise, priority is given to agents with lower index. We then write

ẋi =
∑

j∈Nt
i (x)

a(‖xj − xi‖)(xj − xi). (3)

For topological interactions, agent i could be influenced by agent j without agent j being influenced by agent
i, namely interactions are not symmetric. This fact is a major difference between the metric and topological
bounded confidence models. This model was first pointed out in [5], while several other models of opinion
dynamics and collective motion have considered topological interactions in different forms: see [21, 42] and
references therein.

For both models, we have the following crucial observation: the right hand side of (2)-(3) is a discontinuous
function. For this reason, one needs to carefully select a concept of solution to such discontinuous ODE. In
our opinion, this aspect has been overlooked in the extensive literature about bounded-confidence models, with
some exceptions such as [9, 11, 15]. Here, we will consider mainly Caratheodory and Krasovsky solutions.
Definitions and a brief discussion on different notions of solutions can be found in Section 2.1. The first result
about solutions of (1) will be the following.

Theorem 1 (Existence and uniqueness). Consider the bounded confidence models, either in the metric case (2)
or topological case (3). Then, there exists a solution (global in time) for every initial condition in the Krasovsky
sense. Uniqueness of solutions does not hold in general, but holds for almost every initial datum. Moreover,
the same result holds for Caratheodory solution, both in the metric case and in the topological case for κ = 1.

The full proof of the result for (2) was given in [38], which extended partial results from [11, 15, 17]. Here
we prove the corresponding claims for (3) in Section 3.

After solving the questions about existence and uniqueness, we focus on some properties of such solutions
that have been explored in the rich literature about social dynamics models. We want to recall some of them.
In the next definitions x(t) = (x1(t), ..., xN (t)) will denote a solution of an unspecified type.

P1) Average preservation. xave(t) = 1
N

∑
i xi(t) is invariant along trajectories.
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P1 P2 P3
Metric Caratheodory Yes Prop. 5 Yes Prop. 6 Yes Prop. 11
Metric Krasovsky Yes Prop. 5 Yes Prop. 6 Yes Prop. 11

Topological Caratheodory No Ex. 5 Yes Prop. 6 No Ex. 7
Topological Krasovsky No Ex. 5 Yes Prop. 6 No Ex. 7

Topological Caratheodory κ = 1 No Ex. 5 Yes Prop. 6 Yes Prop. 11
Topological Krasovsky κ = 1 No Ex. 5 Yes Prop. 6 No Ex. 8

Table 1: This table summarizes, for the reader’s convenience, where in paper the main properties of the bounded
confidence models are proved or disproved.

P2) Contractivity of the support. For all T 2 ≥ T 1 ≥ 0, it holds

co
({
x1(T 1), x2(T 1), . . . , xN (T 1)

})
⊇ co

({
x1(T 2), x2(T 2), . . . , xN (T 2)

})
,

where co is the closed convex hull of the values in the brackets (defined in (4) below).

P3) Convergence to cluster points. Every solution x(t) converges for t→ +∞ to a cluster point, namely
to a point x∞ = (x∞1 , . . . , x

∞
N ) ∈ RnN , x∞i ∈ Rn, such that for every i ∈ V , for every j ∈ Ni(x∞) it holds

x∞i = x∞j . Every set of agents with coincident states is said to be a cluster.

Properties P1), P2), P3) will be discussed for both metric and topological models. Many examples will show
the richness of possible behaviors, depending on the chosen notion of solution. Indeed, the following theorem
summarizes the results that we prove in the next sections: the proof scheme is summarized in Table 1.

Theorem 2 (Properties of solutions). (i) Metric bounded confidence model. Caratheodory and Krasovsky
solutions to (2) satisfy properties P1)-P2)-P3).

(ii) Topological bounded confidence model. Caratheodory and Krasovsky solutions to (3) satisfy prop-
erty P2) and may not satisfy properties P1) and P3).

(iii) Topological bounded confidence model with one neighbor. In addition to the previous case,
Caratheodory solutions to (3) with κ = 1 satisfy property P3).

Some additional facts are easy to observe.

Remark 1 (Structure of cluster points, metric case). Note that for the metric bounded confidence model,
different values assumed by the components of a cluster point x∞ are at a distance greater than or equal to one.
Actually, they can be at distance precisely one, as shown by Example 1 below.

Example 1 (Clusters at distance 1). Consider the system (2) with n = 2, N = 3 and initial condition
x =

(
(0, 0), (1, 1

3 ), (1,− 1
3 )
)
. There is a unique Krasovsky (thus also Caratheodory) solution starting at x which

converges to the cluster point x∞ = ((0, 0), (1, 0), (1, 0)). Note that the distance between the first two agents in
x∞ is precisely one.

Remark 2 (Non-exclusive dependence of the asymptotic state on the initial data). A desirable property for
solutions of any system is that the asymptotic state depends on the initial datum only. Bounded confidence
models fail to have this property, because different solutions starting from the same initial condition can have
different asymptotic states. This is the case for Caratheodory (and a fortiori also for Krasovsky) solutions, as
shown by Example 5 below.

Complete proofs of the properties of the metric bounded confidence model can be found in [38]. Here
we recall the main ideas in order to compare metric and topological cases. In fact, the topological bounded
confidence model turns out to be rather different and more complex to characterize. A key reason, already
pointed out, is that interactions are not symmetric. As a consequence, even a characterization of equilibria
is not evident. Here, we construct a Lyapunov function and prove convergence to cluster points in the case
κ = 1 only. In this case, we can also characterize the configuration of the network induced by (3) at any time,
which is a directed pseudo-forest with a cycle of length 2 in each connected component (Proposition 12). In
the general case, counterexamples show that convergence to cluster points cannot be expected (Examples 7-8).

This picture shows the theoretical interest of these models and the long way to go to fully understand them.
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2 Generalized solutions: definitions and basic facts
In this article, we denote by λm the Lebesgue measure on Rm. For x ∈ Rm, B(x, r) is the ball of radius r > 0
centered at x and B(r) = B(0, r) is the ball centered at the origin. The Euclidean norm in Rm is denoted
by ‖ · ‖. Given an embedded manifold M ⊂ Rm, the symbol ∂M denotes the topological boundary. Given
A ⊂ Rm, we denote by int(A) its interior, by A its closure and we set

co(A) =

{∑̀
i=1

αixi : ` ∈ N, αi ∈ [0, 1],
∑̀
i=1

αi = 1, xi ∈ A

}
(4)

the convex hull of A, and denote by co(A) its closure.

We denote by AC([0, T ],Rm) the space of absolutely continuous functions on a time interval [0, T ]. Recall
that every absolutely continuous function is differentiable for almost every time, i.e. except for times on a set
of zero Lebesgue measure. We also introduce the following:

Definition 1 (Stratified set). A set Γ ⊂ Rm, Γ = ∪mΓ
i=1Mi, with mΓ ∈ N ∪ {+∞} and Mi being C1 embedded

manifold of dimension ni ≤ m, is stratified if:

i) The family Mi is locally finite: given a compact K, it holds K ∩Mi 6= ∅ only for finite many i.

ii) for i 6= j it holds Mi ∩Mj = ∅, and if Mi ∩ ∂Mj 6= ∅ then Mi ⊂ ∂Mj and ni < nj.

We call maxi ni the dimension of the stratified set Γ.

Remark 3. For simplicity we used the definition of topological stratification, even if the examples we consider
admit Whithney stratification. We refer the reader to [33, 39, 43] for a discussion of the different concepts and
the role played for discontinuous ODEs and optimal feedback control.

An autonomous ODE is written as:
ẋ(t) = g(x(t)) (5)

where x ∈ Rm and g : Rm → Rm is a measurable and locally bounded function (defined at every point). The
different concepts of solution will be discussed in the next Section 2.1.

A multifunction on Rm is a function H : Rm → P(Rm), with P(Rm) being the powerset of Rm, i.e. the set
of subsets of Rm. Given a multifunction H, one can consider the differential inclusion:

ẋ(t) ∈ H(x(t)). (6)

A solution is an absolutely continuous function x(·) which satisfies (6) for almost every t.
We define the Hausdorff distance dH on the powerset of Rm as follows: given x ∈ Rm and A,B ⊂ Rm we

set d(x,A) = inf{d(x, y) : y ∈ A} and dH(A,B) = sup{d(x,A), d(y,B) : x ∈ B, y ∈ A}. A multifunction H
is continuous if it is continuous for the Hausdorff distance, while H is upper semicontinuous at x if for every
ε > 0 there exists δ > 0 such that H(y) ⊂ H(x) +B(ε) for every y with ‖x− y‖ < δ.
A continuous multifunction H is also upper semicontinuous. It is well known that if H is upper semicontinuous
with compact convex values, then the corresponding differential inclusion (6) admits solutions (locally in time)
for every initial condition, see [4]. More precisely, we state the following fact.

Proposition 1. Assume that the multifunction H in (6) is upper semicontinuous and, for every x ∈ Rm,
H(x) is a nonempty, compact and convex subset of Rm. Then, for every initial condition x0 there exists a local
solution to (6).

2.1 Solutions to discontinuous ordinary differential equations
Given the ODE (5) with g discontinuous, it is convenient to define the associated Krasovsky multifunction,
defined as:

K(x) =
⋂
δ>0

co{g(y) : y ∈ (x+Bδ)}. (7)
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Similarly, the Filippov multifunction is defined as:

F (x) =
⋂
δ>0

⋂
λm(N)=0

co{g(y) : y ∈ (x+Bδ \N)}. (8)

Many definitions of solutions for (5) are then available, most of which coincide when g is sufficiently regular
(e.g. locally Lipschitz). We summarize in the following definition the concepts we are considering in the rest of
the paper.

Definition 2 (Notions of solution). Given the ODE (5) and T > 0 we define the following:

1. A classical solution is a differentiable function x : [0, T ]→ Rm that satisfies (5) at every time t ∈ (0, T ).
At 0 and at T the equation must be satisfied with one-sided derivatives.

2. A Caratheodory solution is an absolutely continuous function x : [0, T ] → Rm which satisfies (5) at
almost every time t ∈ [0, T ].

3. A Krasovsky solution is an absolutely continuous function x : [0, T ]→ Rm, which satisfies:

ẋ ∈ K(x(t))

for almost every time t ∈ [0, T ], with K given by (7).

4. A Filippov solution is an absolutely continuous function x : [0, T ]→ Rm, which satisfies:

ẋ ∈ F (x(t))

for almost every time t ∈ [0, T ], with F given by (8).

We denote the sets of classical, Caratheodory, Filippov and Krasovsky solutions with Cl, Ca, F and K respec-
tively.

The concept of classical solution is not used for discontinuous ODEs, because of general lack of existence. In
the following examples we show that both models may not admit a classical solution for some initial condition.
In these examples and later in this paper, it will be convenient to denote the vector fields defined by the
right-hand sides of the metric model (2) and the topological model (3) by fm and f t respectively.

Example 2 (Non-existence of classical solutions, metric). Let N = 3, n = 1, a ≡ 1 and consider point
x = (− 1

2 , 0,
1
2 ). Let fm be the vector field defined by the right-hand side of (2). We have fm(x) = ( 1

2 , 0,−
1
2 ),

in fact agents 1 and 3 do not communicate in this configuration. As soon as t > 0 agents 1 and 3 start
communicating as |x3(t) − x1(t)| < 1 for t > 0. Then we have that limt→0+ fm(x(t)) = ( 3

2 , 0,−
3
2 ) which is

different from fm(x). This proves that a classical solution issuing from x does not exist. If we take the initial
condition (− 2

3 , 0,
2
3 ), a classical solution exists until the state x is reached, but cannot be continued up to +∞.

Example 3 (Non-existence of classical solutions, topological). Consider (3) with N = 4, n = 2, κ = 1,
a ≡ 1 and the initial condition x̄ = ((−1, 0), (0, 0), (1, 0), (1− ε,

√
1− ε2)) with 0 < ε < 1

2 . Then N t
1(x̄) = {2},

N t
2(x̄) = {1}, N t

3(x̄) = {2}, N t
4(x̄) = {3}. Therefore ẋ3 − ẋ2 = 0 and (ẋ4 − ẋ3) · (x4 − x3) < 0, thus for all

positive times it holds N t
3(x(t)) = {4} and there is no classical solution.

Caratheodory solutions are among the ones commonly used, as they are equivalent to solutions in the
integral form:

x(t) = x(0) +

∫ t

0

g(x(s)) ds.

Existence theorems for Caratheodory solutions are far from trivial, as we will see in Section 2.1.
The concepts of Filippov and Krasovsky solutions are often used to deal with general discontinuous ODEs.

They have the advantage of being based on the well-developed theory of differential inclusions (6), see [4, 27].
In particular, we have the following proposition, see [4].
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Proposition 2 (Local existence). Consider an ODE (5) with g measurable and locally bounded. Then the
corresponding Krasovsky and Filippov multifunctions K and F defined by (7) and (8) respectively, are upper
semicontinuous with nonempty, compact and convex values. Thus, the differential inclusions ẋ ∈ K(x) and
ẋ ∈ F (x) admit local solutions for every initial condition.

Among solutions a special role is played by equilibrium solutions, whose notion should of course be adapted
to the chosen concept of solution. More precisely, we give the following definition.

Definition 3. We call x ∈ Rm an equilibrium with respect to classical (respectively Caratheodory, Krasovsky,
Filippov) solutions, if the function φ(t) = x is a classical (respectively Caratheodory, Krasovsky, Filippov)
solution.

We remark that x is an equilibrium with respect to classical and Caratheodory solutions if and only if
f(x) = 0. This fact implies that Caratheodory and classical equilibria coincide. Instead, x is an equilibrium
with respect to Krasovsky (respectively Filippov) solutions if and only if 0 ∈ K(x) (respectively 0 ∈ F (x)).

2.2 Inclusions between sets of solutions
In this section, we study the inclusions between the different concepts of solutions introduced above. We first
recall the standard inclusions between solutions, that do not depend on the specific structure of (1). The proof
is omitted, as it directly follows from definitions.

Proposition 3 (Solution sets). The following inclusions among sets of solutions hold true: Cl ⊆ Ca ⊆ K and
Cl ⊆ F ⊆ K.

We now prove that in the specific case of dynamics (2) and (3) the sets of Filippov and Krasovsky solutions
actually coincide. In view of this result, in the rest of this paper we will no longer distinguish between Krasovsky
and Filippov solutions and we will simply refer to them as to Krasovsky solutions. The proof is based on the
following fact.

Lemma 1 (Lemma 2.8 in [31]). Let f : Rm → Rm be such that:

(i) there exist Mα ⊆ Rm, α ∈ A, such that ∪αMα = Rm, Mα ∩ Mβ = ∅ for all α, β ∈ A, α 6= β, and
Mα ⊆ int(Mα) for all α ∈ A,

(ii) there exist fα : Rm → Rm continuous such that f(x) = fα(x) for all x ∈Mα and for all α ∈ A.

Then K = F for (5).

Proposition 4 (Krasovsky and Filippov solutions coincide). For the metric model (2) and the topological
model (3), it holds K = F .

Proof. The system (1) can be written in standard form (5) by setting m = nN , x = (x1, . . . , xN ) ∈ RnN ,
f = (f1, . . . , fN ) with fi : Rn → Rn given by the right-hand side of (1).

We start considering the metric bounded confidence model (2). Given i, j ∈ V , i 6= j, we define the subset
of RnN :

∆m
ij = {(x1, . . . , xN ) ∈ RnN : ‖xi − xj‖ = 1}, (9)

and the union of such subsets as:
∆m = ∪i,j:i 6=j∆m

ij . (10)

The set ∆m is the set of points at which the right-hand side of (2) fails to be continuous. RnN is the disjoint
union of p = 2(N

2 ) sets such that fm restricted to each of them is continuous. We can enumerate these sets
by starting with M1 = {x ∈ Rnm : ‖xi − xj‖ < 1 ∀i, j ∈ V, i 6= j}, M2 = {x ∈ Rnm : ‖xi − xj‖ < 1 ∀i, j ∈
V except for ‖x1 − xN‖ ≤ 1} and finishing with Mp = {x ∈ Rnm : ‖xi − xj‖ ≥ 1∀i, j ∈ V }. Since M1, ...,Mp

and fm satisfy the assumptions of Lemma 1, then K = F for (2).
An analogous argument can be repeated for the topological bounded confidence model (3). In this case we

denote by
∆t
ijh = {(x1, . . . , xN ) ∈ RnN : ‖xj − xi‖ = ‖xh − xi‖} (11)
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and by
∆t = ∪i,j,h:i6=j 6=h6=i∆

t
ijh. (12)

Remark that the right-hand side of (3) is discontinuous on a subset of ∆t. Also in this case, RnN is the disjoint
union of a finite number of sets delimited by the ∆t

ijh’s such that f t restricted to each of them is continuous.

The next examples show that the inclusions Cl ⊆ Ca ⊆ K are proper for both dynamics. It also shows
that Caratheodory and Krasovsky solutions starting from the same initial condition may converge to different
equilibria.

Example 4 (Proper inclusions between solution sets, metric). Consider (2) with N = 3, n = 1, a ≡ 1 and
the initial condition x = (− 1

3 , 0, 1). Note that x is a discontinuity point of fm(x) as x3 − x2 = 1. We have
fm(x) = ( 1

3 ,−
1
3 , 0). In fact agent 2 and 3 do not communicate. There exists a unique classical solution

xC(t) = (− 1
6 −

1
6e
−2t,− 1

6 + 1
6e
−2t, 1) which converges to the point (− 1

6 ,−
1
6 , 1).

If we consider Caratheodory solutions, we note that there exists one more solution, that starts following the
limit value of the vector field as x3−x2 → 1−, namely fm−(x) = (1

3 ,
2
3 ,−1): this Caratheodory solution behaves

as if agents 2 and 3 communicate. Its expression is xCa(t) = (1
9e
−3t− 2

3e
−t + 2

9 ,−
2
9e
−3t + 2

9 ,
1
9e
−3t + 2

3e
−t + 2

9 )
and it converges to ( 2

9 ,
2
9 ,

2
9 ).

We finally consider Krasovsky solutions. Besides the ones already obtained there exists a solution that slides
on the discontinuity plane π : x3 − x2 = 1. In fact admissible directions f̃m at the points of π belong to the set

Kf(x) = {α(x2 − x1, 1 + x1 − x2,−1) + (1− α)(x2 − x1, x1 − x2, 0) : α ∈ [0, 1]} .

Since the normal vector to π is v⊥ = (0,−1, 1), we have that v⊥ · ẋ = −2α + x2 − x1 is equal to zero if
α = 1

2 (x2 − x1). Namely, the Krasovsky solution corresponding to this α does not exit the discontinuity plane
but slides on it. In fact the sliding solution keeps x3 and x2 at distance 1 as ẋ3 − ẋ2 = 0. The solution can
stay on the discontinuity for arbitrarily long time: if it remains there forever, then it converges to the point
(− 1

9 ,−
1
9 ,

8
9 ). Other Krasovsky solutions may exit π at arbitrary times T in two different ways: either agents

2 and 3 influence each other and the solution converges to ( 2
9 ,

2
9 ,

2
9 ), or they stop interacting at all and the

solution converges to (x∗, x∗, x3(T )) with x∗ = 1
3 −

x3(T )
2 .

Example 5 (Proper inclusions between solution sets, topological). We consider (3) with N = 3, n = 1, κ = 1,
a ≡ 1 and the initial condition x = (0,−1, 1). We remark that the vector field defined by the right-hand side of
(3) is discontinuous at x as it belongs to the plane π : (x1 − x2)− (x3 − x2) = 0. In order to have the equation
satisfied at t = 0 classical solutions must satisfy the equations

ẋ1 = x2 − x1

ẋ2 = x1 − x2

ẋ3 = x1 − x3.

There is a unique classical solution starting from x and it converges to the point
(
− 1

2 ,−
1
2 ,−

1
2

)
. In fact

ẋ1 + ẋ2 = 0, then x1(t) + x2(t) = x̄1 + x̄2 = limt→+∞[x1(t) + x2(t)] = −1.
We now observe that there is a Caratheodory solution that does not satisfy the equations at t = 0 but does

for t > 0, namely the solution of the equations
ẋ1 = x3 − x1

ẋ2 = x1 − x2

ẋ3 = x1 − x3.

This Caratheodory solution converges to the equilibrium point
(

1
2 ,

1
2 ,

1
2

)
.

Finally we have a Krasovsky solution starting at x that slides on the plane π. In fact, if we denote by f t−(x)
and f t+(x) its limit values as x approaches the plane π from the negative and positive sides respectively, we
have f t−(x) = (x2 − x1, x1 − x2, x1 − x3) and f t+(x) = (x3 − x1, x1 − x2, x1 − x3). We can then compute the
Krasovsky set-valued map on π:

Kf(x) = {(αx2 + (1− α)x3 − x1, x1 − x2, x1 − x3), α ∈ [0, 1]}.

By posing α = 1
2 we obtain the admissible direction f t1/2(x) = (0, x1 − x2, x1 − x3) which is parallel to π.

This implies that there is a Krasovsky solution starting from x and sliding on π, namely x1(t) = 0, x2(t) =
−e−t, x3(t) = e−t, which converges to the origin.
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2.3 P1) Average preservation
In this section, we discuss property P1), that is preservation of the average value of the agents. We prove that
P1) is satisfied for metric interaction models, while this is not the case for topological interactions. This is one
more consequence of the lack of symmetry of topological interactions.

Proposition 5 (Average preservation). Caratheodory and Krasovsky solution of (2) have property P1).

The proof of Proposition 5 can be found in [15] in the case n = 1 and in [38] in the general case. The same
property does not hold for solutions of the topological bounded confidence model, by the following example.

Example 6 (Example 5, continued). Let x(t) be the unique classical solution starting from the point (0,−1, 1).
Observe that x(t) is such that xave(0) = 0, but the limit of x(t) for t → +∞ is (− 1

2 ,−
1
2 ,−

1
2 ), so that

limt→+∞ xave(t) = − 1
2 .

2.4 P2) Contractivity of the support
In this section, we prove that the support of solutions (in any sense given above) is weakly contractive. This
is a well-known property of Caratheodory solutions for bounded confidence models, see e.g. [11]. The proof of
such property for Krasovsky solutions for the metric model (2) on the real line can be found in [15, Prop. 3.iii].

We will give a general proof for Krasovsky solutions in any dimension, both for the metric (2) and topological
models (3). The proof is similar to the one provided in [38], thus we provide a sketch only.

Proposition 6 (Contractivity of the support). Let x(t) = (x1(t), x2(t), . . . , xN (t)) be a solution to either (2)
or (3), in any of the senses given in Definition 2. Assume a : [0,+∞[→ [0,+∞[ continuous and 0 ≤ T 1 < T 2,
then

co
({
x1(T 1), x2(T 1), . . . , xN (T 1)

})
⊇ co

({
x1(T 2), x2(T 2), . . . , xN (T 2)

})
. (13)

Proof. Let x(·) be a Krasovsky solution. Define X(t) := co ({x1(t), x2(t), . . . , xN (t)}) and

A(T 1) :=
{
T ∈ (T 1,+∞) s.t. X(T 1) 6⊇ X(T )

}
.

We claim that A(T 1) is empty, which implies (13). Otherwise, by contradiction, we can define T 3 = inf A(T 1) ≥
T 1. Following the same argument as in [38], we can prove the following:
Claim a) It holds either inf(A(T 1)) = T 1 or inf(A(T 3)) = T 3.
Without loss of generality, we can assume T 1 = 0 or T 3 = 0, thus inf(A(0)) = 0. Let tk ↘ 0 be such that
xi(tk) 6∈ X(0) for a fixed i ∈ V , then by continuity of the trajectory it holds x̄i := xi(0) ∈ ∂X(0), where ∂
indicated the topological boundary. Since X(0) is a convex polyhedron, it is supported by a finite number
of hyperplanes at x̄i, thus, by possibly passing to subsequences, we can find a unitary vector ν such that
(xi(tk)− x̄i) · ν > 0 for all tk. Moreover, it holds (xj(0)− x̄i) · ν ≤ 0 for all j ∈ V .
Now, define φj(x) = (xj − x̄i) · ν, and φ(x) := maxj∈V φj(x). Observe that φ(x(0)) ≤ 0 and φ(x(tk)) > 0.
We can apply Danskin Theorem [24] to φ, thus even though φ may be not differentiable, it admits directional
derivatives. Denote by h = (h1, . . . , hN ) the displacement, then by applying Danskin formula, the directional
derivative Dh along h is given by

Dhφ(x) = max
j∈Ai(x)

N∑
k=1

hk · ∇xk
φj(x) = max

j∈Ai(x)
hj · ∇xjφj(x) = max

j∈Ai(x)
hj · ν,

where Ai(x) is the set of indexes j 6= i realizing the maximum in the definition of φ(x). Since Dhφ(x) is always
defined and ẋ(t) exists for almost every t ∈ (0, T ), then also φ̇(x(t)) exists for almost every t ∈ (0, T ). Moreover,
by direct computation, we get:

lim
τ→0

φ(x(t+ τ))− φ(x(t))

τ
= lim

τ→0

φ(x(t) + τ ẋ(t) + o(τ))− φ(x(t))

τ
(14)

= lim
τ→0

φ(x(t)) + τDẋ(t)φ(x(t)) + o(τ)− φ(x(t))

τ
= Dẋ(t)φ(x(t)),

thus it holds:
φ̇(x(t)) = max

j∈Ai(x(t))
φ̇j(t) = max

j∈Ai(x(t))
ẋj(t) · ν. (15)
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Now, if x(·) is differentiable at t, and j ∈ Ai(x(t)), then for every k 6= j we have

(xk(t)− xj(t)) · ν = (xk(t)− x̄i) · ν + (x̄i − xj(t)) · ν = φk(x(t))− φj(x(t)) ≤ φ(t)− φ(t) = 0. (16)

Since x(·) is a Krasovsky solution, there exist bjk ≥ 0 such that ẋj =
∑N
k=1 bjka(‖xk − xj‖)(xk − xj). Substi-

tuting this expression in (15), we get:

φ̇(x(t)) = max
j s.t. φ(t)=φj(t)

N∑
k=1

bjka(‖xk − xj‖)(xk − xj) · ν ≤ 0.

This contradicts the fact that φ(x(0)) = 0 and φ(tk) > 0. Thus (13) holds, for the Krasovsky solution x(·).
Since the proof holds for every Krasovsky solution, by recalling the inclusions of Section 2.2, the statement
holds for any definition of solution.

3 Existence and uniqueness of solutions
In this section, we study existence and uniqueness of solutions, both for the metric and the topological models.

3.1 Existence of solutions
Proposition 7 (Existence of Krasovsky solutions). For any initial condition, equations (2) and (3) admit a
Krasovsky solution defined on [0,+∞).

Proof. For both (2) and (3) the right-hand side is locally bounded. The local existence of Filippov solutions
then follows from Proposition 2. By Proposition 4, the sets of Krasovsky and Filippov solutions coincide, then
local Krasovsky solutions also exist. Proposition 6 guarantees that solutions are bounded, then they can be
continued on [0,+∞) by standard arguments.

In general, Krasovsky solutions are not unique, as already shown in Example 5. In the following proposition
we state the existence of Caratheodory solutions for both metric and topological bounded confidence models.
The proof for the metric model in the case n = 1 was first given in [11] and then generalized to any n in [38].
The proof for the topological case with κ = 1 is new. We conjecture that the result holds for κ > 1 as well,
although with a more involved argument that we avoid to develop here.

Proposition 8 (Existence of Caratheodory solutions). (i) Metric bounded confidence. For any initial
condition, equation (2) admits a Caratheodory solution defined on [0,+∞).

(ii) Topological bounded confidence. If κ = 1, then any initial condition (3) admits a Caratheodory
solution defined on [0,+∞).

Proof. We only consider the topological bounded confidence model with κ = 1. We build a Caratheodory
solution as follows. For each initial datum x̄ = (x̄1, . . . , x̄N ), we construct an oriented graph G for which
there exists T > 0 and a curve defined on [0, T ] having G as connectivity graph. For each index i ∈ V
there exists one and only one index, that we denote with Γ(i), such that (i,Γ(i)) ∈ G. This implies that
ẋi = a(‖xΓ(i)−xi‖)(xΓ(i)−xi) for the whole time interval [0, T ]. We then need to prove that the corresponding
trajectory (x1(t), . . . , xN (t)) is indeed a Caratheodory solution for (3). Remark that one might aim to choose
Γ(i) as the single element of N t

i (x̄), that is the minimal index (in the lexicographic order) among nearest
neighbours of x̄i. In our proof, this is not the case, as one might choose Γ(i) not to be the nearest neighbour
with minimal index at the initial time, but to be the nearest neighbour for all t ∈ (0, T ). We then conclude
the proof by piecing together Caratheodory solutions on time intervals [0, T1], [T1, T2], . . . to build a solution
on [0,+∞).

Let x̄ be an initial configuration, that is fixed from now on. We build an oriented graph G recursively by
selecting, for each index i ∈ V , a unique index Γ(i) such that (i,Γ(i)) ∈ G. First define:

Ai := argminj 6=i(‖x̄j − x̄i‖),

which is the set of agents realizing the minimal distance to x̄i.
The graph G is constructed using the following algorithm:
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Step 1) For all i such that N t
i = {j}, define Γ(i) := j.

Step 2) WHILE there exists a pair of indexes i, j such that i 6∈ G, j 6∈ G and j ∈ Ai, i ∈ Aj
DO: define Γ(i) := j and Γ(j) := i.

Step 3) IF there exists i /∈ G such that Ai = {j1, . . . , jl} and j1, . . . , jl ∈ G
DO: choose

Γ(i) ∈ argminj∈{j1,...,jl}ψi(j) (17)

where
ψi(l) := (xl − xi) ·

(
a(‖xΓ(l) − xl‖)(xΓ(l) − xl)− a(‖xl − xi‖)(xl − xi)

)
(18)

Step 4) IF for all i ∈ V it holds i ∈ G, STOP.

ELSE: Go to Step 3.

Observe that the number of edges of G is increased at each step and is bounded by N . Thus, there exists a
limit graph G′, reached after a finite number of steps. We now prove the following claim:

(C) for all i ∈ V it holds i ∈ G′.

To prove (C), assume by contradiction that there exists i /∈ G′ and, by possibly relabeling indexes, i = 1 6∈ G′.
By definition of G′, Step 3 does not add edges to G′, in particular no edge to agent i = 1; thus A1 contains at
least one index, that we relabel as 2, such that 2 6∈ G′. If 1 /∈ A2, we can find another index, relabeled as 3,
such that 3 /∈ G′ and so on. Finally there exists k 6∈ G′ such that Ak ∩ {1, 2, . . . , k − 1} 6= ∅. Possibly reducing
the sequence and changing the initial element, we assume 1 ∈ Ak.
Now, if there exist i, i+ 1 ∈ {1, 2, . . . , k} such that i+ 1 ∈ Ai and i ∈ Ai+1, then we are in contradiction with
Step 2. Therefore, we can assume that for all i ∈ {1, 2, . . . , k − 1} it holds i 6∈ Ai+1. Since i + 2 ∈ Ai+1 by
construction, we have

‖xi − xi+1‖ > ‖xi+1 − xi+2‖ for all i ∈ {1, 2, . . . , k − 2}. (19)

Using (19) and recalling 1 ∈ Ak we get

‖x1 − x2‖ > ‖x2 − x3‖ > . . . > ‖xk−1 − xk‖ > ‖xk − x1‖.

This implies 2 6∈ A1, achieving a contradiction. This concludes the proof of claim (C).

Let x(·) be the curve satisfying ẋi = a(‖xΓ(i)−xi‖)(xΓ(i)−xi), i.e. with dynamics associated to G, with initial
condition x̄. We first show that there exists a time T > 0 such that Γ(i) ∈ argminj 6=i(‖xj(t) − xi(t)‖) for all
t ∈ [0, T ]. More precisely, for each i ∈ V , and k ∈ V \ {i,Γ(i)} we show that there exists Tik > 0 such that
‖xi(t) − xk(t)‖ ≥ ‖xi(t) − xΓ(i)(t)‖ on [0, Tik]. Then it will be sufficient to define T = minik Tik (with the
convention that the minimum is +∞ if all Tik = +∞).
Now, fix i ∈ V , and k ∈ V \ {i,Γ(i)}. Notice that if ‖x̄i − x̄k‖ > ‖x̄i − x̄Γ(i)‖, then by continuity there exists
Tik > 0 such that ‖xi(t)− xk(t)‖ > ‖xi(t)− xΓ(i)(t)‖ for all t ∈ [0, Tik]. Therefore, from now on, we assume

‖x̄i − x̄k‖ ≤ ‖x̄i − x̄Γ(i)‖.

By definition of Ai, this inequality is indeed an equality, otherwise Γ(i) 6∈ Ai. We distinguish two sub-cases:
Case 1) x̄k = x̄Γ(i).
Case 2) x̄k 6= x̄Γ(i).
In Case 1) there exists a (possibly empty) set of indexes L := {l1, . . . , lr} such that x̄k = x̄Γ(i) = x̄lm , hence
Ak = L∪{Γ(i)}. From claim (C), for each l ∈ {k,Γ(i)}∪L the neighbour Γ(l) is well-defined, thus x̄l = x̄Γ(l) by
the condition of minimal distance. This in turn implies ẋl ≡ 0, and similarly for all other indexes in Ak. Since
all indexes l ∈ {k,Γ(i)} ∪ L satisfy such property, it holds Al ⊆ argminj(‖xj(t) − xl(t)‖). Observe moreover
that the dynamics does not allow for merging particles, thus the inclusion is indeed an equality. This in turn
means that xk(t) = xΓ(i)(t) for all t > 0, hence we can choose Tik = +∞.
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Consider now Case 2). Observe that x̄k 6= x̄i, otherwise ‖x̄Γ(i) − x̄i‖ ≤ ‖x̄k − x̄i‖ = 0, which gives x̄Γ(i) =
x̄i = x̄k. We now prove that there exists Tik > 0 such that

‖xi(t)− xΓ(i)(t)‖ < ‖xi(t)− xk(t)‖ for all t ∈ (0, Tik]. (20)

Consider the function
φik(t) := 1

2‖xΓ(i)(t)− xi(t)‖2 − 1
2‖xk(t)− xi(t)‖2.

Since φik(0) = 0, to prove (20) it is enough to show φ′ik(0) < 0. Set j = Γ(i), then from (18), we get

φ′ik(0) = (x̄j − x̄i) · (ẋj(0)− ẋi(0))− (x̄k − x̄i) · (ẋk(0)− ẋi(0)) = Aijk −Bijk
with

Aijk = ψi(j)− ψi(k) = (x̄j − x̄i) · (a(‖x̄Γ(j) − x̄j‖)(x̄Γ(j) − x̄j)− (x̄j − x̄i) · a(‖x̄j − x̄i‖)(x̄j − x̄i)
−(x̄k − x̄i) · a(‖x̄Γ(k) − x̄k‖)(x̄Γ(k) − x̄k) + (x̄k − x̄i) · (a(‖x̄k − x̄i‖)(x̄k − x̄i)),

Bijk = (x̄k − x̄i) · (a(‖x̄k − x̄i‖)(x̄k − x̄i))− (x̄k − x̄i) · (a(‖x̄j − x̄i‖)(x̄j − x̄i))).

The idea of the decomposition is that the last term in Aijk would correspond to (x̄k − x̄i)ẋi(0) by choosing k
as the neighbour of i. Thus, Bijk is the corrector given by the actual choice j = Γ(i). We now show Aijk ≤ 0
and Bijk > 0, which implies φ′ik(0) < 0.
Consider first Aijk. The index j = Γ(i) was not chosen in Step 1 since k 6= j and k, j ∈ Ai. If j = Γ(i) was
chosen in Step 2, then Γ(j) = i, and

Aijk ≤ −2‖x̄j − x̄i‖2a(‖x̄j − x̄i‖) + ‖x̄k − x̄i‖ · ‖x̄Γ(k) − x̄k‖a(‖x̄Γ(k) − x̄k‖) +

‖x̄k − x̄i‖ · ‖x̄k − x̄i‖a(‖x̄k − x̄i‖).

By definition of Γ(k) we have ‖x̄Γ(k)−x̄k‖ ≤ ‖x̄i−x̄k‖, and, since we are inCase 2, it holds ‖x̄j−x̄i‖ = ‖x̄k−x̄i‖.
Recalling that a(r) is non-decreasing, we get Aijk ≤ 0. Assume now that j = Γ(i) was chosen in Step 3, then,
by construction j ∈ argmin`ψi(`), thus 0 ≥ ψi(j)− ψi(k) = Aijk.

We now prove Bijk > 0. Observe that j, k ∈ Ai, hence both x̄j and x̄k lay on the same circle centered at x̄i
on the plane containing x̄i, x̄j and x̄k. Thus a(‖x̄k− x̄i‖) = a(‖x̄j− x̄i‖). Since x̄k 6= x̄j (Case 2) and x̄k 6= x̄i,

the amplitude α of the angle
∧

x̄j x̄kx̄i, on the plane containing x̄i, x̄j and x̄k, belongs to (−π/2, π/2), thus

Bijk = (x̄k − x̄i) · a(‖x̄j − x̄i‖)(x̄k − x̄j) =

a(‖x̄j − x̄i‖)‖x̄k − x̄i‖ ‖x̄k − x̄j‖ cos(α) > 0.

From Aijk ≤ 0 and Bijk > 0 we get φ′ik(0) < 0 and we are done.

We now show that x(·) is a Caratheodory solution of (3). If Γ(i) = N t
i (x(t)) for all times t ∈ (0, T ), then we are

done. Otherwise, there exists t ∈ (0, T ) such that Γ(i) 6= k = N t
i (x(t)), thus ‖xΓ(i)(t)−xi(t)‖ ≥ ‖xk(t)−xi(t)‖.

Recalling the definition of Tik, we deduce that Case 1) holds, thus Γ(i) 6= k = N t
i (x(t)) and xΓ(i)(t) = xk(t),

i.e. the indexes k and Γ(i) are different but the agents’ positions coincide. As a consequence, we have

ẋi = a(‖xΓ(i) − xi‖)(xΓ(i) − xi) = a(‖xk − xi‖)(xk − xi),

and (3) is satisfied.

We now prove that the trajectory can be prolonged to [0,+∞). If T = +∞, then we are done. Otherwise,
observe that the trajectory x(·) is compact, due to contractivity of the support proved in Proposition 6, thus we
can use transfinite induction as follows. Since ẋ(·) is uniformly bounded, x(·) is a uniformly Lipschitz function
of time with Lipschitz constant L := maxij a(‖x̄i − x̄j‖), and x(T ) is well-defined. We can apply the same
algorithm at time T , and find T1 > 0 such that the trajectory is well-defined on [T, T1]. If T1 = +∞, we are
done; otherwise define T2 < T3 < . . . in the same way and extend the trajectory to [Ti, Ti+1]. If Ti = +∞
for some i or limi→+∞ Ti = +∞, then we are done. Assume, by contradiction, that T ∗ = limi→+∞ Ti < +∞.
Then x(T ∗) is well-defined and using the algorithm we can extend the trajectory beyond T ∗.
Using for Ti the same argument as for T , we have that x(·) is a Caratheodory solution to (3) on each interval
(Tl, Tl+1). Since {Ti} is a countable set, we are done.
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3.2 Uniqueness for almost every initial condition
In this section, we study uniqueness of solutions. Examples 4 and 5 show that Caratheodory solutions
are not unique in general (thus neither Krasovsky). Nevertheless, uniqueness of Krasovsky (and then also
Caratheodory) solutions holds for almost all initial condition, both for metric and topological models. For the
metric case, the result was already given in [38, Prop. 6.2].

We then focus on uniqueness of Krasovsky solutions for almost every initial datum for (3). We first set

I = {(i, j, k) : i 6= j, i 6= k, j 6= k}

and define
M = ∪ijk∈IMijk, Mijk = {x : ‖xi − xj‖ = ‖xj − xk‖}.

Notice thatM contains (in general strictly contains) the set where the right-hand side of (3) is discontinuous.
The main reason for uniqueness is that Krasovsky solution cannot enter the manifoldsM and slide on it, except
possibly on a set of codimension two. We first show this fact for the case κ = 1 for simplicity.

Given (i, j, k) ∈ I, consider the functions

θijk(x) = ‖xj − xi‖2 − ‖xk − xi‖2 (21)

and denote by πijk the subset of the manifold Mijk where the right-hand side f t of (3) is discontinuous and
where θjvw(x)θkhu(x) is different from zero for all v, w, h, u (that is, where the only discontinuity is due to j or
k). We want to prove that πijk cannot be attractive with respect to Krasovsky solutions. Fix x̄ a discontinuity
point for f t, thus x̄ ∈ πijk for some (i, j, k) ∈ I and either j ∈ N t

i (x̄) or k ∈ N t
i (x̄). We denote by f t+(x̄) and

f t−(x̄) the limit values of f t(x) as x → x̄ and θijk(x) > 0 (the neighbor of i is then k) and θijk(x) < 0 (the
neighbor of i is then j) respectively. We denote by Γ(j) the neighbor of j at x̄ and by Γ(k) the neighbor of k
at x̄. We first denote by γ the angle between the vectors x̄j − x̄i and x̄k − x̄i and l = ‖x̄j − x̄i‖ = ‖x̄j − x̄i‖.
If l = 0, the angle is not uniquely defined, but this plays no role in the following. Let us compute the two
quantities ∇θijk(x̄) · f t+(x̄) and ∇θijk(x̄) · f t−(x̄). We have:

∇θijk(x̄) · f+t(x̄) = (x̄j − x̄i) · [a(‖x̄Γ(j) − x̄j‖)(x̄Γ(j) − x̄j)− a(‖x̄k − x̄i‖)(x̄k − x̄i)]
−(x̄k − x̄i) · [a(‖x̄Γ(k) − x̄k‖)(x̄Γ(k) − x̄k)− a(‖x̄k − x̄i‖)(x̄k − x̄i)]

= a(‖x̄Γ(j) − x̄j‖)(x̄j − x̄i) · (x̄Γ(j) − x̄j)− a(l)l2 cos(γ)

−a(‖x̄Γ(k) − x̄k‖)(x̄k − x̄i) · (x̄Γ(k) − x̄k) + a(l)l2

and

∇θijk(x̄) · f t−(x̄) = (x̄j − x̄i) · [a(‖x̄Γ(j) − x̄j‖)(x̄Γ(j) − x̄j)− a(‖x̄j − x̄i‖)(x̄j − x̄i)]
−(x̄k − x̄i) · [a(‖x̄Γ(k) − x̄k‖)(x̄Γ(k) − x̄k)− a(‖x̄j − x̄i‖)(x̄j − x̄i)]

= a(‖x̄Γ(j) − x̄j‖)(x̄j − x̄i) · (x̄Γ(j) − x̄j)− a(l)l2

−a(‖x̄Γ(k) − x̄k‖)(x̄k − x̄i) · (x̄Γ(k) − x̄k) + a(l)l2 cos(γ).

We have:

∇θijk(x̄) · f t+(x̄)−∇θijk(x̄) · f t−(x̄) = −a(l)l2 cos(γ) + a(l)l2 + a(l)l2 − a(l)l2 cos(γ) = 2a(l)l2(1− cos(γ)).

First of all, we remark that ∇θijk(x̄) · f t+(x̄)−∇θijk(x̄) · f t−(x̄) ≥ 0. Moreover ∇θijk(x̄) · f t+(x̄)−∇θijk(x̄) ·
f t−(x̄) = 0 if and only if γ = 0, so that f t+(x̄) and f t−(x̄) are parallel. In this case, πijk is crossed by Krasovsky
solutions, unless f t+(x̄) is tangent to the manifold, but this may occur only on a set of codimension at least
two. Let us then consider the case ∇θijk(x̄) · f t+(x̄)−∇θijk(x̄) · f t−(x̄) > 0 and analyze different possibilities.

• Case ∇θijk(x̄) · f t+(x̄) > 0. If also ∇θijk(x̄) · f t−(x̄) > 0, then Krasovsky solutions cross πijk. If
∇θijk(x̄) · f t−(x̄) ≤ 0, then Krasovsky solutions can either leave πijk or slide on it.

• Case ∇θijk(x̄) · f t+(x̄) ≤ 0. Then ∇θijk(x̄) · f t−(x̄) < 0 and Krasovsky solutions cross πijk.

We conclude that solutions, which originate from outside πijk and reach it, must cross it. Therefore,
uniqueness can only fail for (sliding) solutions that originate inside πijk. After this informal argument for
κ = 1, we proceed to give a complete proof for any κ, thereby completing the proof of Theorem 1.
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Proposition 9 (Uniqueness from almost any initial datum, topological). The set of initial data from which
there exist more than one Krasovsky solutions for (3) has zero Lebesgue measure in RnN .

Proof. Fix an initial condition x̄ and let Xx̄ be the set of solutions x(·) to (3) such that x(0) = x̄ defined on
[0, T (x(·))[, with 0 < T (x(·)) ≤ +∞. Define

tU = inf{t : ∃x(·), y(·) ∈ Xx̄, t ≤ min{T (x(·)), T (y(·))}, x(t) 6= y(t)}, (22)

and
A = {x̄ ∈ RnN \M : tU < +∞}. (23)

Notice that M is a stratified set of codimension 1, thus of zero Lebesgue measure in RnN . Therefore the
statement is equivalent to prove that A has zero Lebesgue measure. For x̄ ∈ A, we define:

t̃ = inf{t : ∃x(·) ∈ Xx̄, x(t) ∈M}. (24)

Since (3) is Lipschitz continuous on RnN \M, there exists a unique solution in Xx̄ at least until reachingM,
thus x̃ = x(t̃) ∈M depends only on x̄. Now define the set of indexes

J = {(i, j, k, i′, j′, k′) : (i, j, k) 6= (i′, j′, k′)},

and the stratified sets:
Mijki′j′k′ =Mijk ∩Mi′j′k′ ,

We now analyze the dynamics onM\
(
∪(i,j,k,i′,j′,k′)∈JMijki′j′k′

)
to identify a stratified set of codimension two

out of which trajectories cross M transversally. Consider now x ∈ Mijk, assume (i, j, k) is the unique index
for which x ∈ Mijk. We also assume ‖xi − xj‖ = max`∈Nt

i (x) ‖xi − x`‖, i.e. j is among the farthest κ ≥ 1

neighbours of i, otherwise N t
i is constant in a neighbor of x and uniqueness holds. Since (i, j, k) is the unique

index for which x ∈ Mijk, we indeed have that max`∈Nt
i (x) ‖xi − x`‖ is achieved exactly for indexes j and k.

Now, set Pi = N t
i (x) \ {j, k}, Pj = N t

j (x), Pk = N t
k(x). Define the following:

fm(x) =
∑
`∈Pm

a(‖x` − xm‖)(x` − xm) (25)

for m = i, j, k. Then a Krasovsky solution y(·) with y(0) = x, if differentiable at 0, satisfies:

ẏi(0) = fi(x) + αa(‖xj − xi‖)(xj − xi) + (1− α) a(‖xk − xi‖)(xk − xi),

for some α ∈ [0, 1], and:
ẏj(0) = fj(x), ẏk(0) = fk(x).

Recall the definition of the function θijk given in (21). If θijk computed along y(·) is differentiable at 0, then:

θ̇ijk(0) = C(x) + 2αa(‖xi − xj‖) (xj − xi) · (xk − xj) + 2(1− α) a(‖xi − xj‖) (xk − xi) · (xk − xj) (26)

where we used ‖xi − xj‖2 = ‖xi − xk‖2 and

C(x) = 2(fi − fj) · (xi − xj)− 2(fi − fk) · (xi − xk). (27)

Define the stratified sets

M̂ijk = {x ∈Mijk : C(x) + 2 a(‖xi − xj‖) (xj − xi) · (xk − xj) = 0,

or C(x) + 2 a(‖xi − xj‖) (xk − xi) · (xk − xj) = 0},

and finally
M̂ =

Ä
∪ijkM̂ijk

ä⋃(
∪(i,j,k,i′,j′,k′)∈JMijki′j′k′

)
.

Notice that M̂ is of codimension 2, and we state the following claim:
Claim a) If x̃ ∈M\ M̂, then there exists ε > 0 such that x(t) /∈M for t ∈]t̃, t̃+ ε[, and x ≡ y on [0, t̃+ ε[ for
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every x(·), y(·) ∈ Xx̄.
To prove Claim a), let (i, j, k) ∈ I be the unique triplet such that x̃ ∈ Mijk. Assume j ∈ N t

i (x̃) or k ∈ N t
i (x̃),

otherwise the claim is obvious. The function θijk computed along x(·) satisfies θijk(t̃) = 0, is twice continuously
differentiable on [0, t̃[ with bounded derivatives, thus we can define ξ̃ := limt→t̃− θ̇ijk(t).
First assume ξ̃ > 0: then, there exists δ > 0 such that both θijk(t) < 0 and j ∈ N t

i (x(t)) on ]t̃ − δ, t̃[. Then,
possibly restricting δ > 0, on ]t̃− δ, t̃[ we have θ̇ijk(t) = C(x(t)) + 2 a(‖xi(t)− xj(t)‖) (xj(t)− xi(t)) · (xk(t)−
xj(t)) > 0 and ξ̃ = C(x̃) + 2 a(‖x̃i− x̃j‖) (x̃j − x̃i) · (x̃k− x̃j) > 0. Since x(·) is a Krasovsky solution, for almost
every time θ̇ijk(t) can be computed as in (26) for some α(t) ∈ [0, 1]. From (xk − xi) = (xk − xj) + (xj − xi),
we get (xk − xi) · (xk − xj) = (xj − xi) · (xk − xj) + ‖xk − xj‖2, thus θ̇ijk(t) > 0 for t sufficiently close to t̃.
This implies that there exists ε > 0 such that θijk > 0, j /∈ N t

i (x(t)) and k ∈ N t
i (x(t)) for t ∈]t̃, t̃ + ε[. Since

x̃ /∈ M̂, by possibly reducing ε, it holds x(t) /∈ M̂. In particular, all sets N t
` (x(t)) are constant for t ∈]t̃, t̃+ ε[.

Thus we conclude that Claim a) holds.
The case ξ̃ < 0 can be treated similarly, while the case ξ̃ = 0 is excluded since x̃ /∈ M̂ijk.

Now set:
t”M = inf{t : ∃x(·) ∈ Xx̄, x(t) ∈ M̂}, (28)

Claim a) ensures t”M ≤ tU , as uniqueness can be lost only when crossing M̂. Therefore, if x̄ ∈ A, then every
x(·) ∈ Xx̄ is Lipschitz continuous and coincides (at least) up to t”M. This implies that H1+ε({x(t) : t ∈
[0, t”M], x(·) ∈ Xx̄}) = 0 for every ε > 0, where Hr is the Hausdorff measure of dimension r in RnN . Since M̂
is of codimension 2, by Fubini Theorem, for 0 < ε < 1 we have:

HnN (A) ≤
∫”M (H1+ε({x(t) : t ∈ [0, t”M], x(·) ∈ Xx̄})

)
dHnN−2+ε(x̄) = 0.

The measure HnN coincides with the Lebesgue measure on RnN , thus A has zero Lebesgue measure.

4 Asymptotic behavior of solutions
We now study convergence to cluster points, i.e. Property P3). We first need to investigate the relationships
between cluster points and equilibria for Caratheodory and Krasovsky solutions to (2) and (3).

4.1 Equilibria and cluster points
We begin by recalling that cluster points are points x∞ = (x∞1 , . . . , x

∞
N ), x∞i ∈ Rn, such that for every i ∈ V ,

for every j ∈ Ni(x∞) it holds x∞i = x∞j . It is easy to prove that cluster points are Caratheodory equilibria for
both (2) and (3). One can ask whether all equilibria are cluster points: here, the metric and topological models
are completely different. For the metric bounded confidence model, all Krasovsky equilibria are indeed cluster
points (see [38, Prop. 7.1]). Instead, for the topological bounded confidence model, there exist equilibria that
are not cluster points, in the following cases:

• for κ > 1, for any kind of solutions, see Example 7;

• for Krasovsky solutions even with κ = 1, see Example 8.

Instead, Caratheodory equilibria for κ = 1 are all clusters, as proved in Proposition 10.

Example 7 (Non-convergence to clusters, topological κ ≥ 2). Let N = 7, n = 1, κ = 2, a ≡ 1 and consider
the point x with x2 = x4 = x5 = 0, x1 = 1

2 , x3 = x6 = x7 = 1. It can be easily computed that f t(x) = 0 and
therefore x is an equilibrium point with respect to classical, Caratheodory and Krasovsky solution. Moreover, it
is not a cluster point as there is just 1 < κ = 2 index with value 1

2 . We remark that x is not locally attractive
with respect to all types of solutions.

As equilibria correspond to constant solutions, this example also shows that solutions of the topological
bounded confidence model do not satisfy property P3), in general.

In the previous example we fixed κ = 2. For κ = 1, we will show that all classical and Caratheodory
equilibria are cluster points, as stated by the following proposition.
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Proposition 10 (Caratheodory equilibria, topological κ = 1). If κ = 1, Caratheodory equilibria of (3) are
cluster points.

Proof. As κ = 1, cluster points are such that agents can be divided in groups of at least two agents with the
same value. The i-th component of the vector field writes f ti (x) = a(‖xΓ(i)− xi‖)(xΓ(i)− xi), where Γ(i) is the
(state dependent) neighbor of i. Note that f ti (x) is null if and only if xΓ(i) = xi, as a(r) > 0 for r > 0. Then,
xi = xΓ(i) for all i ∈ V and x is a cluster point.

Krasovsky equilibria which are not cluster points appear even if κ = 1, as shown by the following example.
Their existence implies that, even if κ = 1, Krasovsky solutions do not necessarily converge to cluster points.

Example 8 (Non-convergence of Krasovsky to clusters, topological k = 1). We consider (3) with N = 5,
n = 1, κ = 1, a ≡ 1 and the initial condition x = (−1, 1, 0, 1,−1). Observe that x is a discontinuity point of
the vector field f t. Among the limit values of the vector field f t at x there are (0, 0,−1, 0, 0) and (0, 0, 1, 0, 0).
Then 0 ∈ Kf t(x) and x is a Krasovsky equilibrium which is not a cluster point.

4.2 P3) Convergence to cluster points
The following proposition summarizes our results about convergence to cluster points. The result is the best
possible one in terms of convergence to clusters, given the above counterexamples.

Proposition 11 (Convergence to cluster points). (i) Metric bounded confidence. For any Krasovsky
solution of (2), Property P3) holds.

(ii) Topological bounded confidence. If κ = 1, for any Caratheodory solution of (2), Property P3) holds.

The proof of (i) is given in [38, Prop. 7.1] and = is based on the observation that (2) can be written as a
gradient flow as follows. Define

Φij(r) =

®∫ r
0
a(s)s ds for r < 1∫ 1

0
a(s)s ds for r ≥ 1

and observe that, if ‖xi − xj‖ 6= 1, for every i 6= j, then

ẋi = −
∑
j 6=i

∇Φij(‖xi − xj‖).

This suggests to define the candidate Lyapunov function

V (x) =
∑
i,j 6=i

Φij(‖xi − xj‖),

which satisfies V̇ (x(t)) ≤ 0 for a.e. time and allows (despite being nonsmooth and non-proper) to establish an
ad-hoc convergence argument.

The proof of (ii) requires a slightly different reasoning. The special case of (piecewise) classical solutions
in dimension n = 1 was proved in [18] by exploiting the special structure of its induced graph G(x), which we
describe next.

Proposition 12 (Directed pseudoforest). If κ = 1, then for all n, for every x ∈ RnN , the interaction graph
G(x) of (3) is the union of weakly connected components, such that each component contains exactly one circuit
of length 2 and the two nodes of the circuit can be reached from all nodes of the component.

Proof. Let x be fixed and consider a connected component of G(x), called G′. We first prove that G′ has
exactly one circuit of length 2. Let M be the number of nodes of the connected component. As any node has
exactly one out-edge, the number of edges of the component is exactly M , then G′ contains one circuit (this
kind of graph is referred to as directed pseudoforest). Furthermore, we can observe that the nodes of the circuit
are reachable from any node in G′. As any node has an outgoing edge, starting from any node there exists an
infinite walk. As the number of nodes is finite, it must contain a circuit. This means that the walk contains
the nodes of the circuit.
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1 2 3 4 5 6

Figure 1: Example of weakly connected component of graph G(x), where N = 6, n = 1, κ = 1,
x = (0, 10, 19, 27, 28, 30).

2

3
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8

Figure 2: Example of weakly connected component of graph G(x) where N = 8, n = 2, κ = 1,
x = ((0, 0)(0, 1), (−1, 0), (0,−1), (1/2, 0), (1, 0), (1, 1), (1,−1)).

We now prove that any circuit cannot have length greater than 2. Assume by contradiction that there is a
circuit with length p > 2. Let i1, ..., ip be its nodes and i1 be the smallest index. Thanks to the definition of
neighbour, it must hold

‖xi1 − xi2‖ ≤ ‖xi1 − xi2‖ ≤ ... ≤ ‖xi1 − xip‖.

If ‖xi1 − xi2‖ < ‖xi1 − xip‖ then ip is the neighbour of i2 instead of i1, contradiction. Then it must hold
‖xi1 − xi2‖ = ‖xi1 − xi2‖ = ... = ‖xi1 − xip‖. In this case i1 should be the neighbour of all nodes i3, i4, ..., ip−1,
as it is the smallest index. Finally G′ has exactly one circuit: indeed, to connect two circuits there should be
a node with out-degree at least 2.

An interaction graph with the structure of G(x), if kept static, would guarantee convergence to consensus
for each connected component and, therefore, convergence to a cluster point. However, the graph G(x(t))
evolves with time in such a way that connected components can split and distinct connected components can
merge. The latter phenomenon is illustrated in the following example.

Example 9 (Merging components in Caratheodory solutions). Let N = 4, n = 1, κ = 1, a ≡ 1 and consider
the initial condition x = (−1, 0, 1, 1). Consider the Caratheodory solution x(t) = (1− te−t− 2e−t, 1− e−t, 1, 1).
Note that x(0) = x and x(t) that satisfies (3) at all t > 0 but not at t = 0. The graph G(x(0)) has two connected
components whose vertices are {1, 2} and {3, 4} whereas G(x(t)) is connected for all t > 0.

This counterexample prevents leveraging the topology of G(x) to prove (ii) for Caratheodory solutions. We
therefore resort to a Lyapunov-like argument, which is partly inspired by the one in [38] for metric interactions,
but will be valid for topological interactions in the case of κ = 1 only.

We introduce the integral function

I(r) :=

∫ r

0

a(s)s ds

and write the candidate Lyapunov function

W (x) :=
∑

i,j∈Nt
i (x)

I(‖xj − xi‖). (29)
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One might hope to write (3) as ẋ = −∇W (x), like in the metric case. This is false, as one can easily observe
that this expression entails interactions that are symmetric, while this is not the case for (3).

We will anyway be able to prove that W (x) is a Lyapunov function for solutions to (3). This is only the
case for κ = 1 and for Caratheodory solutions, but the proof is quite different from the case of metric bounded-
confidence (2), again due to the asymmetry of the interactions. Instead, W (x) is not a Lyapunov function,
neither for Caratheodory solutions with κ > 1 nor for Krasovsky solutions with κ ≥ 1, as shown by Examples
10 and 11 below.

Proposition 13 (W is Lyapunov). Let κ = 1. Then, the function W (x(t)) is continuous and non-increasing
for Caratheodory solutions.

Proof. The proof is based on rewriting W (x) =
∑N
i=1Wi(x) where

Wi(x) = min
j 6=i

I(‖xi − xj‖). (30)

It is clear that both I(r) and x(t) are continuous. Then, both allWi(x(t)) and their sumW (x(t)) are continuous
too. The rest of the proof is based on Danskin theorem1 [24] for Wi(x). Similarly to the proof of Proposition 6,
even though Wi(x) can be non-differentiable, it admits directional derivative with respect to any direction.
We apply it to our function, denoting the direction of displacement with h = (h1, . . . , hN ), where each hk is
the n-dimensional direction of displacement of the position of the agent k. By applying Danskin formula, the
directional derivative Dh along h is given by

DhWi(x) = min
j∈Ai(x)

N∑
k=1

hk · ∇xk
I(‖xi − xj‖) = min

j∈Ai(x)

∑
k∈{i,j}

hk · ∇xk
I(‖xi − xj‖)

= min
j∈Ai(x)

(hi · a(‖xi − xj‖)(xi − xj)− hj · a(‖xi − xk‖)(xi − xj))

= min
j∈Ai(x)

a(‖xi − xj‖)(hi − hj) · (xi − xj),

where Ai(x) is the set of indexes j 6= i realizing min I(‖xi − xj‖).
We now apply this formula to compute the time derivative Ẇi(x(t)), whenever it exists. Following the

same computations as for (14), we have Ẇi(x(t)) = Dẋ(t)Wi(x(t)). Since the time derivative ẋ(t) exists for
almost every time t ∈ (0, T ), this holds for Ẇi(x(t)) too. We compute this derivative, by restricting ourselves
to Caratheodory solutions, that satisfy ẋi = a(‖xi − xk‖)(xk − xi) for almost every time, with k ∈ N t

i (x).
Denote with L := ‖xi − xk‖ and with l the unique element l ∈ N t

k(x). Observe that l ∈ N t
k(x) implies

‖xl−xk‖ ≤ ‖xi−xk‖ = L, that in turn implies a(‖xl−xk‖) ≤ a(‖xi−xk‖) = a(L) and (xl−xk)·(xi−xk) ≥ −L2.
Since k ∈ Ai(x), and using previous estimates, it holds

Dẋ(t)Wi(x(t)) = min
j∈Ai(x)

a(‖xi − xj‖)(ẋi − ẋj) · (xi − xj) ≤ a(L)(ẋi − ẋk) · (xi − xk) = (31)

a(L) (a(‖xi − xk‖)(xk − xi) · (xi − xk)− a(‖xk − xl‖)(xl − xk) · (xi − xk)) ≤
−a(L)2L2 + a(L)2L2 = 0.

Since Wi(x(t)) is continuous, this implies that each Wi(x(t)) is non-increasing.
Passing to W (x(t)), that is a finite sum of continuous and non-increasing functions, the proof follows.

Example 10 (W (x(t)) increasing if κ > 1). We now prove that W (x) given in (29) is not a Lyapunov
function for (3) in the case κ > 1 for Caratheodory solutions (hence for Krasovsky solutions too). Consider
the following initial configuration of N = 8 agents on the real line with κ = 2 and a(r) ≡ 1: choose x̄ =
(−9,−9,−9,−2, 2, 9, 9, 9) and observe that the unique solution of (3) in the Krasovsky sense (that is even
classical and Caratheodory) is given by

ẋ1 = ẋ2 = ẋ3 = ẋ6 = ẋ7 = ẋ8 = 0

ẋ4 = (x5 − x4) + (x1 − x4)

ẋ5 = (x4 − x5) + (x6 − x5).

(32)

1In Danskin notation, we have F = F (x, j) = I(‖xi − xj‖) maximized with respect to j ∈ V \ {i}.
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By symmetries, it holds x4(t) = −x5(t), thus ẋ5 = 9 − 3x5. It then holds x5(t) = 3 − e−3t. Notice that the
topology does not change and the solution converges to the equilibrium point x∞ = (−9,−9,−9,−3, 3, 9, 9, 9)
which is not a cluster point. A direct computation gives

W (x(t)) = 1
2

(
(x1(t)− x4(t))2 + 2(x4(t)− x5(t))2 + (x5(t)− x6(t))2

)
= 4x2

5(t) + (9− x5(t))2, (33)

that satisfies Ẇ (x(t)) = (10x5(t)− 18)ẋ5(t) > 0 for all t ∈ [0,+∞).

Example 11 (W (x(t)) increasing for Krasovsky solutions). We now prove that W (x) given in (29) is not a
Lyapunov function for Krasovsky solutions with κ = 1. Consider the following initial configuration of N = 5
agents on the real line and a(r) ≡ 1: choose x̄ = (−1− y0,−1 + y0, 0, 1− y0, 1 + y0) with y0 ∈

(
0, 1

17

)
. Observe

that one of the solutions of (3) in the Krasovsky sense is¶
x1(t) = −1− y(t), x2(t) = −1 + y(t), x3(t) = 0, x4(t) = 1− y(t), x5(t) = 1 + y(t),

with y(t) = exp(−2t)y0. Indeed, for all t > 0 this solution satisfies

ẋ =
1

2
(x2 − x1, x1 − x2, x4, x5 − x4, x4 − x5) +

1

2
(x2 − x1, x1 − x2, x2, x5 − x4, x4 − x5)

= (2y(t),−2y(t), 0, 2y(t),−2y(t)) .

A direct computation gives

2W (x(t)) = 2(x1(t)− x2(t))2 + (x3(t)− x2(t))2 + 2(x4(t)− x5(t))2 =

4(2y(t))2 + (1− y(t))2 = 1− 2y(t) + 17y(t)2.

Its derivative is 4y(t) − 17 · 4y(t)2, that is positive for y(t) ∈
(
0, 1

17

)
. This holds whenever y0 ∈

(
0, 1

17

)
. As a

consequence, W (x(t)) is strictly increasing.

We are now ready to describe the structure of the limits of Caratheodory solutions of (3) with κ = 1, that
are indeed clusters.

Proposition 14 (Convergence and cluster properties, topological κ = 1). Let x1(t), . . . , xN (t) be a Caratheodory
solution of (3) with κ = 1. Then, the following clustering properties hold:

• each agent satisfies limt→+∞ xi(t) = x∞i for some x∞i ∈ Rn;

• for each i ∈ V there exists at least one j 6= i such that x∞i = x∞j .

This also implies that P3) holds and W (x∞) = 0.

Proof. First recall that x(t) is bounded, due to contractivity of the support proved in Proposition 6. This
implies that a(‖xi(t) − xj(t)‖) is bounded too, as a(r) is Lipschitz continuous by hypothesis. This in turn
implies that both x(t) and a(‖xi(t)− xj(t)‖) are Lipschitz continuous too. Boundedness also implies that the
ω-limit is bounded.

Fix now any x∗ = (x1, . . . , xN ) in the ω-limit of x(t). By definition, there exists a sequence tk → +∞ such
that x(tk)→ x∗. Fix ε > 0 and K = Kε sufficiently large to have

‖((xi(tk)− xj(tk)) · (xl(tk)− xm(tk)))− (x∗i − x∗j ) · (x∗l − x∗m)‖ < 2ε (34)

for all i, j, l,m ∈ V and k > Kε. Since trajectories are bounded and Lipschitz continuous, there exists a uniform
δ > 0 such that

‖((xi(tk + τ)− xj(tk + τ)) · (xl(tk + τ)− xm(tk + τ)))− (x∗i − x∗j ) · (x∗l − x∗m)‖ < ε (35)

for all τ ∈ (−N3Nδ,N3Nδ).
Fix now i = 1, recall (30) and consider the derivative

Dẋ(t)W1(x(t)) = min
j∈A1(x(t))

a(‖x1(t)− xj(t)‖)(ẋ1(t)− ẋj(t)) · (x1(t)− xj(t)), (36)
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whenever ẋ(t) is well-defined, i.e. for almost every t > 0. Since the number of nearest neighbours of x1 in A1(x)
is N − 1 at most, there exists at least one index jk1 such that jk1 is the minimizer in the right hand side of (36)
for all τ ∈ I1,a

k , where I1,a
k ⊂ (tk − N3Nδ, tk + N3Nδ) has Lebesgue measure 2N3N−1δ. Since the number of

possible jk1 is finite, eventually passing to a subsequence in k, we assume that jk1 = j1 is constant. By recalling
that Caratheodory solutions satisfy the dynamics (3) for almost every time, it holds

Dẋ(t)W1(x(t)) = a(‖x1(t)− xj1(t)‖)[a(‖x1(t)− xl(t)‖)(xl(t)− x1(t))

− a(‖xj1(t)− xm(t)‖)(xm(t)− xj1(t))] · (x1(t)− xj1(t)),

for almost every t ∈ I1,a
k , where l ∈ N t

1(x(t)) andm ∈ N t
j1

(x(t)). Again, since the number of possible neighbours
of 1 in N t

1(x(t)) is N − 1 at most, then there exists lk1 such that lk1 ∈ N t
1(x(t)) for all t ∈ I1,b

k where I1,b
k ⊂ I1,a

k

has Lebesgue measure 2N3N−2δ. By passing to a subsequence in k, we can assume l1 constant. With a similar
argument, we can find m1 and I1,c

k ⊂ I1,b
k with Lebesgue measure 2N3N−3δ such that m1 ∈ N t

j1
(x(t)) for all

t ∈ I1,c
k .

We now choose the index 2 and define the corresponding indexes j2, l2,m2 and sets I2,c ⊂ I2,b ⊂ I2,a
k ⊂ I1,c

k ,
each with Lebesgue measure being 1/N of the previous one. We then move to indexes 3, 4, . . . N , finally reaching
Ik := IN,ck with Lebesgue measure 2δ and such that, for each i ∈ V there exists corresponding ji, li,mi such
that for all τ ∈ Ik the following hold:

• the index ji is the minimizer in the right hand side of (36);

• the index li is the unique element of N t
i (x(τ));

• the index mi is the unique element of N t
ji

(x(τ)).

Fix now any i ∈ V and the corresponding ji, li,mi defined above. We now prove that it holds

Ai := a(‖x∗i − x∗ji‖)
[
a(‖x∗i − x∗li‖)(x

∗
li − x

∗
i ) · (x∗i − x∗ji)− a(‖x∗ji − x

∗
mi
‖)(x∗mi

− x∗ji) · (x
∗
i − x∗ji)

]
= 0. (37)

By contradiction, first assume that Ai > 0: then, observe that (37) coupled with (35), implies that there
exists k̄ such that Dẋ(τ)Wi(x(τ)) > Ai/2 for every τ ∈ Ik with k ≥ k̄. Since the set of such τ has non-zero
Lebesgue measure, this contradicts the fact that Wi(x(t)) is a non-increasing function.

Assume now Ai < 0 and use the same reasoning to prove that Dẋ(τ)Wi(x(τ)) < −|Ai|/2 for every τ ∈ Ik
with k ≥ k̄. Since for all times in (tk −N3Nδ, tk +N3Nδ) we have Wi(x(t)) non-increasing, we can write

Wi(x(tk +N3Nδ)) ≤ Wi(x(tk −N3Nδ)) +

∫
Ik

dτ Dẋ(τ)Wi(x(τ)) ≤Wi(x(tk −N3Nδ))− δ|Ai|. (38)

This implies limtk→+∞Wi(x(tk +N3Nδ)) = −∞. This contradicts the fact that Wi is bounded from below.
We have now proved (37).

We now prove that (37) ensures W (x∗) = 0. For each i ∈ V , recall the definition of corresponding indexes
ji, li,mi given above. For i = 1, condition (37) implies one of the following cases:

• Case 1A) the index j1 satisfies ‖x∗1 − x∗j1‖ = 0. This in turn implies that the only j ∈ N t
1(x∗) satisfies

‖x∗1 − x∗j‖ ≤ ‖x∗1 − x∗j1‖ = 0. This in turn implies a(‖x∗1 − x∗j‖) = 0, i.e. W1(x∗) = 0.

• Case 1B) the index j1 satisfies ‖x∗i − x∗j1‖ 6= 0. Observe that, by construction of j1, l1, it holds ‖xi(t)−
xj1(t)‖ = ‖xi(t)−xl1(t)‖, thus by continuity it holds ‖x∗i −x∗l1‖ = ‖x∗i −x∗j1‖ 6= 0. Moreover, the definition
of j in (36) implies that the following estimate holds

a(‖x1(tk)− xj1(tk)‖)[a(‖x1(tk)− xl1(tk)‖)(xl1(tk)− x1(tk)) (39)
− a(‖xj1(tk)− xm1

(tk)‖)(xm1
(tk)− xj1(tk))] · (x1(tk)− xj1(tk)) ≤

a(‖x1(tk)− xl1(tk)‖)[a(‖x1(tk)− xl1(tk)‖)(xl1(tk)− x1(tk))

− a(‖xl1(tk)− xll1 (tk)‖)(xll1 (tk)− xl1(tk))] · (x1(tk)− xl1(tk)) ≤ 0,
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where ll1 is the unique index in N t
l1

(x(tk)). The last inequality can be proved as in (31). The left hand
side of (39) converges to (37) as tk → +∞, thus it converges to zero. Then, the middle term converges
to zero too, i.e.

−a(‖x∗1 − x∗l1‖)‖x
∗
l1 − x

∗
1‖2 = a(‖x∗l1 − x

∗
ll1
‖)(x∗ll1 − x

∗
l1) · (x∗1 − x∗l1). (40)

Here we used the fact that a(‖x∗1 − x∗l1‖) 6= 0. Since ‖x∗1 − x∗l1‖ ≥ ‖x
∗
l1
− x∗ll1‖ by construction of ll1 and

a is non-decreasing, the only possibility for (40) to hold is to have ‖x∗l1 − x
∗
ll1
‖ = ‖x∗1 − x∗l1‖ 6= 0 and

(x∗ll1
− x∗l1) · (x∗1 − x∗l1) = −‖x∗l1 − x

∗
1‖2, i.e. x1, xl1 , xll1 being on the same line with xl1 as middle point.

This also implies that 1, l1, ll1 are all different indexes. We relabel l1, ll1 as indexes 2, l2, for simplicity of
notation.

We then apply the same idea to index 2 (either coming from relabeling or not), and we have the following cases:

• Case 2A) The index j2 satisfies ‖x∗2 − x∗j2‖ = 0. Since j2 ∈ A2(x(t)) for all t ∈ Ik and l2 is the unique
element of N t

2(x(t)), this implies

‖x2(t)− xl2(t)‖ = ‖x2(t)− xj2(t)‖,

thus ‖x∗2−x∗l2‖ = 0 by continuity. This implies that Case 1B) is not compatible with Case 2A): indeed,
(40) implies a(‖x∗1−x∗l1‖)‖x

∗
l1
−x∗1‖2 = 0, thus ‖x∗1−x∗l1‖ = 0 and, by continuity, it holds ‖x∗1−x∗j1‖ = 0.

• Case 2B) The index j2 satisfies ‖x∗2 − x∗j2‖ 6= 0. By following the reasoning of Case 1B), we find that
2, l2, ll2 are aligned, with l2 being the middle point. This implies that, if both Case 1B) and Case 2B)
hold, then 1, 2, l2, ll2 are aligned, each with the same distance with respect to the previous one. Like in
Case 1B), we also have that the four indexes are all distinct. This also allows to relabel l2, ll2 as 3, l3,
for simplicity of notation.

We now apply the same reasoning to all indexes i = 3, . . . , N either after relabeling (due to Case iB) or
not. By incompatibility between Case iB and Case (i+ 1)A, we have the following structure: we first have i
cases, that are Cases 1A-2A-...-iA, then N − i cases, that are Cases (i+ 1)B-...-NB. We prove that i = N ,
by contradiction. Observe that Cases (i+ 1)B-...-NB force us to have agents i+ 1, . . . , N, lN aligned on the
same line, each with the same distance with respect to the previous one. Since the number of agents is N ,
the agent lN is one among 1, . . . , N . By the alignment condition, it cannot be any of the agents i+ 1, . . . , N ,
hence Case lNA holds. By incompatibility of conditions described above, Case NB cannot hold. This raises
a contradiction. As a consequence, for each i ∈ V the Case iA is satisfied. This means that for each i ∈ V
there exists j 6= i such that x∗i = x∗j . This also implies Wi(x

∗) = 0. In particular, x∗ satisfies the second
statement of this proposition.

We are now left to prove that the ω-limit is reduced to a single point, i.e. that x∗ given above is x∞ in the
first statement of this proposition. Define the following equivalence relation: i ∼ j if x∗i = x∗j . Observe that
each class of equivalence [i]∼ is composed of at least two elements. We have two possibilities:

• There exists a single class of equivalence [i]∼. Then, for each ε > 0 there exists tk such that ‖xi(tk)−x∗i ‖ =
‖xi(tk)− x∗1‖ < ε. Since this holds for all indexes, then the support of the solution x(tk) is contained in
B(x∗1, ε). Since the support is non-increasing, due to Proposition 6, then the solution x(t) is contained in
B(x∗1, ε) for all t ≥ tk. Since this condition holds for all ε > 0, then xi(t)→ x∗1 = x∗i .

• There exist at least two classes of equivalence [i]∼ 6= [j]∼. Define the minimal distance between clusters
as 5λ := mini 6∼j ‖x∗i − x∗j‖, that satisfies λ > 0. By convergence of xi(tk) to x∗i , there exists k̄ sufficiently
large to have ‖xi(tk̄) − x∗i ‖ < λ for all i ∈ V . As a consequence, the following cluster separation
condition holds:

If i ∼ j, then it holds ‖xi(tk̄)− xj(tk̄)‖ < 2λ. If i 6∼ j, then it holds ‖xi(tk̄)− xj(tk̄)‖ > 3λ.

It is now easy to prove that, for all t ≥ tk̄, the same cluster separation condition holds too, since
interactions between agents of different clusters do not occur: the proof is similar to Proposition 6
and is omitted. As a consequence, each of the cluster acts as an independent system starting from
tk̄. In particular, we can apply Proposition 6 to each cluster independently: similarly to the previous
case, for each ε > 0 there exists k ≥ k̄ such that for each class of equivalence [i]∼ the support of
{xj(t) s.t. j ∈ [i]∼} is contained in B(x∗i , ε) for all t ≥ tk. By letting ε→ 0, we have xj(t)→ x∗i .
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In both cases, we have proved that the ω-limit of x(t) is reduced to x∗. Thus, by choosing x∞ = x∗ we have
that the statement is proved.

5 Future directions
In this paper we explored various concepts of solutions for discontinuous differential equations, motivated by
social dynamics models. In particular, we focused on the so-called bounded confidence models, where each agent
is interacting either with neighbors within a fixed distance (metric case) or with the κ closest ones (topological
case). As per the concepts of solutions we focused on Caratheodory and Krasovsky, after proving that the set
of Filippov solutions coincides with that of Krasovsky solutions for the considered models.

Existence of solutions and uniqueness for almost every initial datum are proved in Krasovsky and Caratheodory
sense for both models. We also explored properties of solutions such as preservation of the average, contrac-
tivity of support and convergence to cluster points. Contractivity of the support always holds true, the other
properties hold for the metric case (and both concepts of solutions), while they fail for the topological case
with the exception of convergence to cluster points that holds for Caratheodory solutions if κ = 1.

Future investigations may include:

• Exploring existence, uniqueness and properties of trajectories for other concepts of solutions, such as
limit of Euler or CLSS, stratified solutions and others [38];

• Studying the implications of our results to approximated solutions produced by numerical schemes;

• Considering the topological-metric case, where each agent interacts with the closest κ neighbors if they
are within a fixed distance;

• Extending the scope of our analysis to include dynamical models with other types of discontinuities, as
those generated by quantization [17] or hybrid setting [28].
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