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VANISHING VISCOSITY FOR LINEAR-QUADRATIC MEAN-FIELD

CONTROL PROBLEMS

GENNARO CIAMPA AND FRANCESCO ROSSI

Abstract. We consider a mean-field control problem with linear dynamics and quadratic control.
We apply the vanishing viscosity method: we add a (regularizing) heat diffusion with a small
viscosity coefficient and let such coefficient go to zero. The main result is that, in this case, the
limit optimal control is exactly the optimal control of the original problem.

1. Introduction

Linear-Quadratic problems (LQ from now on) for finite-dimensional systems are the easiest non-
trivial examples in optimal control, see [16]. Their use in control theory is ubiquitous, in particular
as the simplest stabilizers around a nominal trajectory. Thus, any optimal control theory for a new
class of systems should confront itself with LQ problems. This article aims to define and solve LQ
problems for deterministic mean-field control systems.

Mean-field equations are the natural limit of a large number N of interacting particles when N

tends to infinity. The state of the system is then a density or, more in general, a measure. We
can apply a control, that is an external vector field, to steer the system to a desired configuration
or, as in our case, to optimize some cost. The resulting dynamics is called a mean-field control

problem. See a general treatement of these problems in [2, 3].
Mean-field control problems are intimately related to mean-field games, as clearly explained in

[2]. We recall that mean-field games (first introduced in [8, 12]) describe the limit of a large num-
ber of interacting particles in which each particle optimizes a personal cost, in the spirit of Nash
differential games. Instead, in mean-field control an (external) controller aims to minimize a global
cost for the whole population. In this sense, our contribution aims to provide one more theoretical
tool (the vanishing viscosity method) to the study of mean-field control problems. We will focus on
LQ models: for mean-field games, they were first studied in [9], where they are called LQG systems
(G stands for Gaussian noise).

In this article, we study two deeply connected mean-field control problems. The first corresponds
to the mean-field of a deterministic ordinary differential equation, that is a continuity equation for
the measure. Its expression is

∂tµt + div(b(t, x, µt, u)µt) = 0, (1.1)

where µt is a time-dependent measure and b(t, x, µt, u) is a vector field, depending on time, space,
the measure itself, and the control u. The second mean-field control equation is instead the mean-
field of a stochastic ordinary differential equation with additive Brownian motion

√
2εWt, that is

an advection-diffusion equation. Its explicit expression is very similar, as it is

∂tµt + div(b(t, x, µt, u)µt) = ε∆µt, (1.2)

where ε∆µt represents the heat diffusion. It is natural to ask if solutions of (1.2) converge to (1.1)
when ε → 0, i.e. when passing from the probabilistic to the deterministic mean-field problem. Such
limit is known as the vanishing viscosity method. It is not hard to prove that we have convergence
for a given fixed control u, see Lemma 10 below.

We now couple the (deterministic or probabilistic) dynamics for the measure µt with a given
running+final cost

J(µ, u) =

∫ T

0

∫

Rd

f(t, x, µt, u) dµt dt+

∫

Rd

g(x, µT ) dµT . (1.3)
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We then have two optimal controls: on one side, the minimizer u of the deterministic optimal
control problem coupling (1.1) and (1.3); on the other side, the family of minimizers uε of the
probabilistic optimal controls coupling (1.2) and (1.3), indexed by ε > 0. In this case, one can
again ask the following questions related to vanishing viscosity:

• Do we have convergence of optimal controls uε → u?
• Do we have convergence of optimal trajectories µε

t → µt?
• Do we have convergence of costs J(µε, uε) → J(µ, u)?

Such questions do not have a general answer. Our main result (Theorem 1) states that, if the
dynamics is linear and the cost is quadratic, all answers are positive.

The structure of the article is the following. We first fix notation in Section 1.1. In Section 2 we
define the deterministic and probabilistic problems (P), (Pε) and state our main result. We then
study the probabilistic problem (Pε) in Section 4. In Section 5 we prove the main result, that is
convergence of the solution of (Pε) to the one of (P). We draw some conclusions in Section 6.

1.1. Notation. We denote with x′, (M ′) the transpose of the vector x (matrix M). We write that
a matrix Q satisfies Q > 0, Q ≥ 0 when it is positive definite (resp. semi-definite).

We will work on the Euclidean space R
d and we denote by P(Rd) the space of probability

measures on R
d. The set P2(R

d) will be the subset of the probability measures with finite second
moment, that is of measures µ satisfying

∫

Rd

|x|2 dµ < ∞.

We will mostly focus on the subspace of absolutely continuous measures with compact support
Pac
c (Rd). We denote with µ̄ the barycenter of the measure µ, that is defined as

µ̄ :=

∫

Rd

ξ µ( dξ).

We also denote with µn
∗
⇀ µ the standard weak-∗ convergence of measures. We recall that it

means the following:

∀ϕ ∈ C∞
c (Rd) it holds

∫

Rd

ϕdµn →
∫

Rd

ϕdµ.

Finally, we denote the space of Lipschitz functions as

Lip(Rd) :=
{

f : Rd → R
d | ∃L > 0 s.t. ∀x, y ∈ R

d |f(x)− f(y)| ≤ L|x− y|
}

.

2. Problem statement

In this article, we consider two LQ mean-field control problems. This means that:

• the dynamics is linear, i.e. the vector field is of the form

b(t, x, µ, u) = A(t)x+B(t)u+ Ā(t)µ̄t, (2.1)

• the cost is quadratic, i.e the cost J(µ, u) defined in (1.3) is of the form

f(t, x, µ, u) =
1

2
[x′Q(t)x+ u′R(t)u+ (x− S(t)µ̄t)

′Q̄(t)(x− S(t)µ̄t)], (2.2)

g(x, µ) =
1

2

[

x′QTx+ (x− ST µ̄T )
′Q̄T (x− ST µ̄T )

]

, (2.3)

Here, all operators A(t), B(t), Ā(t), Q(t), R(t), S(t), Q̄(t), QT , ST , Q̄T are linear operators Rd →
R
d, i.e. square matrices. The first 7 of them are continuous functions of time, defined for all

t ∈ [0, T ]. We will often omit the dependence of the matrices on time, for simplicity of notation.

Remark 1. It is interesting to observe that both the dynamics b and the cost J(µ, u) contains terms
depending on the barycenter µ̄t of the state. Such choice is given by the following fact, see [2]: in
mean-field control problems, it is interesting to steer the state measure either towards its barycenter
or far from it (i.e concentrate or dissipate the population).
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We will assume standard symmetry and positive-definiteness of matrices from now on. We also
need to add two conditions related to the barycenter terms. They are summarized here:

(M)

• Running cost: for all t ∈ [0, T ], the matrices Q(t), Q̄(t), R(t) are symmetric
with Q(t), Q̄(t) ≥ 0 and R(t) > 0.

• Barycenter in the running cost: for all t ∈ [0, T ] it holds

Q(t) + (I − S(t))′Q̄(t)(I − S(t)) ≥ 0. (2.4)

• Final cost: it holds QT , Q̄T symmetric, both satisfying QT , Q̄T ≥ 0.
• Barycenter in the final cost: it holds

QT + (I − ST )
′Q̄T (I − ST ) ≥ 0. (2.5)

Observe that matrices (2.4)-(2.5) are symmetric by definition.

We are now ready to define the deterministic problem (P):

Problem (P)

Find
min
u∈U

J(µt, u),

such that µt ∈ C([0, T ];P2(R
d)) is a solution of

{

∂tµt + div(b(t, x, µt, u)µt) = 0,

µt|t=0 = µ0.
(2.6)

The cost J(µ, u) is quadratic, given by (1.3), (2.2), (2.3) and the matrices satisfy
(M). The dynamics is linear, given by (2.1). The initial state satisfies µ0 ∈ Pac

c (Rd).
The set of admissible controls is

U := L1((0, T ); Lip(Rd)).

The probabilistic (or viscous) problem is very similar:

Problem (Pε)

Take (P) and replace the dynamics (2.6) with

{

∂tµt + div(b(t, x, µt, u)µt) = ε∆µt,

µt|t=0 = µ0.
(2.7)

As already stated above, the crucial difference between (P) and (Pε) is given by the presence
of a viscosity term ε∆µt. This corresponds to the fact that the underlying dynamics in (P) is

deterministic, while in (Pε) it is associated to an additive Brownian motion
√
2εWt. From the

mathematical point of view, the dynamics of (Pε) is easier to study than (P), as the viscosity term
(that is a heat diffusion) ensures stronger regularity of the solution. For this reason, it is classical
to study the regular viscous problem (Pε) and hope to pass to the limit to infer something on the
original deterministic problem (P). Such method, known as vanishing viscosity, can be traced back
to [10, 11, 14].
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Such more theoretical aspect also has an applied interest: indeed, regularity of the viscous
problem implies that standard numerical methods to solve it can be applied, then the deterministic
problem can be solved by convergence.

Our aim is then to apply the vanishing viscosity method to our problem: we study the conver-
gence of solutions of (Pε) to solutions of (P) for ε → 0. In the LQ setting, we have convergence, as
stated in our main result.

Theorem 1. Let (µ̂ε, ûε) be solutions of (Pε). Then, there exists a solution (µ̂, û) of (P) such that,
for ε → 0, it holds:

(i) ûε → û in U = L1((0, T );Lip(Rd));
(ii) µ̂ε → µ̂ in C([0, T ],P2(R

d));
(iii) J(µ̂ε, ûε) → J(µ̂, û).

The proof of the Theorem is given in Section 5.

Remark 2. One usually looks for admissible controls u ∈ L1((0, T );L1(Rd; dµt)) in (P) and
L1((0, T );L1(Rd; dµε

t)) in (Pε). This is indeed the minimum requirement in order to give a (weak)
meaning to equations (2.6) and (2.7). However, for our purposes it is not restrictive to search for
a Lipschitz optimal control for the following reasons:

• in (P), conditions (2.4)-(2.5) imply that the coercivity condition of [4] is satisfied; this
ensures that there exists at least one Lipschitz optimal control;

• we know a priori that even if in (Pε) we look for controls in the larger class L1((0, T );L1(Rd; dµε
t)),

the optimum is Lipschitz. See [6, Lemma 6.18] and the construction in Section IV.

Therefore, by restricting ourselves to Lipschitz controls, we have the advantage that equation (2.6)
is well-posed, see Theorem 2 below. Moreover, the functional spaces do not depend on the solutions
µt, µ

ε
t anymore.

3. Mean-field equations

In this section, we recall the main tools that allow to study mean-field equations. The most
relevant examples of such equations are the ones in which the vector field is given by a convolution,
i.e. of the form

∂tµt + div(V (µt ⋆ H)µt) = 0. (3.1)

Convolution indeed describes long-range interaction between particles. The mean-field limit of
several fundamental agent-based models have been described and studied, such as the limits of
bounded confidence models [5] or Cucker-Smale [7]. More in general, we study the following Cauchy
problem:

{

∂tµt + div(v[µt](t, ·)µt) = 0,

µt|t=0 = µ0,
(3.2)

where the vector field v[µ] : (0, T ) × R
d → R

d and the initial probability measure µ0 ∈ P(Rd)
are given. Observe that the vector field depends on the whole measure µ itself. It represents the
fact that the dynamics in a point of the density actually depends on the density elsewhere, due
to long-range interactions. The presence of such phenomenon, known as non-locality, requires to
develop a specific theory to ensure well-posedness of (3.2).

3.1. Well-posedness of the deterministic Cauchy problem. In this section, we study well-
posedness of (3.2). Such theory is based on Wasserstein distance, that we recall here.

Definition 3. Let µ, ν ∈ P2(R
d). We say that γ ∈ P(R2d) is a transport plan between µ and ν –

denoted by γ ∈ Π(µ, ν) – provided that γ(A × R
d) = µ(A) and γ(Rd × B) = ν(B) for any pair of

Borel sets A,B ⊂ R
d. Given two measures µ, ν ∈ P2(R

d), the Wasserstein distance between µ and
ν is given by

W 2
2 (µ, ν) = min

γ∈Π(µ,ν)

{
∫

Rd×Rd

|x− y|2 γ( dx, dy)
}

.
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Remark 4. The choice of the Wasserstein distance W2 is related to the fact that we deal with an
optimal control problem with quadratic cost.

We will consider the space P2(R
d) endowed with the Wasserstein distance W2 from now on. It

is remarkable to observe that the Wasserstein distance metrizes the weak-∗ topology of probability
measures. More precisely, it holds:

W2(µ, µn) → 0 ⇐⇒







µn
∗
⇀ µ,

∫

Rd

|x|2µn( dx) →
∫

Rd

|x|2µ( dx). (3.3)

We refer to [17] for an overview of Wasserstein spaces.
We are now ready to state the precise meaning of weak solution for (3.2) and the corresponding

result of existence and uniqueness, proved in [15].

Definition 5. A weak solution of (3.2) is a probability measure µt ∈ C([0, T ];P(Rd)) such that

d

dt

∫

Rd

ϕ(x)µt( dx) =

∫

Rd

v[µt](t, x) · ∇ϕ(x)µt( dx),

for all test functions ϕ ∈ C∞
c (Rd).

Theorem 2. Let v be uniformly Lipschitz with respect to the Wasserstein distance on P2(R
d) and

the Euclidean distance in R
d, i.e. there exists a constant L such that

|v[µ](t, x) − v[ν](t, y)| ≤ L (W2(µ, ν) + |x− y|) , (3.4)

for all t ∈ R, µ, ν ∈ P2(R
d), and x, y ∈ R

d. Then, for each µ0 ∈ Pac
c (Rd) there exists a unique

solution to (3.2).

The key consequence of this theorem for the study of (P) is that the exponential map, associating
to each Lipschitz control u the corresponding solution of (2.6), is well defined.

3.2. Derivative with respect to a measure. In this section, we choose the correct concept of
derivative of a functional with respect to a measure. Since we deal with minimization of a functional
J , it is useful to have a first-order condition with respect to perturbations of the state µ.

We recall that there are several different concepts of derivatives with respect to measures, see e.g.
[6]. For our problem, we need the so-called L-derivative. Let (Ω,F ,P) be an atomless probability
space. Given a map h : P2(R

d) → R we define the lifting

h̃(X) = h(L(X)), ∀X ∈ L2(Ω;Rd),

where L(X) := X#P. Note that L(X) ∈ P2(R
d), since X ∈ L2(Ω;Rd).

Definition 6. A function h : P2(R
d) → R is said to be L-differentiable at µ0 ∈ P2(R

d) if there

exists a random variable X0 with law µ0 such that the lifted function h̃ is Fréchet differentiable at
X0.

The Fréchet derivative of h̃ at X can be viewed as an element of L2(Ω;Rd) and we can denote

it by Dh̃(X). It is important that the differentiability of h does not depend upon the particular
choice of X.

Proposition 7. Let h : P2(R
d) → R and h̃ its extension. Let X,X ′ ∈ L2(Ω;Rd) with the same

law µ. If h̃ is Fréchet differentiable at X, then h̃ is Fréchet differentiable at X ′ and (X,Dh̃(X))

has the same law as (X ′,Dh̃(X ′)).

Proposition 8. Let h : P2(R
d) → R

d be L-differentiable than for any µ0 ∈ P2(R
d) there exists

a measurable function ξ : Rd → R
d such that for all X ∈ L2(Ω;Rd) with law µ0, it holds that

Dh̃(X) = ξ(X) µ0-almost surely.
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With this notations, the equivalence class of ξ ∈ L2(Rd, µ0;R
d) is uniquely defined and we denote

it by ∂µh(µ0). We call L-derivative of h at µ0 the function

∂µh(µ0)(·) : x ∈ R
d 7→ ∂µh(µ0)(x).

Finally, a function h : P2(R
d) → R

d is said to be L-convex if it is L-differentiable and

h(µ)− h(µ′)− E[∂µh(µ0)(X) · (X −X ′)] ≥ 0,

whenever X,X ′ ∈ L2(Ω;Rd) with law, respectively, µ, µ′.

4. The viscous LQ problem (Pε)

In this section, we solve the viscous problem (Pε). We prove existence and uniqueness of the
optimal control and provide an explicit expression by a cascade of two Riccati equations. This
section is mostly based on [1, 2, 6].

The main idea to solve (Pε) is to use stochastic control to find the optimal pair (µε
t , u

ε) for
it. Indeed, we may think of µε as the law of a stochastic process Xε which solves the stochastic
differential equation

{

dXε
t = b(t,Xε

t , µ
ε
t , α) dt+

√
2ε dWt,

Xε
t |t=0 = X0.

(4.1)

Here Wt is a standard Brownian motion, α is the control, X0 is a random variable independent
from Wt with law µ0, and the equation has to be understood in the Itô sense. With these notations
the cost functional can be rewritten as

J(α) = E

[
∫ T

0
f(t,Xε

t , µ
ε
t , αt) dt+ g(Xε

T , µ
ε
T )

]

,

where the control αt is a measurable process with values in R
d. It moreover satisfies

E

[
∫ T

0
|αt|2 dt

]

< ∞.

When the data of the optimization problem are smooth enough, solving (Pε) and applying the
stochastic approach just described are equivalent. This is the case of the present LQ setting;
we refer to [6, 13] for the precise description of the two approaches and the connection between
them. In what follows, we solve the LQ mean-field optimal control problem by using the stochastic
approach and then we recover the solution of (Pε) to prove the vanishing viscosity method.

4.1. The adjoint variable and stochastic maximum principle. In this section we define
the adjoint process of a controlled state Xt and we recall the Stochastic Pontryagin Maximum
Principle (SPMP) for optimality. Since we will give general definitions, in this subsection we drop

the superscript ε for simplicity. We will use the notation (Ω̃, F̃ , P̃) for a copy of (Ω,F ,P) and Ẽ for

the expectation under P̃.
First, we define the Hamiltonian H as

H(t, x, µ, y, α) = b(t, x, µ, α) · y + f(t, x, µ, α), (4.2)

for (t, x, µ, y, α) ∈ [0, T ]× R
d × P2(R

d)× R
d × R

d.

Definition 9. We call an adjoint processes of Xε
t any couple (Yt, Zt) satisfying the equation

{

− dYt = (∇H(t,Xt, µt, Yt, Zt, αt) + Ẽ[∂µH(t, X̃t, µt, Ỹt, Z̃t, α̃t)(Xt)]) dt+ Zt dWt,

YT = ∇g(XT , µT ) + Ẽ[∂µg(X̃T , µT )(XT )],
(4.3)

where (X̃t, Ỹt, Z̃t, α̃t) is an independent copy of (Xt, Yt, Zt, αt) defined on the space (Ω̃, F̃ , P̃).

We have the following sufficient condition for optimality associated to the SPMP, see [6].

Theorem 3. Let b, f, g be Linear-Quadratic, i.e. (2.1)-(2.2)-(2.3) hold. Let αt be an admissi-
ble control, Xt the corresponding controlled state process, and (Yt, Zt) the corresponding adjoint
processes. Assume that:
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• (x, µ) 7→ g(x, µ) is convex,
• (x, µ, α) 7→ H(t, x, µ, Yt, Zt, α) is convex.

If it holds L1 ⊗ P-a.e. that

H(t,Xt, µt, Yt, Zt, α
∗) = inf

α
H(t,Xt, µt, Yt, Zt, α),

then α∗ is an optimal control. Moreover, if H is strictly convex in α, then the optimal control is
also unique.

The convexity in the measure variable in the Theorem above is intended as L-convexity. By
assuming H and g defined as (4.2) and (2.3), the hypothesis of Theorem 3 are satisfied and we can
compute explicitly the unique optimal control. This is the content of the next section.

4.2. Computation of the optimal control. In this section, we explicitly find the optimal control
ûε of (Pε), showing moreover that it does not depend on the parameter ε. With this goal, we first
solve the forward-backward system of equations given by the SPMP. Then we reconstruct the
optimal control of (Pε).

By Theorem 3, the optimal control is given by the minimizer (in the control variable) of the
Hamiltonian, i.e.

α̂ = α̂(t, x, µ, y) = −R−1B′y,

while the L-derivative of H is

∂µH(t, x, µ, y)(x′) = Ā′y − S′Q̄(x− Sµ̄).

Then, by plugging α̂ in (4.1) and (4.3), we obtain the following forward-backward system:


















dXε
t =

(

AXε
t −BR−1B′Y ε

t + ĀE[Xε
t ]
)

dt+
√
2ε dWt,

Xε
t |t=0 = X0,

− dY ε
t =

(

A′Y ε
t + (Q+ Q̄)Xε

t − Q̄SE[Xε
t ]
)

dt+
(

Ā′
E[Y ε

t ]− S′Q̄(I − S)E[Xε
t ]
)

dt+ Zε
t dWt,

Y ε
T = (Q+ Q̄)Xε

T + (S′
T Q̄TST − S′

T Q̄T − Q̄TST )E[X
ε
T ].

(4.4)
By taking the expectations in (4.4), we have that x̄εt := E[Xε

t ], ȳ
ε
t := E[Y ε

t ] satisfies the system


















˙̄xεt = (A+ Ā)x̄εt −BR−1B′ȳεt ,

x̄ε0 = µ̄0,

− ˙̄yεt = (Q+ (I − S)′Q̄(I − S))x̄εt + (A+ Ā′)ȳεt ,

ȳεT = (QT + (I − ST )
′Q̄T (I − ST ))x̄

ε
T .

(4.5)

The system (4.5) can be associated to the following finite-dimensional optimal control problem

min
w

(

1

2

∫ T

0

(

χ′Mχ+ w′Rw
)

dt+
1

2
χ(T )′MTχ(T )

)

,

{

χ̇(t) = (A+ Ā)χ(t) +Bw(t),

χ(0) = µ̄0,

where M = Q+(I−S)′Q̄(I−S) and MT = QT +(I−ST )
′Q̄T (I−ST ). Because of the assumptions

(2.4), (2.5), the problem above is a finite dimensional LQ control problem, where x̄εt is the optimal
trajectory and ȳεt the associated co-state. To solve this problem, it is enough to find the unique
solution Σ of the Riccati equation

{

Σ̇ + Σ(A+ Ā) + (A+ Ā)′Σ− ΣBR−1B′Σ+Q+ (I − S)′Q̄(I − S) = 0,

Σ(T ) = QT + (I − ST )
′Q̄T (I − ST ),

which is symmetric positive definite. It then holds

ȳεt = Σx̄εt , (4.6)
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and substituting in (4.5) we get
{

˙̄xεt = (A+ Ā−BR−1B′Σ)x̄εt ,

x̄ε0 = µ̄0.
(4.7)

Since (4.7) is a linear ODE with smooth coefficients, it admits a unique solution x̄t, which therefore
does not depend on ε. The same holds for ȳt = ȳεt as a consequence of (4.6). Then, once E[Xε

t ] and
E[Y ε

t ] are replaced with x̄t, ȳt, the system (4.4) can be associated to a standard stochastic control
problem with strictly convex Hamiltonian, hence it admits a unique solution, see [6]. The affine
structure of (4.4) suggests to write Y ε

t = P εXε
t + pεt , where































Ṗ ε +A′P ε + P εA− P εBR−1B′P ε +Q+ Q̄ = 0,

P ε(T ) = QT + Q̄T ,

ṗεt + (A′ − P εBR−1B′)pεt + (Ā′Σ+ P εĀ+ S′Q̄S − S′Q̄− Q̄S)x̄t = 0,

pε(T ) = (S′
T Q̄TST − S′

T Q̄T − Q̄TST )x̄t,

Zε
t =

√
2εP ε

t .

(4.8)

Arguing as before, the first equation in (4.8) is of Riccati-type, then it admits a unique solution
P ε. Hence, uniqueness of the solution implies that the matrix P ε does not depend on ε. Therefore,
once we have the matrix P , the equation for pε is a linear ODE and again by uniqueness it admits a
unique solution, which then does not depend on ε. On balance, Zε

t is the only term which depends
on the viscosity.
We can now write the optimal control α̂ as

α̂t = û(t,Xε
t ) = −R−1B′PXε

t −R−1B′p,

which is in feedback form. Finally, by the connection with (Pε) described above, we know that the
optimal control û is then given by

û(t, x) = −R−1B′Px−R−1B′p,

which does not depend on ε, and the equation solved by the optimal trajectory µ̂ε
t is

{

∂tµ̂
ε
t + div

(

b̂(t, x)µ̂ε
t

)

= ε∆µ̂ε
t ,

µ̂ε
t |t=0 = µ0,

(4.9)

where the vector field b̂ is given by

b̂(t, x) = [A−BR−1B′P ]x+ Āx̄t −BR−1B′p.

The equation (4.9) is a linear advection-diffusion equation. It is still non-local, since the dependence

on the barycenter is contained in the term b̂.

5. Proof of the main result

In this section we prove our main result, that is Theorem 1. We show that the unique optimal
pair (µ̂ε

t , û) of (Pε) converges to an optimal pair (µ̂t, û) for (P).

5.1. Preliminary lemma. In this subsection we prove a stability lemma for the continuity equa-
tion; we then apply it to our optimal control problem. It is worth to note that we assume that the
control u is fixed in the following Lemma.

Lemma 10. Let b : P2(R
d) → Lip((0, T ) × R

d) be a vector field satisfying (3.4), such that there
exists C for which

|b(t, x, µ)| ≤ C

(

1 + |x|+
∫

Rd

|y|µ( dy)
)

.

Let µt, µ
ε
t be the unique solution of the deterministic (2.6) and the viscous equation (2.7) with vector

field b, respectively. It then holds

lim
ε→0

sup
t∈[0,T ]

W2(µ
ε
t , µt) = 0. (5.1)
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Moreover, the barycenter and costs converge too:

µ̄ε
t → µ̄t, as ε → 0, uniformly in [0, T ],

J(µε
t , u) → J(µt, u), as ε → 0.

Proof. The core of the proof is to prove (5.1). Since the total mass is preserved for an advection-
diffusion equation, and by standard weak compactness argument (see [17]) we know that, up to
sub-sequences, there exists a measure λt ∈ L∞((0, T );P(Rd)) such that

µε
t

∗
⇀ λt in L∞((0, T );M(Rd)). (5.2)

Due to non-linearity in the vector field, a weak convergence as in (5.2) is not enough to pass to the
limit in the equation. However, since µε

t , µt ∈ P2(R
d), one can use |x|2 as a test function in the

equations. By a Gronwall type argument, thanks to the growth assumptions on b, it holds

sup
t∈[0,T ]

∫

Rd

|x|2 µε
t( dx) < C,

where C > 0 is a constant independent on ε. This implies that any weak limit satisfies λt ∈ P2(R
d).

Then, by properly choosing the test function in (2.7) and, again by the growth assumptions on b,
it also holds

sup
t∈[0,T ]

∫

Bc

R

|x|2 µε
t ( dx) → 0, uniformly as R → ∞.

Such a result, together with weak convergence (5.2), implies that

lim
ε→0

sup
t∈[0,T ]

W2(µ
ε
t , λt) = 0. (5.3)

Because of the uniform Lipschitz assumption on b, the convergence in (5.3) is enough to pass to the
limit in (2.7) and hence uniqueness for (2.6) implies µt = λt. Finally, convergence of the barycenter
and of the costs follows from (5.1), by a direct computation. �

5.2. Proof of Theorem 1. We are now able to prove our main result Theorem 1.
Proof of Theorem 1. First of all, by the analysis given in Section IV, the convergence of controls

ûε → û is a direct consequence of the fact that the optimal control û does not depend on ε.
Then, we consider µ̂t the unique solution of (2.6) with control û. Since the control does not
depend on the viscosity parameter, the convergence of optimal trajectory µ̂ε → µ̂ and of the cost
J(µ̂ε, û) → J(µ̂, û) is a direct consequence of Lemma 10.

To conclude, we must show that (µ̂t, û) is actually an optimal pair for (P). Let u 6= û be a
Lipschitz control and µt the corresponding trajectory. We define µε

t to be the unique solution of
(2.7) with control u and, since (µε

t , u) is an admissible pair for (Pε) and (µ̂ε
t , û) is optimal, it holds

J(µ̂ε
t , û) < J(µε

t , u). (5.4)

By (iii) and Lemma 10, it holds

J(µ̂t, û) = lim
ε→0

J(µ̂ε
t , û), J(µt, u) = lim

ε→0
J(µε

t , u), (5.5)

and combining (5.4) and (5.5) we get that

J(µ̂t, û) ≤ J(µt, u),

for any admissible pair (µt, u). Then, (µ̂t, û) is an optimal pair for (P) and the proof is complete.
�
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6. CONCLUSIONS AND FUTURE PERSPECTIVES

In this article, we proved that the vanishing viscosity method works properly when applied to
the deterministic LQ mean-field control problem (P): one can add a small noise of amplitude ε,
solve the optimal control problem, and is ensured that for ε → 0 the limit is the solution of the
deterministic LQ mean-field problem.

It is interesting now to study more general mean-field optimal control problems, in particular
with coercive costs as in [4]. Moreover, it will be very interesting to study coupled mean-field
controlled systems and mean-field games, i.e. with two levels of optimization.
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