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OBSTRUCTIONS TO EXTENSION OF WASSERSTEIN DISTANCES FOR VARIABLE

MASSES

LUCA LOMBARDINI AND FRANCESCO ROSSI

Abstract. We study the possibility of defining a distance on the whole space of measures, with the property
that the distance between two measures having the same mass is the Wasserstein distance, up to a scaling
factor. We prove that, under very weak and natural conditions, if the base space is unbounded, then the
scaling factor must be constant, independently of the mass. Moreover, no such distance can exist, if we
include the zero measure. Instead, we provide examples with non-constant scaling factors for the case of
bounded base spaces.

1. Introduction and main results

Wasserstein distances are crucial modern tools in mathematics, raising an enormous interest from the
community of mathematical analysis (see e.g. [1,3,17]). Their applications are also extremely varied, ranging
from crowd dynamics [6, 13], to economics [9, 12], to computer science [14].

Yet, Wasserstein distances have several limitations, the most apparent being that they are defined between
measures with the same mass only. This issue led to the definition of different possible generalizations of the
Wasserstein distance between measures with different masses. The first attempt in this direction, described
in [8], was related to the heat equation on a domain Ω with Dirichlet boundary condition, that clearly does
not preserve mass. A second attempt, see [7], was given by the so-called optimal partial transport problem:
given two measures µ, ν with different masses, one fixes a smaller mass and computes the Wasserstein distance
between optimal submeasures.

A third group of contributions, known under the name of generalized Wasserstein distance [15, 16], was
based on the optimization of a mixed Wasserstein-L1 cost, in which a part of the measure is transported
(with Wasserstein cost) and the remaining part is removed (with a L1 cost). This contribution was then
followed by several “generalizations of the generalization”, see [5, 10, 11].

One of the main drawbacks of the distances given above is that they do not coincide, in general, with
the standard Wasserstein distance when the two measures have the same mass. The only exception is
clearly the partial optimal transportation problem when one chooses to transport the whole mass. This
observation raises a natural question: is it possible to define a distance between measures of different masses,
that coincides with the Wasserstein distance in the case measures have the same mass?

Our main result provides a negative answer, under quite general hypotheses. We show that it is not
possible to extend the p-Wasserstein distance Wp to a distance function d defined on the whole space of
measures in R

n and satisfying the property

(1.1) d(µ1, µ2) = f(m)Wp

(µ1

m
,
µ2

m

)

,

whenever the mass |µ| :=
∫

Rn dµ satisfies |µ1| = |µ2| = m > 0.

More precisely, let Mc(R
n) be the space of non-negative measures in R

n having finite mass and compact
support andM∗

c(R
n) the space of measures with positive finite mass and compact support. Then, Mc(R

n) =
{0} ∪M∗

c(R
n), where 0 denotes the zero measure. Let also Pc(R

n) be the space of probability measures on
R

n, i.e. of mass 1, having compact support. We use the notation R>0 for the space of positive real numbers
(0,+∞), endowed with the Euclidean distance. We stress that, as sets, we can identify

(1.2) M∗
c(R

n) ≃ R>0 × Pc(R
n),
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via the bijection µ 7→ (|µ|, µ/|µ|).
We investigate the possibility of defining a distance function d on Mc(R

n) satisfying (1.1), i.e. with the
property that on each fiber {m} × Pc(R

n) the distance d coincides with the p-Wasserstein distance, up to a
multiplicative scaling factor depending on m > 0 only.

Our main result is a strong obstruction to a general definition of such a distance, as it provides a very
weak condition forcing the function f in (1.1) to be constant. Indeed, we have the following first result.

Theorem 1.1 (Unbounded space). Let p ∈ [1,+∞) and let dM : M∗
c(R

n) × M∗
c(R

n) → [0,+∞) be a
distance function satisfying the following two properties:

(i) there exists a function f : R>0 → R>0 such that

dM(mµ1,mµ2) = f(m)Wp(µ1, µ2),

for every m ∈ R>0 and every µ1, µ2 ∈ Pc(R
n).

(ii) There exists an unbounded subset Σ ⊆ R
n such that for every m0 ∈ R>0 there exist a radius r > 0

and a positive constant C > 0, both depending only on m0, with

(1.3) sup
x∈Σ

dM(m0δx,mδx) ≤ C

for every m ∈ (m0 − r,m0 + r), where δx is the Dirac delta centered at x.

Then, f ≡ λ, for some positive constant λ > 0.

As a consequence, it is not possible to extend such a distance to the whole space Mc(R
n), i.e. when the

zero measure is added.

Corollary 1.2 (Unbounded space with zero). Let dM be a distance function on M∗
c(R

n) as in Theorem
1.1. Then, there exists no distance function dM0

defined on Mc(R
n), which agrees with dM on M∗

c(R
n),

and such that either

(1.4) sup
x∈Σ

dM0
(0,m0δx) < +∞,

for some m0 ∈ R>0, or

(1.5) lim
mց0

dM0
(0,mµi) = 0,

at least for two different µ1 6= µ2 ∈ Pc(R
n).

A few observations are in order. First of all, simple examples of distance functions on M∗
c(R

n) satisfying
(1.1), with f constant, are given by the product metrics on the decomposed space (1.2), see Example 3.3
below. Roughly speaking, these distances measure separately the costs of changing mass and of transporting
two equal masses, then sum up the two costs.

We also stress that condition (1.3) is very weak. It is an assumption regarding only the point masses
located within Σ, and it represents the fact that the cost of “destroying” or “creating” mass, going from mδx
to m0δx, is uniformly bounded with respect to the position x ∈ Σ, locally around m0. Furthermore, we point
out that (1.3) is implied by other very natural conditions, like the invariance of dM with respect to isometries
together with the compatibility of dM with weak convergence when varying the mass, see Proposition 3.2
for the precise statement.

In Theorem 1.1 and Corollary 1.2, the specific properties of the p-Wasserstein distance actually play no
role, except for the fact that Wp is unbounded on M∗

c(R
n)—and in particular on the subset consisting of

Dirac measures with base points belonging to Σ, an unbounded subset of Rn. As a consequence, Theorem
1.1 and Corollary 1.2 can be extended to much more general settings: in place of Rn we can consider a Polish
space (X, dX) and in place of the Wasserstein distance Wp we can consider any distance function dP defined
on the space of compactly supported probability measures Pc(X).

If dP is unbounded, we can then translate Theorem 1.1 to this setting in a straightforward way: in
point (ii) simply consider a subset S ⊆ Pc(X) which is unbounded with respect to dP , in place of the set
{δx : x ∈ Σ}.

On the contrary, if dP is bounded—e.g., if dP is the bounded Lipschitz distance in Pc(R
n) (see, e.g., [16,18])

or if dP is the p-Wasserstein distance in Pc(X), when (X, dX) is bounded—the picture is completely different.
2



Proposition 1.3 (Bounded space). Let (X, dX) be a Polish space and let dP : Pc(X) × Pc(X) → [0,+∞)
be a bounded distance function. Let f : R>0 → R>0 be a Lipschitz, increasing, function such that

sup
m1,m2∈R>0

m1 6=m2

|f(m1)− f(m2)|

|m1 −m2|
≤

1

diamPc(X)
and lim

mց0
f(m) = 0.

Then, the function dM0
: Mc(X)×Mc(X) → [0,+∞) defined by setting

dM0
(m1µ1,m2µ2) := |m1 −m2|+min{f(m1), f(m2)}dP(µ1, µ2),

for every m1,m2 ∈ R>0 and µ1, µ2 ∈ Pc(X), and

dM0
(0,mµ) = dM0

(mµ, 0) := m, dM0
(0, 0) := 0,

is a distance function on Mc(X).

Clearly, the distance function dM0
defined in Proposition 1.3 is such that

dM0
(mµ1,mµ2) = f(m)dP (µ1, µ2),

for every m ∈ R>0 and every µ1, µ2 ∈ Pc(X). Moreover,

sup
µ∈Pc(X)

dM0
(m1µ,m2µ) = |m1 −m2|,

for every m1,m2 ∈ [0,+∞), which is a stronger property than assumption (ii) of Theorem 1.1, and also
implies (1.5) for every µ ∈ Pc(R

n).
The rest of the paper is organized as follows. In Section 2, we first prove some general results about

distance functions defined on the direct product of two metric spaces. Then, in Section 2.1, we exploit
these results to prove our main theorems, stated here above in Section 1. In Section 3 we prove some further
results, which are natural consequences of Theorem 1.1, and we provide some examples of meaningful distance
functions defined on M∗

c(R
n).

2. Metrics on product spaces

We begin with the following result, which is a generalization of Theorem 1.1 to product spacesM = X×Y .

Theorem 2.1. Let (X, dX) and (Y, dY ) be two metric spaces, and let M := X × Y be equipped with a
distance function dM : M ×M → [0,+∞) satisfying the following two properties:

(i) there exists a function f : X → (0,+∞) such that

(2.1) dM ((x, y1), (x, y2)) = f(x)dY (y1, y2),

for every x ∈ X and every y1, y2 ∈ Y .
(ii) For every x0 ∈ X there exist a radius r > 0 and a positive constant C > 0, both depending only on

x0, such that

(2.2) sup
y∈Y

dM ((x0, y), (x, y)) ≤ C

for every x ∈ BX
r (x0).

If X is connected and diamY = +∞, then f ≡ λ, for some positive constant λ > 0.

Proof. Fix x0 ∈ X and let r and C be as in point (ii). Notice that by (2.2) and the triangle inequality of
dM we have

sup
y∈Y

dM ((x1, y), (x2, y)) ≤ 2C,

for every x1, x2 ∈ BX
r (x0). Thus, exploiting again the triangle inequality of dM and also (2.1), we obtain

f(x1)dY (y1, y2) = dM ((x1, y1), (x1, y2))

≤ dM ((x1, y1), (x2, y1)) + dM ((x2, y1), (x2, y2)) + dM ((x2, y2), (x1, y2))

≤ 4C + f(x2)dY (y1, y2),

for every x1, x2 ∈ BX
r (x0) and every y1, y2 ∈ Y . This implies that

|f(x1)− f(x2)|dY (y1, y2) ≤ 4C,
3



and hence

sup
x1,x2∈BX

r (x0)

|f(x1)− f(x2)| ≤
4C

diamY
.

In particular, if diamY = +∞ then f must be constant in BX
r (x0), hence it is locally constant in X .

Therefore, if we also assume X to be connected we conclude that f is globally constant, as claimed. �

An example of such a distance function is given by

dM ((x1, y1), (x2, y2)) := dX(x1, x2) + λdY (y1, y2),

for any fixed λ > 0.

Remark 2.2. On the other hand, if diamY < +∞, then we can easily find distances on M satisfying points
(i) and (ii) of Theorem 2.1, with f not constant. For example, let f : X → R>0 be such that

M := sup
x∈X

f(x) < +∞.

Then, the function

dM ((x1, y1), (x2, y2)) :=

{

f(x1)dY (y1, y2) if x1 = x2,
M diamY if x1 6= x2,

is such a distance function.

We now restrict our attention to the case in which (X, dX) = R>0.

Proposition 2.3. Let (Y, dY ) be a metric space with diamY < +∞ and let f : R>0 → R>0 be a Lipschitz,
increasing, function such that

(2.3) sup
x1,x2∈R>0

x1 6=x2

|f(x1)− f(x2)|

|x1 − x2|
≤

1

diamY
.

Then, the function

dM ((x1, y1), (x2, y2)) := |x1 − x2|+min{f(x1), f(x2)}dY (y1, y2),

is a distance function on M := R>0 × Y satisfying point (i) of Theorem 2.1 and

(ii’) for every x0 ∈ R>0 there exists a radius r > 0 and a positive constant C > 0, both depending only
on x0, such that

sup
y∈Y

dM ((x1, y), (x2, y)) ≤ C|x1 − x2|,

for every x1, x2 ∈ (x0 − r, x0 + r)—which is more restrictive than point (ii) of Theorem 2.1.

Proof. We only need to verify that dM satisfies the triangle inequality. By symmetry we can assume without
loss of generality that x1 ≤ x2, so that

dM ((x1, y1), (x2, y2)) = x2 − x1 + f(x1)dY (y1, y2).

Let us now consider a third point (x3, y3) ∈ M . If x3 ≥ x1, then

f(x1) ≤ min{f(x1), f(x3)} and f(x1) ≤ min{f(x2), f(x3)},

hence, exploiting also the triangle inequality of | · | and dY , we have

dM ((x1, y1), (x2, y2)) = x2 − x1 + f(x1)dY (y1, y2)

≤ x3 − x1 + |x2 − x3|+ f(x1)dY (y1, y3) + f(x1)dY (y2, y3)

≤ x3 − x1 +min{f(x1), f(x3)}dY (y1, y3) + |x2 − x3|+min{f(x2), f(x3)}dY (y2, y3)

= dM ((x1, y1), (x3, y3)) + dM ((x2, y2), (x3, y3)).

Suppose now that x3 < x1, so that

dM ((x1, y1), (x3, y3)) = x1 − x3 + f(x3)dY (y1, y3),

and
dM ((x2, y2), (x3, y3)) = x2 − x3 + f(x3)dY (y2, y3).

4



Therefore the triangle inequality is equivalent to

(2.4) f(x1)dY (y1, y2)− f(x3)
(

dY (y1, y3) + dY (y2, y3)
)

≤ 2(x1 − x3).

Notice that by the triangle inequality of dY we have

−f(x3)
(

dY (y1, y3) + dY (y2, y3)
)

≤ −f(x3)dY (y1, y2).

Thus, by exploiting also assumption (2.3), we obtain

f(x1)dY (y1, y2)− f(x3)
(

dY (y1, y3) + dY (y2, y3)
)

≤
(

f(x1)− f(x3)
)

dY (y1, y2)

≤
x1 − x3

diamY
diamY,

establishing (2.4) and concluding the proof of the Proposition. �

Corollary 2.4. Let (Y, dY ) be a metric space, M := R>0 × Y , and let M0 := {0} ∪M be equipped with a
distance function dM0

: M0 ×M0 → [0,+∞) such that the restriction of dM0
to M satisfies points (i) and

(ii) of Theorem 2.1. If there exist at least two distinct points p1 6= p2 ∈ Y such that

(2.5) lim
x→0

dM0
(0, (x, pi)) = 0 for i = 1, 2,

then diamY < +∞.

Proof. We argue by contradiction and we assume that diamY = +∞. Then, by Theorem 2.1 we know that

dM0
((x, y1), (x, y2)) = λdY (y1, y2),

for every x ∈ R>0 and every y1, y2 ∈ Y , for some fixed constant λ > 0. Let xk ց 0. Then, by (2.5) we have

0 < dY (p1, p2) =
1

λ
dM0

((xk, p1), (xk, p2))

≤
1

λ

(

dM0
((xk, p1), 0) + dM0

(0, (xk, p2))
) k→∞
−−−−→ 0,

giving a contradiction. �

Lemma 2.5. Let (Y, dY ) be a metric space, M := R>0 × Y , and let M0 := {0} ∪ M be equipped with a
distance function dM0

: M0 ×M0 → [0,+∞). Suppose that there exist x0 ∈ R>0 and λ0 > 0 such that

dM0
((x0, y1), (x0, y2)) = λ0dY (y1, y2),

for every y1, y2 ∈ Y , and

Λ := sup
y∈Y

dM0
((x0, y), 0) < +∞.

Then diamY < +∞.

Proof. It is enough to notice that by the triangle inequality we have

dY (y1, y2) =
1

λ0
dM0

((x0, y1), (x0, y2)) ≤
1

λ0

(

dM0
((x0, y1), 0) + dM0

((x0, y2), 0)
)

,

for every y1, y2 ∈ Y . This implies that

diamY ≤
2Λ

λ0
,

concluding the proof. �

Remark 2.6. If diamY < +∞, then we can easily find many such distances dM0
on M0 = {0} ∪ R>0 × Y .

Indeed, let f : R>0 → R>0 be a Lipschitz, increasing, function such that

sup
x1,x2∈R>0

x1 6=x2

|f(x1)− f(x2)|

|x1 − x2|
≤

1

diamY
and lim

xց0
f(x) = 0.

Define the function dM0
: M0 ×M0 → [0,+∞) by setting

dM0
((x1, y1), (x2, y2)) := |x1 − x2|+min{f(x1), f(x2)}dY (y1, y2),

5



for every (x1, y1), (x2, y2) ∈ R>0 × Y and

dM0
(0, (x, y)) = dM0

((x, y), 0) := x, dM0
(0, 0) := 0.

Then, by arguing as in Proposition 2.3, we can easily verify that dM0
is a distance function on M0.

2.1. Proofs of the main results. We apply the results that we obtained in the previous Section to prove
Theorem 1.1, Corollary 1.2 and Proposition 1.3.

Proof of Theorem 1.1. We consider the metric space (Y, dY ) := (S,Wp), where S ⊆ Pc(R
n) is the subspace

given by
S := {δx : x ∈ Σ},

and the subspace
M := {mδx : x ∈ Σ,m > 0} ≃ R>0 × S ⊆ M∗

c(R
n).

Then, (M,dM) satisfies the hypothesis of Theorem 2.1. Since Wp(δx, δy) = |x− y| and Σ is unbounded, also
the space (Y, dY ) is not bounded. Thus, by Theorem 2.1 we conclude that f ≡ λ, as claimed. �

We observe that Corollary 1.2, with hypothesis (1.4), means that we cannot extend a distance function dM
as in Theorem 1.1 to a distance on the whole space Mc(R

n), while preserving the boundedness assumption
of point (ii) also around the zero measure. Similarly, such an extension is not possible under the very weak
continuity hypothesis (1.5)—which, roughly speaking, translates the fact that when we fix any probability
measure µ and we decrease its mass, considering mµ, with m ց 0, we expect to be “approaching” the zero
measure. This can be seen, e.g., as a compatibility of dM0

with the weak convergence mµ ⇀ 0 as m ց 0. A
related result is given in Proposition 3.1, assuming invariance of the distance with respect to isometries.

Proof of Corollary 1.2. The claims of the Corollary follow by Lemma 2.5 and by arguing as in the proof of
Corollary 2.4. �

Proof of Proposition 1.3. The proof follows from Proposition 2.3 and Remark 2.6. �

3. Further results and examples

In this Section, we discuss other obstructions to the extension of the Wasserstein distances to general
measures, based on invariance with respect to isometries.

We prove that there exists no distance function on Mc(R
n) which is invariant with respect to isometries

and which satisfies (1.1) even on a single fiber {m0} × Pc(R
n). More precisely:

Proposition 3.1 (Unbounded space with zero, isometries invariance). Let p ∈ [1,+∞). There exists no
distance function d on Mc(R

n) such that

d(µ1, µ2) = λ0Wp

( µ1

m0
,
µ2

m0

)

,

whenever |µ1| = |µ2| = m0, for some m0 ∈ R>0 and λ0 > 0, and which is invariant with respect to the
isometries of Rn, i.e.

(3.1) d(T#µ1, T#µ2) = d(µ1, µ2)

for every isometry T : Rn → R
n and for every µ1, µ2 ∈ Mc(R

n).

Proof. Notice that for every x ∈ R
n the function τx : Rn → R

n defined by τx(y) := y+ x is an isometry, and
δx = τx#δ0. By (3.1) we thus obtain

d(m0δx, 0) = d(m0τx#δ0, τx#0) = d(τx#(m0δ0), τx#0) = d(m0δ0, 0),

for every x ∈ R
n. The conclusion then follows from Lemma 2.5, by considering (Y, dY ) = (S,Wp), with

S := {δx : x ∈ R
n}, which is not bounded, and dM0

= d on M0 := {0} ∪ R>0 × S ⊆ Mc(R
n). �

Once again, in Proposition 3.1 the obstruction to the existence of such a distance function d is given by
the combination of the presence of the zero measure with the unboundedness of Wp. On a related note,
we also observe that hypothesis (ii) in Theorem 1.1 is weaker than the combination of other very natural
assumptions, like the invariance with respect to isometries and the compatibility with weak convergence
when varying the mass. Thus, we obtain the following:

6



Proposition 3.2 (Unbounded space, isometries invariance). Let p ∈ [1,+∞) and let dM : M∗
c(R

n) ×
M∗

c(R
n) → [0,+∞) be a distance function such that

dM(mµ1,mµ2) = f(m)Wp(µ1, µ2),

for every m ∈ R>0 and every µ1, µ2 ∈ Pc(R
n), for some function f : R>0 → R>0. Suppose that dM is

invariant with respect to the isometries of Rn, i.e.

(3.2) dM(T#µ1, T#µ2) = dM(µ1, µ2)

for every isometry T : Rn → R
n and for every µ1, µ2 ∈ M∗

c(R
n). Assume moreover that

(3.3) lim
|m−m0|→0

dM(mµ,m0µ) = 0,

for every m0 ∈ R>0 and every µ ∈ Pc(R
n). Then, f ≡ λ, for some λ > 0.

Proof. Fix any m0 ∈ R>0. By the continuity hypothesis in (3.3), we know in particular that there exists
r > 0, depending only on m0, such that

dM(mδ0,m0δ0) ≤ 1,

for every m ∈ (m0 − r,m0 + r). Moreover, exploiting the isometric invariance (3.3) and arguing as in the
proof of Proposition 3.1, we have

dM(mδx,m0δx) = dM(mτx#δ0,m0τx#δ0) = dM(τx#(mδ0), τx#(m0δ0))

= dM(mδ0,m0δ0),

for every x ∈ R
n. Therefore, dM satisfies hypothesis (ii) in Theorem 1.1, with Σ = R

n, and the conclusion
follows. �

3.1. Examples. The simplest examples of distance functions defined on M∗
c(R

n) which satisfy (1.1) (with
f constant) are given by product metrics. Indeed, if d is any distance function on (0,+∞), then

dM(µ1, µ2) :=

√

d2(|µ1|, |µ2|) + λ2W 2
p

( µ1

|µ1|
,
µ2

|µ2|

)

,

is such a distance function. Of particular interest are the cases given in Example 3.3 and Example 3.4 here
below, which also satisfy the boundedness condition (1.3).

Example 3.3. Let q ∈ [1,+∞) and define

dM,q(µ1, µ2) :=

(

∣

∣|µ1| − |µ2|
∣

∣

q
+ λqW q

p

( µ1

|µ1|
,
µ2

|µ2|

)

)
1

q

,

and also

dM,∞(µ1, µ2) := max

{

∣

∣|µ1| − |µ2|
∣

∣, λWp

( µ1

|µ1|
,
µ2

|µ2|

)

}

,

for every µ1, µ2 ∈ M∗
c(R

n). Then, dM,q is a distance function on M∗
c(R

n) satisfying points (i) and (ii) of
Theorem 1.1, for every q ∈ [1,+∞]. Actually, each dM,q is such that

sup
µ∈Pc(Rn)

dM,q(m0µ,mµ) = |m0 −m|,

for every m,m0 ∈ R>0, which is more restrictive than point (ii).

Example 3.4. Let d be a bounded distance function on (0,+∞), with d(m1,m2) ≤ Cd for every m1,m2 ∈
(0,+∞). Then,

dM(µ1, µ2) := d(|µ1|, |µ2|) + λWp

( µ1

|µ1|
,
µ2

|µ2|

)

,

is a distance function on M∗
c(R

n), satisfying point (i) of Theorem 1.1 and the global boundedness property

sup
µ∈Pc(Rn)

dM(m0µ,mµ) ≤ Cd,

7



for every m0,m ∈ (0,+∞), which is clearly stronger than point (ii). In particular, by considering as d
the discrete metric on (0,+∞), we obtain an example of distance function dM for which we do not have
continuity in the mass, in the sense that

lim
|m−m0|→0

dM(m0µ,mµ) = 0,

does not hold true for any µ ∈ Pc(R
n).

Other less trivial examples can be obtained as the so-called warped product metrics, by exploiting the
fact that (Pc(R

n),Wp) is a geodesic space, see [17].

Example 3.5 (Warped products). Let dM,2 be the product metric on M∗
c(R

n) defined in Example 3.3.
Given a Lipschitz continuous curve γ : I → (M∗

c(R
n), dM,2), where I := [0, 1] ⊆ R, we denote by mγ : I →

R>0 and ργ : I → (Pc(R
n),Wp) its projections, defined respectively as

mγ(t) := |γ(t)| and ργ(t) :=
γ(t)

|γ(t)|
,

which are Lipschitz continuous curves. Let Γ denote the set of all such curves. Given a continuous function
g : (Pc(R

n),Wp) → R>0, we define the warped product metric, with warping function g, as

dM,g(µ1, µ2) := inf
γ∈Γ

γ(0)=µ1,γ(1)=µ2

∫

I

√

g2(ργ(t))|m′
γ(t)|

2 + |ρ′γ(t)|
2 dt.

Here above we have denoted, with a slight abuse of notation,

|ρ′γ(t)| := lim
s→0

Wp(ργ(t), ργ(t+ s))

|s|
,

which exists for almost every t ∈ I, since ργ is Lipschitz, see, e.g., [2, Theorem 2.7.6]. This definition can
be found, e.g., in [2, Section 3.6.4], and it is easy to check that it coincides with the one given in [4, Section
3.1]. By [4, Proposition 3.1], dM,g is a distance function on M∗

c(R
n), and, by [4, Lemma 3.2], it satisfies

(1.1), as indeed

(3.4) dM,g(µ1, µ2) = Wp

( µ1

|µ1|
,
µ2

|µ2|

)

,

for every µ1, µ2 ∈ M∗
c(R

n) such that |µ1| = |µ2|. It is easy to find examples of warping functions g for which
the corresponding distance dM,g does not satisfy point (ii) of Theorem 1.1, such as g(µ) := 1 +Wp(µ, δ0).
Similarly, if we consider the warping function

g(µ) := 1 + inf
x∈Rn

Wp(µ, δx),

then, dM,g satisfies point (ii) of Theorem 1.1, with Σ = R
n. However, since we can find a sequence

{µk}k∈N ⊆ Pc(R
n) such that g(µk) ≥ k for every k, it is easy to verify that (1.3) does not hold on the whole

of Pc(R
n). That is, there exist no m0, r, C > 0 for which

sup
µ∈Pc(Rn)

dM,g(m0µ,mµ) ≤ C,

for every m ∈ (m0 − r,m0 + r).
Furthermore, we observe that for every choice of warping function g, the distance dM,g is compatible with

weak convergence when varying the mass, as indeed

dM,g(m0µ,mµ) ≤ g(µ)|m−m0|,

for every µ ∈ Pc(R
n). Nevertheless, since (3.4) holds true, by arguing as in the proof of Corollary 2.4 we

see that no such distance can be extended to a distance d defined on the whole of Mc(R
n) and with the

property that

lim
mց0

d(0,mµi) = 0,

for at least two different µ1 6= µ2 ∈ Pc(R
n).
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