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Abstract. We show the existence of Lipschitz-in-space optimal controls for a class of mean-field
control problems with dynamics given by a non-local continuity equation. The proof relies on a
vanishing viscosity method: we prove the convergence of the same problem where a diffusion term
is added, with a small viscosity parameter.

By using stochastic optimal control, we first show the existence of a sequence of optimal controls
for the problem with diffusion. We then build the optimizer of the original problem by letting the
viscosity parameter go to zero.

1. Introduction

In recent years, the study of systems describing crowds of interacting agents has drawn a huge
interest from the mathematical and control community. A better understanding of such interaction
phenomena can have a strong impact in several key applications, such as road traffic and egress
problems for pedestrians. For a few reviews about this topic, see e.g. [4, 6, 17, 28, 34, 35, 46].

Mean-field equations are the natural limit of such systems, composed of a large number N of
interacting particles, when N tends to infinity. The state of the system is then a density or,
more in general, a measure. Mathematically speaking, the system is often transformed from a
large-dimensional ordinary differential equation to a partial differential equation, via the so-called
mean-field limit, see e.g. [40, 47].

The finite-dimensional models for interacting agents can either be deterministic (in which the
position of each agent is clearly identified), or probabilistic (in which the position of each agent is a
probability measure). While deterministic models are based on a (supposedly) perfect knowledge of
the dynamics, probabilistic models naturally arise when either individual dynamics or interactions
are subjected to some form of noise. As a consequence, mean-field equations have deeply different
natures in the two cases: the limit of deterministic models is often a continuity equation, while for
probabilistic models it is a diffusion equation. See [21, 22, 40] for a comprehensive introduction.

Beside the dynamics of mean-field equations, it is now relevant to study control problems for
them, that are known as mean-field control problems. In the mean-field limit for deterministic
models, a few articles have been dealing with controllability results [29, 30] or explicit synthe-
ses of control laws [18, 44]. Most of the literature focused on optimal control problems, with
contributions ranging from existence results [15, 31, 32, 33] to first-order optimality conditions
[7, 11, 12, 13, 14, 23, 24, 45], to numerical methods [1, 16]. The linear-quadratic case is studied in
[27] for the deterministic setting and in [7, 8] for the probabilistic one.

Our aim in this article is to develop one more technique to solve mean-field optimal control
problems. Indeed, it is natural to expect that, in finite dimension, (uncontrolled) probabilistic
models converge (in some sense) to deterministic ones as the noise decreases to zero. See e.g.
[41]. The same holds for (uncontrolled) partial differential equations, when solutions to advection-
diffusion equations converge to solutions of the continuity equation as the noise parameter (also
known as viscosity) goes to zero. This is the basic idea of the vanishing viscosity method, see
[9, 36]. Observe that, in general, for the partial differential equation with diffusion term, stronger
regularity of solution is ensured and better computational methods are available. It is then very
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desirable to be able to use methods for diffusive equations and then pass to the continuity equation
by a vanishing viscosity method.

Our aim is exactly to provide a vanishing viscosity result for mean-field control problems. In
our article, we deal with two optimal control problems, corresponding to the deterministic and
probabilistic settings. On one side, the deterministic optimal control problem is

Problem (P)

Find
min
u∈A

J(µ, u),

where the cost J is

J(µ, u) :=

∫ T

0

∫
Rd

(f(t, x, µt) + ψ(u(t, x)))µt( dx) dt+

∫
Rd
g(x, µT )µT ( dx), (1.1)

and µ ∈ C([0, T ]; P2(Rd)) is a solution of{
∂tµt + div [(b(t, x, µt) + u(t, x))µt] = 0,

µ|t=0 = µ0
(1.2)

with initial state µ0 ∈P2(Rd) with compact support.
The set of admissible controls is

A := L∞((0, T );L1(Rd, U ; dµt)),

where U ⊂ Rd.

We now add a viscosity term on the right hand side of (1.2), with ε > 0 being the diffusion
parameter, connected to the viscosity of the system. Then, we consider the following problem:

Problem (Pε)

Take (P) and replace µ solution of (1.2) with µε solution of{
∂tµ

ε
t + div [(b(t, x, µεt ) + u(t, x))µεt ] = ε∆µεt ,

µε|t=0 = µ0.
(1.3)

Replace the set of admissible controls A with

Aε := L∞((0, T );L1(Rd, U ; dµεt )).

Under natural hypotheses, both solutions (µ, u) of the deterministic problem (P) and solutions
(µε, uε) of the probabilistic problem (Pε) exist. In this framework, the natural questions about
vanishing viscosity are the following:

• Do we have convergence of optimal controls uε → u?
• Do we have convergence of optimal trajectories µε → µ?
• Do we have convergence of costs J(µε, uε)→ J(µ, u)?

Such questions do not have a general answer. Our main result states that, under quite natural
hypotheses, all answers are positive.

Theorem 1.1. Assume the following:

• the set of admissible control values U ⊂ Rd is convex and compact;
• the vector field b is C1,1

loc regular, i.e. Assumption (B) in Section 2.3 below holds;

• the functions f, ψ, g in J are C1,1
loc regular, i.e. Assumption (J) in Section 3.1 below holds;

• the function ψ is λ-convex, for some λ > 0, and the functions f, g are convex, i.e. As-
sumption (C) in Section 3.1 below holds.
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Let Λ(T, L) := TL(1 + 2L)e(6L+1)T , where L is the Lipschitz constant in Assumption (B), (J)
below. Then, if λ > Λ(T, L) there exist:

• a unique solution (µε, uε) ∈ C([0, T ]; P2(Rd)) × L∞((0, T ); Lip(Rd, U)) of (Pε), for each
ε > 0;
• a solution (µ, u) ∈ C([0, T ]; P2(Rd))× L∞((0, T ); Lip(Rd, U)) of (P);

and the following convergences hold:

(i) uε ⇀ u in L2((0, T );W 1,p
loc (Rd, U)) for every 1 ≤ p <∞;

(ii) µε → µ in C([0, T ],P2(Rd));
(iii) J(µ, u) ≤ lim infε→0 J(µε, uε).

It is important to note that the hypothesis on the support of µ0 can be relaxed (with the nec-
essary technicalities) but we have decided to keep it to make the presentation easier. Moreover,
beside standard regularity hypotheses, the most interesting and crucial requirement is certainly
strict convexity of the control cost ψ. Indeed, in Section 5 we will also show an example in which
the vanishing viscosity limit does not hold, since the cost is convex only. Moreover, the convexity
hypothesis on f and g can be relaxed at the price of a larger value for Λ(T, L). We will provide
further comments in Remark 3.9 below.

The structure of the article is the following. In Section 2 we introduce some standard tools from
analysis in the space of probability measures. Moreover, we recall existence and uniqueness results
for the non-local continuity (1.2) and advection-diffusion (1.3) equations. In Section 3 we define
and solve a class of mean-field stochastic optimal control problems, which is closely related to our
original problems (P) and (Pε). Indeed, the results of Section 3 will provide the main building
blocks for the proof of our main theorem, which will be given in Section 4. Finally, in Section 5 we
show that convergence of optimal controls from (Pε) to (P) is not guaranteed if we drop the strict
convexity assumption on the control cost ψ.

2. Notations and preliminaries

In this section, we fix notations and recall some notions of analysis in the space of probability
measures, Wasserstein spaces, and non-local continuity equations.

2.1. The Wasserstein distance. We denote byM(Rd) the set of measures on Rd and by P(Rd)
the subset of probability measures. The set of probability measures with compact support is denoted
by Pc(Rd), while Pac(Rd) denotes the set of probability measures which are absolutely continuous
with respect to the d-dimensional Lebesgue measure L d. We also define Pac

c (Rd) := Pac∩Pc(Rd).
We say that a sequence {µn}n∈N ⊂P(Rd) converges in the sense of measures towards µ ∈P(Rd),

denoted by µn
∗
⇀ µ, provided that

lim
n

∫
Rd
φ(x)µn( dx) =

∫
Rd
φ(x)µ( dx), for all φ ∈ C∞c (Rd). (2.1)

The space P(Rd) is equipped with the topology of the convergence of measures. For a given
p ≥ 1, we denote by Pp(Rd) the set of probability measures with finite p-th moment Mp, which is
defined as

Mp(µ) :=

∫
Rd
|x|pµ( dx). (2.2)

Definition 2.1. Let µ, ν ∈Pp(Rd). We say that γ ∈P(R2d) is a transport plan between µ and ν

provided that γ(A× Rd) = µ(A) and γ(Rd ×B) = ν(B) for any pair of Borel sets A,B ⊂ Rd. We
denote with Π(µ, ν) the set of such transference plans.

With these notations, we now introduce the Wasserstein distance in the space Pp(Rd).

Definition 2.2. Given p ≥ 1 and two measures µ, ν ∈Pp(Rd), the p -Wasserstein distance between
µ and ν is

Wp(µ, ν) := inf
γ∈Π(µ,ν)

{∫
Rd×Rd

|x− y|p γ( dx, dy)

}1/p

. (2.3)
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We recall that the Wasserstein distance metrizes the weak-∗ topology of probability measures;
in particular the following holds, see [49, 50].

Proposition 2.3. The Wasserstein space (Pp(Rd),Wp) is a complete and separable metric space.

Moreover, for a given µ ∈ Pp(Rd) and a sequence of measures in µn ∈ Pp(Rd), the following
conditions are equivalent:

• Wp(µ, µ
n)→ 0, as n→∞,

• µn ∗
⇀ µ and

∫
Rd
|x|pµn( dx)→

∫
Rd
|x|pµ( dx),

• µn ∗
⇀ µ and

∫
BcR

|x|pµn( dx)→ 0 as R→∞ uniformly in n.

We recall that Wasserstein distances are ordered, in the sense that, given µ, ν ∈Pc(Rd), then

Wp1(µ, ν) ≤Wp2(µ, ν), whenever p1 ≤ p2. (2.4)

We also denote with Lip(φ) a Lipschitz constant for a function φ and with Lip(X,Y ) the space of
Lipschitz functions from X to Y , as well as Lip(X) := Lip(X,R). We now recall the Kantorovich-
Rubinstein duality formula which characterizes the distance W1, see [50].

Lemma 2.4. Let µ, ν ∈P1(Rd). Then

W1(µ, ν) = sup
φ∈Lip(Rd)

{∫
Rd
φ(x)(µ− ν)( dx) : Lip(φ) ≤ 1

}
. (2.5)

2.2. The L-derivative. We now recall some results of differential calculus in the space of proba-
bility measures. Unless otherwise specified, all definitions and the results are taken from [21]. In
particular, we choose a notion of derivative of a functional with respect to a measure, that suits
our purposes. We recall that there are several different definitions of derivatives with respect to
measures, see e.g. [21]. For our purpose, we need the so-called L-derivative. Let (Ω,F ,P) be an
atomless probability space, where atomless means that for any A ∈ F with P(A) > 0 there exists
B ∈ F such that 0 < P(B) < P(A).

Definition 2.5. Let X : Ω → Rd be a random variable. We define the law of X the measure
defined as L(X)(B) := P(X−1(B)), for any Borel set B ⊂ Rd.

The following proposition holds, see [10, Proposition 9.1.11].

Proposition 2.6. Let µ ∈P2(Rd), then there exists a Rd-valued random variable X ∈ L2(Ω;Rd)
with law L(X) = µ. Moreover, if µ, µ′ ∈P2(Rd), then

W2(µ, µ′)2 = inf
(X,X′)

E
[
|X −X ′|2

]
,

where the infimum is taken over the pairs of Rd-random variables (X,X ′) such that L(X) = µ and
L(X ′) = µ′.

Given a map h : P2(Rd)→ R we define the lift h̃ : L2(Ω;Rd)→ R in the following way

h̃(X) = h(L(X)), ∀X ∈ L2(Ω;Rd).

Note that L(X) ∈P2(Rd), since X ∈ L2(Ω;Rd). We point out that L2(Ω,F ,P) is an Hilbert space,
in which the notion of Fréchet differentiability makes sense. We thus have the following definition.

Definition 2.7. A function h : P2(Rd)→ R is said to be L-differentiable at µ0 ∈P2(Rd) if there

exists a random variable X0 with law µ0 such that the lifted function h̃ is Fréchet differentiable at
X0.

The Fréchet derivative of h̃ at X can be viewed as an element of L2(Ω;Rd); we denote it by

Dh̃(X). It is important to recall that L-differentiability of h does not depend upon the particular
choice of X, as explained in the following propositions, see [21].
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Proposition 2.8. Let h : P2(Rd) → R and h̃ its lift. Let X,X ′ ∈ L2(Ω;Rd) with the same law.

If h̃ is Fréchet differentiable at X, then h̃ is Fréchet differentiable at X ′ and (X,Dh̃(X)) has the

same law as (X ′, Dh̃(X ′)).

Proposition 2.9. Let h : P2(Rd) → Rd be an L-differentiable function. Then, for any µ0 ∈
P2(Rd) there exists a measurable function ξ : Rd → Rd such that for all X ∈ L2(Ω;Rd) with law

µ0, it holds that Dh̃(X) = ξ(X) µ0-almost surely.

We say that h is continuously L-differentiable if Dh̃ is a continuous function from the space
L2(Ω,F ,P) into itself. Moreover, by Proposition 2.9, the equivalence class of ξ ∈ L2(Rd, µ0;Rd) is
uniquely defined; we denote it by ∂µh(µ0). We call L-derivative of h at µ0 the function

∂µh(µ0)(·) : x ∈ Rd 7→ ∂µh(µ0)(x).

From the above construction, it is clear that ∂µh(µ0)(·) is uniquely defined only µ0-a.e.. However, if

Dh̃ is a Lipschitz function from L2(Ω,F ,P) into itself, we can define a Lipschitz continuous version
of ∂µh(µ0)(·). This is the content of the following proposition, see [21].

Proposition 2.10. Assume that (v(µ)(·))µ∈P2(Rd) is a family of Borel-measurable mappings from

Rd into itself for which there exists a constant C > 0 such that, for any pair of identically dis-
tributed square integrable random variables ξ1, ξ2 ∈ L2(Ω,F ,P;Rd) over an atomless probability
space (Ω,F ,P), it holds:

E
[
|v(L(ξ1))(ξ1))− v(L(ξ2))(ξ2)|2

]
≤ C2E

[
|ξ1 − ξ2|2

]
.

Then, for each µ ∈P2(Rd), one can redefine v(µ)(·) on a µ-negligible set in such a way that:

∀x, x′ ∈ Rd, it holds |v(µ)(x)− v(µ)(x′)| ≤ C|x− x′|, (2.6)

for the same C as above.

To the above definition of differentiability we associate the following definition of convexity.

Definition 2.11. We say that a function h : P2(Rd)→ Rd is L-convex if it is L-differentiable and
satisfies

h(µ′) ≥ h(µ) + E[∂µh(µ)(X) · (X ′ −X)],

whenever X,X ′ ∈ L2(Ω;Rd) have law µ, µ′, respectively.

Finally, it is natural to extend the above definitions to functions depending on an d-dimensional
variable x and on a probability measure µ, i.e. of the type h : (x, µ) ∈ Rd×P2(Rd)→ R. With these

notations, a function h is jointly differentiable if its lift h̃ : Rd × L2(Ω;Rd) is jointly differentiable.
In particular, we can define partial derivatives ∂xh(x, µ) and ∂µh(x, µ)(x′). We remark that joint
continuous differentiability in the two arguments is equivalent to partial differentiability in each of
the two arguments and joint continuity of the partial derivatives. Thus, the definitions and the
results of this section can be easily generalized to this setting. In particular, if the derivatives of
h are Lipschitz, thanks to Proposition 2.10 we can find a Lipschitz continuous version of ∂µh(x, µ)

as a function x′ ∈ Rd 7→ ∂µh(x, µ)(x′).

2.3. Non-local continuity and diffusion equations. We now provide a summary of the theory
for the equations (1.2) and (1.3), based on [38, 39, 43]. We start by considering the Cauchy problem
for the non-local continuity equation:{

∂tµt + div[b(t, x, µt)µt] = 0,

µ|t=0 = µ0,
(2.7)

where the data of the problem are a fixed time horizon T > 0, a vector field b : (0, T )×Rd×P(Rd)→
Rd and the initial probability measure µ0 ∈P2(Rd). The above equation has to be understood in
the sense of distributions, yielding to the following definition.
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Definition 2.12. Let µ0 ∈ P2(Rd). A weak solution of (2.7) is a probability measure µ ∈
C([0, T ]; P2(Rd)) such that∫ T

0

∫
Rd

(∂tϕ(t, x) + b(t, x, µt) · ∇ϕ(t, x))µt( dx) dt =

∫
Rd
ϕ(0, x)µ0( dx),

for all test functions ϕ ∈ C∞c ([0, T )× Rd).

We remark that µ ∈ C([0, T ]; P2(Rd)) means that the map t ∈ [0, T ] 7→ µt ∈ P2(Rd) is
continuous with respect to the weak convergence of measures, i.e. the map

t ∈ [0, T ]→
∫
Rd
ϕ(x)µt( dx),

is continuous for every ϕ ∈ C∞c ([0, T )× Rd). Moreover, Definition 2.12 makes sense if

b(t, x, µt) ∈ L1((0, T );L1
loc(Rd; dµt)).

We will always work with vector fields satisfying the following assumptions.

Assumptions (B)

(B1) The non-local velocity field (t, x, µ) 7→ b(t, x, µ) is measurable with respect to t ∈ [0, T ] and
it is continuous in the | · | ×W2-topology with respect to (x, µ) ∈ Rd ×P2(Rd).

(B2) There exists M > 0 such that

|b(t, x, µ)| ≤M
(

1 + |x|+
∫
Rd
|y|µ( dy)

)
, (2.8)

for all times t ∈ [0, T ] and any (x, µ) ∈ Rd ×P2(Rd).
(B3) There exists a constant L > 0 such that

|b(t, x, µ)− b(t, y, ν)| ≤ L (|x− y|+W2(µ, ν)) , (2.9)

for all times t ∈ [0, T ] and for any x, y ∈ Rd and µ, ν ∈P2(Rd).
(B4) The vector field b is C1,1 regular, where the Lipschitz continuity of the L-derivative is:

E
[
|∂µb(t, x′, µ′)(X ′)− ∂µb(t, x, µ)(X)|2

]
≤ L2

(
|x− x′|2 + E

[
|X −X ′|2

])
for all t ∈ [0, T ], x, x′ ∈ Rd and X,X ′ ∈ L2(Ω;Rd) with law, respectively, µ, µ′.

Remark 2.13. Both in Assumptions (B), and in the following Assumptions (J) below, we
denote by M a constant related to boundedness, and by L a constant related to Lipschitz continuity.
In particular, the Lipschitz constant L plays a crucial role in Theorem 1.1, since we require λ >
Λ(T, L).

Note that from (B3) we also have that

|∇b(t, x, µ)|+ |∂µb(t, x, µ)(x′)| ≤ L.

By assuming the above hypotheses, the continuity equation (1.2) admits a unique solution. We
resume this well-posedness result in the following theorem, see [43].

Theorem 2.14. Let b : (t, x, µ) ∈ [0, T ] × Rd ×P2(Rd) → Rd be a vector field satisfying (B1),
(B2), (B3). Then, for each µ0 ∈ P2(Rd) there exists a unique solution µ ∈ C([0, T ]; P2(Rd)) of
(2.7). Moreover, if suppµ0 is compact, there exists a constant r > 0 such that

suppµt ⊂ Br, for all t, s ∈ [0, T ].

We now study the diffusion equation.{
∂tµ

ε
t + div [b(t, x, µεt )µ

ε
t ] = ε∆µεt ,

µε|t=0 = µ0.
(2.10)

First of all, a solution is a family of measures which satisfies the following.
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Definition 2.15. Let µ0 ∈ P2(Rd). A weak solution of (2.10) is a probability measure µε ∈
C([0, T ]; P2(Rd)) such that∫ T

0

∫
Rd

(∂tϕ(t, x) + b(t, x, µεt ) · ∇ϕ(t, x) + ε∆ϕ(t, x))µεt ( dx) dt =

∫
Rd
ϕ(0, x)µ0( dx),

for all test functions ϕ ∈ C∞c ([0, T )× Rd).

By assuming the same regularity on the vector field, we have the following existence and unique-
ness theorem for (2.10), see [38, 39].

Theorem 2.16. Let b : (t, x, µ) ∈ [0, T ]×Rd×P2(Rd)→ Rd be a vector field which satisfies (B1),
(B2), (B3). Then, for each µ0 ∈ P2(Rd) there exists a unique solution µ ∈ C([0, T ]; P2(Rd)) of
(1.3).

We conclude this section with two technical lemmas.

Lemma 2.17. Let b be a vector field satisfying Assumptions (B). Then,

|b(t, x′, µ′)− b(t, x, µ)−∇b(t, x, µ) · (x′ − x)− E
[
∂µb(t, x, µ)(X) · (X ′ −X)

]
|

≤ L
2 |x
′ − x|2 + L

2 E[|X ′ −X|2], (2.11)

for a.e. t ∈ [0, T ], for any x, x′ ∈ Rd and X,X ′ ∈ L2(Ω;Rd) with law, respectively, µ, µ′. In
particular, we have that

E
[∫ T

0
|b(t,X ′t,L(X ′t))− b(t,Xt,L(Xt))−∇b(t,Xt,L(Xt)) · (X ′t −Xt)

−Ẽ
[
∂µb(t,Xt,L(Xt))(X̃t) · (X̃ ′t − X̃t)

]∣∣∣ dt

]
≤ LE

[∫ T

0
|X ′t −Xt|2 dt

]
, (2.12)

for any square integrable process Xt, X
′
t ∈ L2((0, T );L2(Ω;Rd))

Proof. We add and subtract the quantity b(t, x′, µ) in the absolute value on the left hand side.
From the identity

b(t, x′, µ)− b(t, x, µ) =

∫ 1

0
∇b(t, sx′ + (1− s)x, µ) · (x′ − x) ds,

it easily follows that

|b(t, x′, µ)− b(t, x, µ)−∇b(t, x, µ) · (x′ − x)|

=

∣∣∣∣∫ 1

0
∇b(t, sx′ + (1− s)x, µ) · (x′ − x) ds−∇b(t, x, µ) · (x′ − x)

∣∣∣∣
≤
∫ 1

0
|∇b(t, sx′ + (1− s)x, µ)−∇b(t, x, µ)||x′ − x| ds

≤ L|x′ − x|2
∫ 1

0
s ds ≤ L

2
|x′ − x|2.

On the other hand, from the identity

b(t, x, µ′)− b(t, x, µ) = E
[∫ 1

0
∂µb(t, x,L(sX ′ + (1− s)X)(sX ′ + (1− s)X) · (X ′ −X) ds

]
,

it follows that

E
[∫ 1

0
∂µb(t, x,L(sX ′ + (1− s)X)(sX ′ + (1− s)X) · (X ′ −X) ds− ∂µb(t, x,L(X))(X) · (X ′ −X)

]
≤ E

[∫ 1

0

∣∣∂µb(t, x,L(sX ′ + (1− s)X)(sX ′ + (1− s)X)− ∂µb(t, x,L(X))(X)
∣∣ |X ′ −X|ds]

≤ L

2
E[|X ′ −X|2].
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Then, the conclusion follows from the triangle inequality and the two estimates above. Finally,
(2.12) follows from (2.11). �

We now recall the Osgood’s lemma, see [25, 26].

Lemma 2.18. Let ρ be a positive Borel function, γ a locally integrable positive function, ψ a
continuous increasing strictly positive function, and η > 0. Assume that the function ρ satisfies
one between

ρ(t) ≤ η +

∫ t

t0

γ(s)ψ(ρ(s)) ds, or ρ(t) ≤ η +

∫ t0

t
γ(s)ψ(ρ(s)) ds. (2.13)

Then it holds that

−M(ρ(t)) + M(η) ≤
∫ t0

t
γ(s) ds, with M(x) =

∫ 1

x

1

ψ(s)
ds.

Proof. A proof of the lemma when ρ satisfies the first inequality in (2.13) can be found in [25].
We prove the lemma in the case ρ satisfies the second inequality in (2.13), which is stated but not

proved in [26]. Define the function Rη(t) := η +

∫ t0

t
γ(s)ψ(ρ(s)) ds. That implies Rη(t) ≥ ρ(t) by

assumption. Since R is absolutely continuous, then it holds

Ṙη(t) = −γ(t)ψ(ρ(t)) ≥ −γ(t)ψ(Rη(t)) for a.e. t,

and integrating the above expression in time∫ t0

t

Ṙη(s)

ψ(Rη(s))
ds ≥ −

∫ t0

t
γ(s) ds.

Then, by the change of variables s→ Rη(s) in the left hand side, we get that∫ η

Rη(t)

ds

ψ(s)
≥ −

∫ t0

t
γ(s) ds.

By the definition of M, the left hand side coincides with M(η) −M(Rη(t)). Then, by using that
M is decreasing we obtain that

−M(ρ(t)) + M(η) ≤ −M(Rη(t)) + M(η) ≤
∫ t0

t
γ(s) ds

and this concludes the proof. �

3. Stochastic mean-field optimal control

In this section we provide a short overview of stochastic control theory. After introducing the
notations, we will give an appropriate version of the Pontryagin Maximum Principle based on the
tools introduced in Section 2. Most of the results are taken from [20, 21] and slightly modified to
fit our context.

3.1. The stochastic set-up. Given a filtered probability space (Ω,Ft,P), equipped with an
adapted Brownian motion Wt, we denote by Xε

t a stochastic process solving the following sto-
chastic differential equation:{

dXε
t = (b(t,Xε

t ,L(Xε
t )) + αt) dt+

√
2ε dWt,

Xε
0 = ξ,

(3.1)

where ξ ∈ L2(Ω,F0,P;Rd) is a given random variable with L(ξ) = µ0, and the admissible control
αt satisfies:

Assumption (A)

(A1) αt is a measurable process with values in U . Define R := max(1,maxx∈U |x|).
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In particular, since U is compact, the following bound is trivial

E
∫ T

0
|αt|2 dt <∞. (3.2)

We now state a classical well-posedness result for (3.1), see [21].

Theorem 3.1. If b satisfies Assumptions (B) and αt satisfies (3.2), then there exists a unique
solution Xε

t of (3.1) such that

E

[
sup

t∈(0,T )
|Xε

t |2
]
<∞.

Moreover, if Xε,′

t is a solution of (3.1) with control α′t and initial condition ξ′, then the following
stability estimate holds

E

[
sup

t∈(0,T )
|Xε,′

t −Xε
t |2
]
≤ C2(T, L)

(
E
[
|ξ′ − ξ|2

]
+ E

[∫ T

0
|α′t − αt|2 dt

])
, (3.3)

where L is the Lipschitz constant of b in (B3).

It is worth to remark that in Theorem 3.1 the existence is understood in the strong sense, i.e.
one can find a solution to (3.1) on any given filtered probability space equipped with any given
adapted Brownian motion. Moreover, pathwise uniqueness holds: it means that, on any given
filtered probability space equipped with any given Brownian motion, any two solutions to (3.1)
with the same initial condition ξ coincide. Since it will be crucial for the following, we compute
the constants appearing in Theorem 3.1 under our specific assumptions. We recall that M2(µ0) is
the second moment defined in (2.2).

Lemma 3.2. Under the hypothesis of Theorem 3.1, for ε ≤ 1, we have that

E

[
sup

t∈(0,T )
|Xε

t |2
]
≤ C1(T, µ0,M,R),

with

C1(T, µ0,M,R) :=

(
M +R

M + 1
+
√
M2(µ0) + T

)2

e(M+1)T , (3.4)

where M is the constant in (B2) and R as in (A1). Moreover, the constant C2 in (3.3) is

C2(T, L) := exp{(4L+ 1)T}. (3.5)

Proof. We divide the proof in two steps.

Step 1 Uniform bound on the forward component. Let Xε
t be the solution of (3.1) with

control αt and initial datum ξ0. By an easy application of Ito’s Lemma, we get that

E[|Xε
t |2] = E[|ξ|2] + E

[∫ T

0
(b(t,Xε

t ,L(Xε
t )) + αt) ·Xε

t dt

]
+ εt.

Notice that |αt| ≤ R for all t ∈ [0, T ], since it takes values in the compact set U . Then, by using
the growth assumptions (B2) on b, L∞ bound on αt, Lemma 2.18, and Doob’s inequality [37] we
get

E

[
sup

t∈(0,T )
|Xε

t |2
]
≤
(
M +R

M + 1
+
√
M2(µ0) + T

)2

e(M+1)T . (3.6)

Step 2 Stability estimate for the forward component. Let Xε
t , X

ε,′

t be, respectively, the

solutions of (3.1) with control αt, α
′
t and initial condition ξ, ξ′. Then, the difference Xε,′

t − Xε
t

satisfies the ordinary differential equation{
d
dt(X

ε,′

t −Xε
t ) = b(t,Xε,′

t ,L(Xε,′

t )) + α′t − b(t,Xε
t ,L(Xε

t ))− αt,
Xε,′

0 −Xε
0 = ξ′ − ξ,

(3.7)
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and by using the Lipschitz property (B3) and standard estimates we get that

E

[
sup

t∈(0,T )
|Xε,′

t −Xε
t |2
]
≤ exp{(4L+ 1)T}

(
E
[
|ξ′ − ξ|2 +

∫ T

0
|α′t − αt|2 dt

])
. (3.8)

�

We now proceed by defining the following stochastic optimal control problem.

Stochastic optimal control problem (SOC)

Denote by α := (αt)0≤t≤T the control on the whole time interval, and consider the
cost functional

JS(α) = E
[
g(Xε

T ,L(Xε
T )) +

∫ T

0
(f(t,Xε

t ,L(Xε
t )) + ψ(αt)) dt

]
. (3.9)

Find
min
α
JS(α),

such that Xε
t is a solution of (3.1) and the control satisfies Assumption (A).

From now on, we assume the following hypothesis on the cost J .

Assumptions (J)

(J1) The control cost α ∈ U → ψ(α) ∈ R is C1.
(J2) The functions f and g are C1: in particular, for all t ∈ [0, T ], x, x′ ∈ Rd, µ, µ′ ∈P2(Rd) it

holds

|f(t, x, µ)− f(t, x′, µ′)| ≤M
[
1 + |x|+ |x′|+M2(µ) +M2(µ′)

] (
|x− x′|+W2(µ, µ′)

)
,

|g(x, µ)− g(x′, µ′)| ≤M
[
1 + |x|+ |x′|+M2(µ) +M2(µ′)

] (
|x− x′|+W2(µ, µ′)

)
.

(J3) The derivatives of f and g with respect to x are L-Lipschitz continuous with respect to
(x, µ), i.e. for every t ∈ [0, T ], x, x′ ∈ Rd, and µ, µ′ ∈P2(Rd) it holds

|∇xf(t, x, µ)−∇xf(t, x′, µ′)| ≤ L
(
|x− x′|+W2(µ, µ′)

)
,

|∇xg(x, µ)−∇xg(x′, µ′)| ≤ L
(
|x− x′|+W2(µ, µ′)

)
,

and for all X,X ′ ∈ L2(Ω;Rd) with law, respectively, µ, µ′ it holds

E
[
|∂µf(t, x′, µ′)(X ′)− ∂µf(t, x, µ)(X)|2

]
≤ L2

(
|x− x′|2 + E

[
|X −X ′|2

])
,

E
[
|∂µg(x′, µ′)(X ′)− ∂µg(x, µ)(X)|2

]
≤ L2

(
|x− x′|2 + E

[
|X −X ′|2

])
.

Note that from (J3) we also have that the derivatives of f and g are bounded, i.e for every
t ∈ [0, T ], x, x′ ∈ Rd, and µ ∈P2(Rd) it holds

|∇xf(t, x, µ)|+ |∇xg(x, µ)| ≤ L, |∂µf(t, x, µ)(x′)|+ |∂µg(x, µ)(x′)| ≤ L. (3.10)

We associate to (SOC) the Hamiltonian:

H(t, x, µ, y, α) = (b(t, x, µ) + α) · y + f(t, x, µ) + ψ(α), (3.11)

for (t, x, µ, y, α) ∈ [0, T ] × Rd ×P2(Rd) × Rd × U . It is worth to note that under Assumptions

(A), (B), (J), the Hamiltonian H is C1,1
loc -regular.

In full analogy with the Pontryagin Maximum Principle for finite-dimensional control problems,
we introduce an adjoint process as the solution of a backward equation involving partial derivatives
of the Hamiltonian with respect to the measure argument. Then, for a given admissible control αt
and the corresponding controlled state Xε

t , we give the following definition.
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Definition 3.3. We call adjoint processes of Xε
t any couple (Y ε

t , Z
ε
t ) satisfying the backward

stochastic equationdY ε
t = −

[
∇xH(t,Xε

t ,L(Xε
t ), Y ε

t , αt) + Ẽ[∂µH(t, X̃ε
t ,L(X̃ε

t ), Ỹ ε
t , α̃t)(X

ε
t )]
]

dt+ Zεt dWt,

Y ε
T = ∇g(Xε

T ,L(Xε
T )) + Ẽ

[
∂µg(X̃ε

T ,L(X̃ε
T ))(Xε

T )
]
,

(3.12)

where (X̃ε
t , Ỹ

ε
t , α̃t) is an independent copy of (Xε

t , Y
ε
t , αt) defined on the space (Ω̃, F̃t, P̃) and Ẽ

denotes the expectation on (Ω̃, F̃t, P̃). In particular, it holds L(X̃ε
t ) = L(Xε

t ).

A solution of (3.12) is a couple (Y ε
t , Z

ε
t ), where the introduction of the process Zεt is necessary

to ensure that the process Y ε
t is adapted with respect to the forward filtration Ft.

It is worth to note that the functions ∇xH and ∂µH do not depend on α, due to the particular
form of the Hamiltonian (3.11). As a consequence, the system can be rewritten as

dY ε
t = − [∇xb(t,Xε

t ,L(Xε
t ))Y ε

t +∇xf(t,Xε
t ,L(Xε

t ))] dt

−
[
Ẽ[∂µb(t, X̃

ε
t ,L(X̃ε

t ))(Xε
t )Ỹ ε

t + ∂µf(t, X̃ε
t ,L(X̃ε

t )(Xε
t )]
]

dt+ Zεt dWt,

Y ε
T = ∇g(Xε

T ,L(Xε
T )) + Ẽ

[
∂µg(X̃ε

T ,L(X̃ε
T ))(Xε

T )
]
,

(3.13)

The equation (3.12) is a backward stochastic differential equation (BSDE) of mean-field type,
since the law of Y ε

t appears in the term which involves the L-derivative of H. This kind of BSDE
admits a unique solution, if we assume enough regularity on the coefficients and we consider Xε

t , αt
as given data of the problem. In particular, the following theorem holds, see [21].

Theorem 3.4. Let αt be an admissible control and Xε
t the corresponding trajectory. Under As-

sumptions (A), (B), (J), there exists a unique solution (Y ε
t , Z

ε
t ) such that

E

[
sup

t∈(0,T )
|Y ε
t |2 +

∫ T

0
|Zεt |2 dt

]
<∞. (3.14)

Moreover, if (Y ε,′

t , Zε,
′

t ) is a solution corresponding to a control α′t and a stochastic process Xε,′

t , it
holds that

E

[
sup

t∈(0,T )
|Y ε,′

t − Y ε
t |2 +

∫ T

0
|Zε,

′

t − Zεt |2 dt

]
≤ C(T, L)E

[
sup

t∈(0,T )
|Xε,′

t −Xε
t |2
]
, (3.15)

where L is the Lipschitz constant appearing in Assumptions (B), (J).

Similarly to what we have done for the forward component, we explicitly compute the constants
ensuring boundedness of Y ε

t and well-posedness of solutions of (3.13).

Lemma 3.5. Let αt be an admissible control and Xε
t the corresponding trajectory. Under the

assumptions of Theorem 3.4, for every p ≥ 1 it holds

E

[
sup

t∈(0,T )
|Y ε
t |p
]
≤ C3(T, L)p, (3.16)

where

C3(T, L) := (1 + 2L)e2LT . (3.17)

Finally, given another trajectory Xε,′

t , we have that

E

[
sup

t∈(0,T )
|Y ε,′

t − Y ε
t |2
]
≤ C4(T, L)E

[
sup

t∈(0,T )
|Xε,′

t −Xε
t |2
]

(3.18)

and the constant C4(T, L) is given by

C4(T, L) := 4L2(2 + T + TC3(T, L)2)e(6+2L2)T . (3.19)
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Proof. We divide the proof in two steps.

Step 1 Uniform bounds on Y ε
t . Let p ≥ 2, an application of Ito’s lemma gives that

E [|Y ε
t |p] +p(p− 1)E

[∫ T

t
|Zεs |2|Y ε

s |p−2 ds

]
= E [|Y ε

T |p]

+ pE
[∫ T

t
(∇xb(s,Xε

s ,L(Xε
s ))Y ε

s +∇xf(s,Xε
s ,L(Xε

s ))) · Y ε
s |Y ε

s |p−2 ds

]
+ pE

[∫ T

t

(
Ẽ[∂µb(s, X̃

ε
s ,L(X̃ε

s ))(Xε
s )Ỹ ε

s + ∂µf(s, X̃ε
s ,L(X̃ε

s )(Xε
s )]
)
· Y ε

s |Y ε
s |p−2 ds

]
.

We estimate the terms on the right hand side separately. First, by (3.10) we have that

E [|Y ε
T |p] ≤ (2L)p. (3.20)

We now consider the term involving ∇xb: by using assumption (B3) we easily obtain that

E
[∫ T

t
∇xb(s,Xε

s ,L(Xε
s ))Y ε

s · Y ε
s |Y ε

s |p−2 ds

]
≤ L

∫ T

t
E [|Y ε

s |p ds] . (3.21)

On the other hand, for the part involving ∂µb we use assumption (B4) and Holder’s inequality,
obtaining

E

[∫ T

t
Ẽ
[
∂µb(s, X̃

ε
s ,L(X̃ε

s ))(Xε
s )Ỹ ε

s

]
· Y ε

s |Y ε
s |p−2 ds

]
≤ L

∫ T

t
Ẽ[|Y ε

s |]E[|Y ε
s |p−1] ds

≤ L
∫ T

t
E[|Y ε

s |p]
1
pE[|Y ε

s |p]
p−1
p ds = L

∫ T

t
E[|Y ε

s |p] ds. (3.22)

Finally, for the terms involving f we use (3.10) to get

E
[∫ T

t
∇xf(s,Xε

s ,L(Xε
s )) · Y ε

s |Y ε
s |p−2 ds

]
≤ L

∫ T

t
E [|Y ε

s |p]
p−1
p ds, (3.23)

E
[∫ T

t
Ẽ
[
∂µf(s, X̃ε

s ,L(X̃ε
s )(Xε

s )
]
· Y ε

s |Y ε
s |p−2 ds

]
≤ L

∫ T

t
E [|Y ε

s |p]
p−1
p ds. (3.24)

Putting together the previous estimates, we obtain

E [|Y ε
t |p] ≤ (2L)p + 2Lp

∫ T

t
E[|Y ε

s |p] + E [|Y ε
s |p]

p−1
p ds. (3.25)

By defining y(t) := E [|Y ε
t |p], the above inequality can be rewritten as

y(t) ≤ (2L)p + 2Lp

∫ T

t
y(s) + y(s)

p−1
p ds, (3.26)

and an application of Lemma 2.18 provides the following estimate

y(t)1/p ≤ (1 + 2L)e2LT . (3.27)

In other words, we get that

‖Y ε
t ‖Lp(Ω) ≤ (1 + 2L)e2LT . (3.28)

The same bound trivially holds for 1 ≤ p < 2 since we are working on a probability space. Moreover,
it is a classical fact that, since the right hand side of (3.28) is uniformly bounded in p, then
Y ε
t ∈ L∞(Ω) (see [48, Exercise 1.3.5]) and moreover

sup
t∈(0,T )

sup
ω∈Ω
|Y ε
t | ≤ (1 + 2L)e2LT . (3.29)
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Step 2 Stability estimate on the backward component Y ε
t . Let Xε

t , X
ε,′

t be, respectively,

the solutions of (3.1) with control αt, α
′
t and initial condition ξ, ξ′. We denote with Y ε

t , Y
ε,′

t the

associate adjoint processes. Applying Ito’s lemma to |Y ε,′

t − Y ε
t |2 we get that

E
[
|Y ε,′

t − Y ε
t |2
]

+ E
[∫ T

t
|Zε,

′

t − Zεt |2 dt

]
= E

[
|Y ε,′

T − Y
ε
T |2
]

+2E
[∫ T

t

(
∇xb(s,Xε,′

s ,L(Xε,′
s ))Y ε,′

s −∇xb(t,Xε
s ,L(Xε

s ))Y ε
s

)
· (Y ε,′

s − Y ε
s ) ds

]
+2E

[∫ T

t

(
∇xf(s,Xε,′

s ,L(Xε,′
s ))−∇xf(s,Xε

s ,L(Xε
s ))
)
· (Y ε,′

s − Y ε
s ) ds

]
+2E

[∫ T

t

(
Ẽ
[
∂µb(s, X̃

ε,′
s ,L(X̃ε,′

s ))(Xε,′
s )Ỹ ε,′

s − ∂µb(s, X̃ε
s ,L(X̃ε

s ))(Xε
s )Ỹ ε

s

])
· (Y ε,′

s − Y ε
s ) ds

]
+2E

[∫ T

t

(
Ẽ
[
∂µf(s, X̃ε,′

s ,L(X̃ε,′
s ))(Xε,′

s )− ∂µf(s, X̃ε
s ,L(X̃ε

s ))(Xε
s )
])
· (Y ε,′

s − Y ε
s ) ds

]
.

We estimate the terms in the above inequality separately. First, by using (J3), for the part involving
the final datum we have that

E
[
|Y ε,′

T − Y
ε
T |2
]
≤2E

[
|∇g(Xε,′

T ,L(Xε,′

T ))−∇g(Xε
T ,L(Xε

T ))|2
]

+ 2E
[∣∣∣Ẽ [∂µg(X̃ε,′

T ,L(X̃ε,′

T ))(Xε,′

T )− ∂µg(X̃ε
T ,L(X̃ε

T ))(Xε
T )
]∣∣∣2]

≤8L2E

[
sup

t∈(0,T )
|Xε,′

t −Xε
t |2
]
.

Second, for the part involving the running cost f , by using Young’s inequality and (J3) we obtain

2E
[∫ T

t

(
∇xf(s,Xε,′

s ,L(Xε,′
s ))−∇xf(s,Xε

s ,L(Xε
s ))
)
· (Y ε,′

s − Y ε
s ) ds

]
≤ E

[∫ T

t
|Y ε,′
s − Y ε

s |2 dt

]
+ 2L2TE

[
sup

t∈(0,T )
|Xε,′

t −Xε
t |2
]
, (3.30)

and

2E
[∫ T

t

(
Ẽ
[
∂µf(s, X̃ε,′

s ,L(X̃ε,′
s ))(Xε,′

s )− ∂µf(s, X̃ε
s ,L(X̃ε

s ))(Xε
s )
])
· (Y ε,′

s − Y ε
s ) ds

]
≤ E

[∫ T

t
|Y ε,′
s − Y ε

s |2 dt

]
+ 2L2TE

[
sup

t∈(0,T )
|Xε,′

t −Xε
t |2
]
. (3.31)

Last, we consider the part involving ∇xb (the one which involves ∂µb works similar). We add and

subtract the quantity ∇xb(s,Xε,′
s ,L(Xε,′

s ))Y ε
s , then write

2E
[∫ T

t
(∇xb(s,Xε,′

s , L(Xε,′
s ))Y ε,′

s −∇xb(t,Xε
s ,L(Xε

s ))Y ε
s ) · (Y ε,′

s − Y ε
s ) ds

]
= 2E

[∫ T

t
(∇xb(s,Xε,′

s ,L(Xε,′
s ))−∇xb(t,Xε

s ,L(Xε
s )))Y ε

s · (Y ε,′
s − Y ε

s ) ds
]

+2E
[∫ T

t
∇xb(s,Xε,′

s ,L(Xε,′
s ))(Y ε,′

s − Y ε
s ) · (Y ε,′

s − Y ε
s ) ds

]
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and by using Young’s inequality we simply estimate as follows

2E
[∫ T

t
(∇xb(s,Xε,′

s , L(Xε,′
s ))Y ε,′

s −∇xb(t,Xε
s ,L(Xε

s ))Y ε
s ) · (Y ε,′

s − Y ε
s ) ds

]
≤2E

[∫ T

t
|Y ε,′
s − Y ε

s |2 dt

]
+ E

[∫ T

t
|∇xb(s,Xε,′

s ,L(Xε,′
s ))|2|Y ε,′

s − Y ε
s |2 ds

]
+ E

[∫ T

t
|∇xb(s,Xε,′

s ,L(Xε,′
s ))−∇xb(t,Xε

s ,L(Xε
s ))|2|Y ε

s |2 ds

]
≤(2 + L2)E

[∫ T

t
|Y ε,′
s − Y ε

s |2 dt

]
+ 2TL2C3(T, L)2E

[
sup

t∈(0,T )
|Xε,′

t −Xε
t |2
]
,

where we used (B4) and (3.29). By a Gronwall’s type argument we get that

E
[
|Y ε,′

t − Y ε
t |2
]
≤ C4(T, L)E

[
sup

t∈(0,T )
|Xε,′

t −Xε
t |2
]

for the constant C4(T, L) given in (3.19). �

We now provide the last set of assumptions, that are convexity hypotheses on the cost J .

Assumptions (C)

(C1) The control cost α 7→ ψ(α) ∈ R is λ-convex over U , with convexity constant λ > 0, i.e. for
all α, α′ ∈ U it holds

ψ(α′) ≥ ψ(α) + ∂αψ(α) · (α′ − α) + λ|α′ − α|2.

(C2) The running cost f is L-convex, i.e.

f(t, x′, µ′) ≥ f(t, x, µ) +∇xf(t, x, µ) · (x′ − x) + E
[
∂µf(t, x, µ)(X) · (X ′ −X)

]
,

for a.e. t ∈ [0, T ], for every x, x′ ∈ Rd and X,X ′ ∈ L2(Ω;Rd) with law, respectively, µ, µ′.
(C3) The final cost g is L-convex, i.e.

g(x′, µ′) ≥ g(x, µ) +∇xg(x, µ) · (x′ − x) + E
[
∂µg(x, µ)(X) · (X ′ −X)

]
,

for every x, x′ ∈ Rd and X,X ′ ∈ L2(Ω;Rd) with law, respectively, µ, µ′.

With the assumptions above, we can now prove the following sufficient condition on the control
for optimality. The following theorem is a slight generalization of [20, Theorem 4.7].

Theorem 3.6. Let ξ ∈ L2(Ω,F0,P;Rd), α̂t be an admissible control, Xε
t the corresponding con-

trolled state process, and (Y ε
t , Z

ε
t ) the corresponding adjoint processes, and assume that Assump-

tions (A), (B), (C), (J) hold. Let Λ(T, L) := TL(1 + 2L)e(6L+1)T . Then, if λ > Λ(T, L) and
moreover it holds L1 ⊗ P-a.e. that

H(t,Xε
t ,L(Xε

t ), Y ε
t , α̂t) = inf

α∈U
H(t,Xε

t ,L(Xε
t ), Y ε

t , α),

then α̂t is the unique optimal control, i.e. JS(α̂) = minα′ J
S(α′) where the minimum is computed

among the admissible controls.

Proof. We drop the ε superscript for simplicity of notations. Let α′t be an admissible control and
X ′ the associated controlled state. By computing the cost functional and using the definition of H
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in (3.11), we have that

JS(α̂)− JS(α′) =E
[
g(XT ,L(XT ))− g(X ′T ,L(X ′T ))

]
+ E

[∫ T

0
(f(t,Xt,L(Xt))− f(t,X ′t,L(X ′t)) + (ψ(α̂t)− ψ(α′t)) dt

]
=E

[
g(XT ,L(XT ))− g(X ′T ,L(X ′T ))

]
(3.32)

+ E
[∫ T

0
(H(t,Xt,L(Xt), Yt, α̂t)−H(t,X ′t,L(X ′t), Yt, α

′
t)) dt

]
− E

[∫ T

0

(
(b(t,Xt,L(Xt))− b(t,X ′t,L(X ′t)) + α̂t − α′t) · Yt

)
dt

]
.

We estimate the terms involving the final cost, by using convexity of g:

E
[
g(XT ,L(XT ))− g(X ′T ,L(X ′T ))

]
≤E

[
∇xg(XT ,L(XT )) · (XT −X ′T )

]
+ EẼ

[
∂µg(XT ,L(XT ))(X̃T ) · (X̃T − X̃ ′T )

]
.

By using Fubini’s Theorem, the fact that the tilde random variables are independent copies of the
non-tilde variables, and the definition of YT , we have

E
[
g(XT ,L(XT ))− g(X ′T ,L(X ′T ))

]
≤ E

[
YT · (XT −X ′T )

]
. (3.33)

We now use the adjoint equation to compute

E
[
YT · (XT −X ′T )

]
=E

[∫ T

0
(Xt −X ′t) · dYt +

∫ T

0
Yt · d(Xt −X ′t)

]
=− E

[∫ T

0
∇xH(t,Xt,L(Xt), Yt, α̂t) · (Xt −X ′t) dt

]
− E

[∫ T

0
Ẽ
[
∂µH(t, X̃t,L(X̃t), Ỹt, ˜̂αt)(Xt)

]
· (Xt −X ′t) dt

]
(3.34)

+ E
[∫ T

0

(
b(t,Xt,L(Xt))− b(t,X ′t,L(X ′t)) + α̂t − α′t

)
) · Yt dt

]
.

Again by Fubini’s theorem, it holds

E
[∫ T

0
Ẽ
[
∂µH(t, X̃t,L(X̃t), Ỹt, ˜̂αt)(Xt)

]
· (Xt −X ′t) dt

]
= EẼ

[∫ T

0
∂µH(t,Xt,L(Xt), Yt, α̂t)(X̃t) · (X̃t − X̃ ′t) dt

]
= E

[∫ T

0
Ẽ
[
∂µH(t,Xt,L(Xt), Yt, α̂t)(X̃t)

]
· (X̃t − X̃ ′t) dt

]
. (3.35)

Then, by using (3.32), (3.33), (3.34), and (3.35) we have

JS(α̂)− JS(α′) ≤E
[∫ T

0
(H(t,Xt,L(Xt), Yt, α̂t)−H(t,X ′t,L(X ′t), Yt, α

′
t)) dt

]
− E

[∫ T

0
∇xH(t,Xt,L(Xt), Yt, α̂t) · (Xt −X ′t) dt

]
− E

[∫ T

0
Ẽ
[
∂µH(t,Xt,L(Xt), Yt, α̂t))(X̃t) · (X̃t − X̃ ′t)

]
dt

]
. (3.36)
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We estimate the right hand side of (3.36) as follows: by Assumptions (C), for the part involving
the running cost we have

E
[∫ T

0
f(t,X ′t,L(X ′t)) dt

]
≥ E

[∫ T

0
f(t,Xt,L(Xt)) dt

]
+ E

[∫ T

0
∇f(t,Xt,L(Xt)) · (X ′t −Xt) dt

]
+ E

[∫ T

0
Ẽ
[
∂µf(t,Xt,L(Xt))(X̃t) · (X̃ ′t − X̃t)

]
dt

]
.

Then, we estimate the part involving the vector field b: we apply Lemma 2.17, Lemma 3.2 and
Lemma 3.5 to obtain

E

[∫ T

0
Yt ·

(
b(t,Xt,L(Xt))− b(t,X ′t,L(X ′t))−∇b(t,Xt,L(Xt))(Xt −X ′t)

)
dt

]

− E

[∫ T

0
Yt ·

(
Ẽ

[
∂µb(t,Xt,L(Xt))(X̃t)(X̃t − X̃ ′t)

])
dt

]

≤ Λ(T, L)

(
E
[∫ T

0
|α̂t − α′t|2 dt

])
,

where

Λ(T, L) := C2(T, L)C3(T, L)LT. (3.37)

Finally, for the part involving the control cost, thanks to minimality of α̂t and convexity of ψ, it
holds

E
[∫ T

0
ψ(α̂t)− ψ(α′t) + (α̂t − α′t) · Yt dt

]
≤ −λE

∫ T

0
|α̂t − α′t|2 dt. (3.38)

In conclusion, we have obtained that

JS(α̂) + (λ− Λ(T, L))E
[∫ T

0
|α̂t − α′t|2 dt

]
≤ JS(α′), (3.39)

which in turn gives that α̂ is the unique optimal control if λ > Λ(T, L). �

Remark 3.7. Note that, if b is affine (eventually depending on the barycenter of µ too), i.e. of
the form

b(t, x, µ) = b0(t) + b1(t)x+ b2(t)

∫
Rd
xµ( dx),

then Assumption (C) implies that the function (x, µ, α) 7→ H(t, x, µ, y, α) is convex. The proof
of Theorem 3.6 follows then in a simpler way, without resorting to Lemma 2.17, see [21].

Remark 3.8. Note that the constant Λ(T, L) can be made as small as desired for T small enough.
This implies that, at least for small times, the condition λ > Λ(T, L) is always satisfied. A similar
condition also ensures Lipschitz regularity of mean-field optimal control (see [15]) and uniqueness
of a minimizer in mean-field games (see [5]).

Remark 3.9. It is clear from the proof of Theorem 3.6 that the convexity hypothesis on f and g
can be dropped at the cost of requiring a larger lower bound for the constant λ. This is indeed the
case of [15] where the running and final cost are not required to be convex. On the other hand,
strict convexity of f and g would allow to consider a larger class of control costs ψ.

We now show that the optimal control is Lipschitz continuous when the Hamiltonian is strictly
convex with respect to the control.

Lemma 3.10. Under Assumptions (A), (B), (C), (J), there exists a unique minimizer α̂ of
H. Moreover, the function α̂ : y ∈ Rd → α̂(y) ∈ U is measurable and Lipschitz continuous, with a
Lipschitz constant depending on λ only.



VANISHING VISCOSITY IN MEAN-FIELD OPTIMAL CONTROL 17

Proof. Observe that, for any (t, x, µ, y), the function α 7→ H(t, x, µ, y, α) is continuously differen-
tiable and strictly convex, so that α̂(y) appears as the unique solution of the variational inequality:

∀β ∈ U, it holds (α̂(y)− β) · (y +∇ψ(α̂)) ≤ 0. (3.40)

Moreover, by strict convexity, measurability of α̂(y) is a consequence of the gradient descent algo-
rithm with convex constraint, see [21]. We now prove Lipschitz continuity: for any y, y′ ∈ Rd and
(t, x, µ) ∈ [0, T ]× Rd ×P2(Rd), the criticality of α̂ provides the following inequalities(

α̂(y)− α̂(y′)
)
· ∂αH(t, x, µ, y′, α̂(y′)) ≥ 0, (3.41)

(
α̂(y′)− α̂(y)

)
· ∂αH(t, x, µ, y, α̂(y)) ≥ 0. (3.42)

They in turn imply(
α̂(y′)− α̂(y)

)
·
(
∂αH(t, x, µ, y′, α̂(y′))− ∂αH(t, x, µ, y, α̂(y))

)
≤ 0. (3.43)

On the other hand, by using λ-convexity of ψ, we also have

(α′ − α) · (∂αψ(α′)− ∂αψ(α)) ≥ 2λ|α′ − α|2.

Since ∂αH = y + ∂αψ, we also have

2λ|α̂(y′)− α̂(y)|2 ≤(α̂(y′)− α̂(y)) · (∂αψ(α̂(y′))− ∂αψ(α̂(y)))

≤
(
α̂(y′)− α̂(y)

)
·
(
∂αH(t, x, µ, y′, α̂(y′))− ∂αH(t, x, µ, y, α̂(y))

)
+
(
α̂(y′)− α̂(y)

)
· (y′ − y) ≤ |α̂(y′)− α̂(y)||y′ − y|.

In the last inequality we have used (3.43). It then follows

|α̂(y′)− α̂(y)| ≤ 1
2λ |y

′ − y|. (3.44)

This concludes the proof. �

Remark 3.11. From the Lemma above we deduce that the minimum α̂ of the Hamiltonian H does
not depend on ε. On the other hand, the optimal control depends on ε, via the adjoint process: it
can be written as follows

α̂εt := α̂(Y ε
t ). (3.45)

Given the optimal control α̂εt , we can write a forward backward system of stochastic differential
equations (FB-SDE) of McKean-Vlasov type, that is

dXε
t = (b(t,Xε

t ,L(Xε
t )) + α̂(Y ε

t )) dt+
√

2ε dWt,

−dY ε
t = (∇xH(t,Xε

t ,L(Xε
t ), Y ε

t , α̂(Y ε
t )) + Ẽ[∂µH(t, X̃ε

t ,L(X̃ε
t ), Ỹ ε

t , α̂(Ỹ ε
t ))(Xε

t )]) dt

+Zεt dWt,

Xε
0 = ξ, Y ε

T = ∇xg(Xε
T ,L(Xε

T )) + Ẽ[∂µg(X̃ε
T ,L(X̃ε

T ))(XT )],

(FB-SDE)

where we recall again that the notation (X̃ε
t , Ỹ

ε
t ) denotes an independent copy of (Xε

t , Y
ε
t ) defined

on the space (Ω̃, F̃t, P̃) and Ẽ denotes the expectation on (Ω̃, F̃t, P̃). If the coefficients are smooth
and no further assumptions are required, systems of FB-SDE are not always solvable, see [3]. For
a fixed ε > 0, existence of a solution of (FB-SDE) is provided in [19]. In the next subsection,
we show that convexity of the Hamiltonian ensures well-posedness of (FB-SDE), even when the
viscosity coefficient is zero. Thus, stability estimates on the solutions of (FB-SDE) will turn into
an ε-uniform bound on the Lipschitz constant of the optimal control of (Pε), as we will show in
Section 4.
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3.2. Well-posedness of (FB-SDE). The goal of this subsection is to prove well-posedness of the
system (FB-SDE) associated to an optimal control, and then to build the associated decoupling
field. Note that Theorem 3.6 ensures that solving (SOC) is equivalent to solve the system (FB-SDE).
We drop the ε superscript in the whole subsection, for simplicity of notations.

We adopt the strategy known as continuation method for FB-SDEs, see [42]. We denote by
Θt := (Xt,L(Xt), Yt, α̂t), where α̂t = α̂(Yt), and S is the space of the processes Θt such that

‖Θ‖S := E

[
sup

t∈(0,T )

(
|Xt|2 + |Yt|2

)
+

∫ T

0

(
|Zt|2 + |α̂t|2

)
dt

]1/2

< +∞, (3.46)

where Zt is the process associated to Yt as in (FB-SDE). Similarly, we define θt := (Xt,L(Xt)).

Moreover, an input I = (Ibt , I
σ
t , I

f
t , I

g
T ) will be a four-tuple where the first three entries are square-

integrable progressively measurable processes and the last one is an FT square-integrable random
variable. We denote by I the space of inputs endowed with the norm

‖I‖I := E
[
|IgT |

2 +

∫ T

0

(
|Ibt |2 + |Iσt |2 + |Ift |2

)
dt

]1/2

< +∞. (3.47)

Definition 3.12. For each γ ∈ [0, 1], ξ ∈ L2(Ω,F0,P;Rd) and I ∈ I, define E(γ, ξ, I) as the FB-
SDE: 

dXt =
(
γ[b(t, θt) + α̂t] + Ibt

)
dt+

(
γ
√

2ε+ Iσt
)

dWt,

dYt = −
(
γ
{
∇xH(t,Θt) + Ẽ

[
∂µH(t, Θ̃t)(Xt)

]}
+ Ift

)
dt+ Zt dWt,

X0 = ξ,

YT = γ
{
∇g(XT ,L(XT )) + Ẽ

[
∂µg(X̃T ,L(X̃T ))(XT )

]}
+ IgT .

(3.48)

For any γ ∈ [0, 1], we say that the property (Sγ) holds if, for any ξ ∈ L2(Ω,F0,P;Rd) and I ∈ I,
the FB-SDE E(γ, ξ, I) has a unique solution in S .

We now provide a stability lemma for solutions of (3.48).

Lemma 3.13. Let γ ∈ [0, 1] such that (Sγ) holds. Then, there exists a constant C, which depends

on T, L, λ and it is independent on γ and ε, such that for any ξ, ξ′ ∈ L2(Ω,F0,P;Rd) and I, I ′ ∈ I,
the solutions Θ,Θ′ of E(γ, ξ, I), E(γ, ξ′, I ′) satisfy:

‖Θ−Θ′‖2S ≤ C
(
E
[
|ξ − ξ′|2

]
+ ‖I − I ′‖2I

)
. (3.49)

Proof. The proof strongly relies on the estimates (and the strategies) proved in Lemma 3.2 and
Lemma 3.5. For the forward component Xt we have

E

[
sup

t∈(0,T )
|Xt −X ′t|2

]
≤ E

[
|ξ − ξ′|2

]
+ CγE

[∫ T

0
|α̂(Yt)− α̂(Y ′t )|2 dt

]
+ C‖I − I ′‖2I , (3.50)

while for the backward component Yt, Zt it holds

E

[
sup

t∈(0,T )
|Yt − Y ′t |2 +

∫ T

0
|Zt − Z ′t|2 dt

]
≤ CγE

[
sup

t∈(0,T )
|Xt −X ′t|2 +

∫ T

0
|α̂(Yt)− α̂(Y ′t )|2 dt

]
+ C‖I − I ′‖2I . (3.51)

By plugging (3.50) in (3.51) and using Lipschitz continuity of the optimal control proved in Lemma
3.10, we obtain that

E
[
|Yt − Y ′t |2

]
≤ C

(
E
[
|ξ − ξ′|2

]
+ E

[∫ T

0
|α̂(Yt)− α̂(Y ′t )|2 dt

]
+ ‖I − I ′‖2I

)
≤ C

(
E
[
|ξ − ξ′|2

]
+ ‖I − I ′‖2I

)
+
C

λ2

∫ T

0
E
[
|Yt − Y ′t |2

]
dt,
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which yields to

E

[
sup

t∈(0,T )
|Yt − Y ′t |2

]
≤ e

C
λ2
TC
(
E
[
|ξ − ξ′|2

]
+ ‖I − I ′‖2I

)
. (3.52)

We now focus on (3.50): we use Lipschitz continuity of the optimal control, together with (3.52),
to obtain

E

[
sup

t∈(0,T )
|Xt −X ′t|2

]
≤ C

λ2
Te

C
λ2
TC
(
E
[
|ξ − ξ′|2

]
+ ‖I − I ′‖2I

)
. (3.53)

Finally, from (3.51), (3.52), and (3.53) we conclude that

E
[∫ T

0
|Zt − Z ′t|2 dt

]
≤ C

(
E
[
|ξ − ξ′|2

]
+ ‖I − I ′‖2I

)
. (3.54)

Then, the result immediately follows, by using again Lipschitz continuity of α̂ and the above
estimates. �

We now give an induction lemma for the system (3.48).

Lemma 3.14. There exists a δ0 > 0, which depends on T, L, λ only, such that, if (Sγ) holds for
some γ ∈ [0, 1), then (Sγ+η) holds for all η ∈ (0, δ0] satisfying γ + η ≤ 1.

Proof. The proof follows a standard Picard’s contraction argument. Indeed, if γ is such that (Sγ)

holds, for η > 0, ξ ∈ L2(Ω,F0,P;Rd) and I ∈ I, we define the map Φ : S → S whose fixed
points coincide with the solution of E(γ+η, ξ, I). We now give the definition of Φ. Given a process
Θ ∈ S , we denote with Θ′ the solution of E(γ, ξ, I ′) with

Ib,
′

t = ηb(t, θt) + ηα̂(Yt) + Ibt

If,
′

t = η∇H(t,Θt) + ηẼ
[
∂µH(t, Θ̃t)(Xt)

]
+ Ift

Iσ,
′

t = η
√

2ε+ Iσt

Ig,
′

T = η∇g(XT ,L(XT )) + ηẼ
[
∂µg(X̃T ,L(X̃T ))(XT )

]
+ IgT .

By assumptions, it is uniquely defined and it belongs to S , so the mapping Φ : Θ → Θ′ maps
S into itself. It is clear that a process Θ is a fixed point for Φ if and only if Θ is a solution of
E(γ, ξ, I ′). We now only need to prove that Φ is a contraction when η is small enough. Given
Θ1,Θ2 ∈ S , by Lemma 3.13 we get that

‖Φ(Θ1)− Φ(Θ2)‖S ≤ Cη‖Θ1 −Θ2‖S , (3.55)

which is enough to conclude the proof, since the constant C does not depend on γ. �

We are now able to prove well-posedness of (FB-SDE).

Theorem 3.15. Assume that Assumptions (A), (B), (C), (J) hold. Then, for any initial
ξ ∈ L2(Ω,F0,P;Rd), the system (FB-SDE) is uniquely solvable.

Proof. First, note that for γ = 0, the right hand side of the system (3.48) is made up of square-
integrable progressively measurable processes, and it does not depends on the solution itself. So
(S0) obviously holds. Then, the proof is a straightforward induction argument based on Lemma
3.14. �

As already stressed above, by Theorem 3.15 we know that the solution of (FB-SDE) is the
unique optimal path of the stochastic control problem (SOC). To conclude this section, we show
the existence of a decoupling field related to the system (FB-SDE), which will allow to write the
optimal control α̂εt in feedback form.

Lemma 3.16. For any t ∈ [0, T ] and ξ ∈ L2(Ω,Ft,P;Rd), there exists a unique solution

(Xξ,ε
t,s , Y

ξ,ε
t,s , Z

ξ,ε
t,s )t≤s≤T
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of the system (FB-SDE) on [t, T ] with Xξ,ε
t,t = ξ. Moreover, for any µ ∈ P2(Rd), there exists a

measurable mapping Uε(t, ·, µ) : x ∈ Rd 7→ Uε(t, x, µ) such that:

P
[
Y ξ,ε
t,t = Uε(t, ξ,L(ξ))

]
= 1. (3.56)

Moreover, there exists a constant C, depending only on the parameters in Assumptions (A), (B),
(C), (J), such that, for any t ∈ [0, T ] and any ξ1, ξ2 ∈ L2(Ω,F0,P;Rd),

E
[
|U(t, ξ1,L(ξ1))− U(t, ξ2,L(ξ2))|2

]
≤ CE

[
|ξ1 − ξ2|2

]
. (3.57)

Proof. Given t ∈ [0, T ) and ξ ∈ L2(Ω,Ft,P;Rd), existence and uniqueness of a solution of (FB-SDE)
on [t, T ] with initial condition ξ is a direct consequence of Theorem 3.15. We now proceed to define

the decoupling field. First of all, note that Y ξ,ε
t,t coincide a.s. with a σ{ξ}-measurable Rd-valued

random variable. In particular, there exists uεξ(t, ·) : Rd → Rd such that P
[
Y ξ,ε
t,t = uεξ(t, ξ)

]
= 1.

Moreover, the law of (ξ, Y ξ,ε
t,t ) only depends on the law of ξ, as a consequence of Yamada-Watanabe

Theorem, see [22, Theorem 1.33]. Since uniqueness holds pathwise, it also holds in law, so given
two initial conditions with the same law, the solution has the same law. Therefore, given another
Rd-valued random vector ξ′ with the same law of ξ, it holds that (ξ, uεξ(t, ξ)) has the same law of

(ξ′, uεξ′(t, ξ
′)). In particular, for any measurable vector field v : Rd → Rd, the random variables

uεξ(t, ξ)− v(ξ) and uεξ′(t, ξ
′)− v(ξ′) have the same law. Choosing v = uεξ(t, ·) we deduce that uεξ(t, ·)

and uεξ′(t, ·) are equal a.e. under the same law L(ξ). This means that, by denoting L(ξ) = µ, there

exists an element Uε(t, ·, µ) ∈ L2(Rd;µ) such that both uεξ(t, ·) and uεξ′(t, ·) coincide with Uε(t, ·, µ).

Identifying Uε(t, ·, µ) with one of its versions, we have that P
[
Y ξ,ε
t,t = Uε(t, ξ, µ)

]
= 1. When t > 0,

for any µ ∈P2(Rd) there exists a Ft-measurable random variable ξ with law µ. As a consequence,
this procedure allows to define Uε(t, ·, µ) for any µ ∈ P2(Rd). When t = 0, F0 may reduce to
events of measure zero or one. In such a case, F0 can be enlarged, with no loss of generality, to
support Rd-valued random variables with arbitrary distributions.

The fact that Uε is independent from the probabilistic set-up (Ω,Ft,P) directly follows from the
uniqueness in law.

Finally, the Lipschitz property of Uε(0, ·, ·) is a consequence of Lemma 3.13 with γ = 1. Shifting
time if necessary, the same argument applies to Uε(t, ·, ·). �

Remark 3.17. It is worth to notice that the decoupling fields are different if the laws of the initial
conditions are different.

4. The vanishing viscosity method

In this section we prove our main result. We first build the optimal control for (Pε) using the
theory developed in Section 3. Then, we will provide some convergence lemma, which will be the
core of the proof of Theorem 1.1. To make the presentation smoother, we will always assume that
Assumptions (A), (B), (C), (J) hold, without recalling them.

4.1. The viscous optimal control. Let Uε be the decoupling field given by Lemma 3.16. Thanks
to Proposition 2.10, for any µ ∈P2(Rd), we can consider a version of x 7→ Uε(t, x, µ) in L2(Rd, µ)
that is Lipschitz continuous with respect to x, for the same Lipschitz constant C as in (3.57). This
is crucial for what follows.

Lemma 4.1. Let α̂ be the minimizer of the Hamiltonian (3.11) in U , and Uε the decoupling field
defined in Lemma 3.16. Then, the map uε : [0, T ]× Rd → Rd defined by

uε(t, x) = α̂(Uε(t, x, µεt )), (4.1)

is the unique optimal control for (Pε). Moreover, the control uε is Lipschitz continuous, uniformly
with respect to time and viscosity coefficient: i.e., there exists a constant Lλ > 0 independent on t
and ε such that

|uε(t, x)− uε(t, x′)| ≤ Lλ|x− x′|. (4.2)
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Proof. First remark that Lipschitz continuity follows from Lemma 3.10 and Lemma 3.16: it holds

|uε(t, x)− uε(t, x′)| = |α̂(Uε(t, x, µεt ))− α̂(Uε(t, x′, µεt ))| ≤ Lλ|x− x′|, (4.3)

for some constant Lλ which only depends on the norms of b, f, g and on λ. We now prove optimality.
Let w : [0, T ]× Rd → U be an admissible control for (Pε). Then, the vector field αt defined as

αt = w(t,Xw,ε
t )

is an admissible control for (SOC) where Xw,ε
t is the associated trajectory. With this particular

choice, the associated cost functional can be rewritten as

JS(α) =

∫ T

0

∫
Rd

(f(t, x, µw,εt ) + ψ(w(t, x)))µw,εt ( dx) dt+

∫
Rd
g(x, µw,εT )µw,εT ( dx) = J(µw,ε, w),

where µw,εt is the law L(Xw,ε
t ) of the controlled trajectory Xw,ε

t . Then, by the strict minimality
property of α̂εt for (SOC), it holds

J(µε, uε) =

∫ T

0

∫
Rd

(f(t, x, µεt ) + ψ(uε(t, x)))µεt ( dx) dt+

∫
Rd
g(x, µεT )µεT ( dx)

=E
[
g(Xε

T ,L(Xε
T )) +

∫ T

0
(f(t,Xε

t ,L(Xε
t )) + ψ(α̂εt )) dt

]
<E

[
g(Xw,ε

T ,L(Xw,ε
T )) +

∫ T

0
(f(t,Xw,ε

t ,L(Xw,ε
t )) + ψ(αt)) dt

]
=

∫ T

0

∫
Rd

(f(t, x, µw,εt ) + ψ(w(t, x)))µw,εt ( dx) dt+

∫
Rd
g(x, µw,εT )µw,εT ( dx),

for any admissible control w. This proves the optimality of uε and concludes the proof. �

4.2. Convergence lemmas. In this section we prove a series of useful convergence estimates, that
will be the key tools to prove our main theorem.

Lemma 4.2. Let K ⊂ Rd be a bounded set and CK > 0 a fixed constant. Define

AK := {u ∈ L2((0, T );W 1,∞(K,U)) : sup
t∈(0,T )

‖u(t, ·)‖W 1,∞(K,U) ≤ CK}. (4.4)

Then, AK is compact in the weak L2((0, T );W 1,p(K,U))-topology for any p ∈ (1,∞).

Proof. See e.g. [33, Theorem 2.5] �

We have the following convergence result for the sequence uε defined in (4.1).

Corollary 4.3 (Convergence of the controls). Let uε be the sequence of optimal controls given by
(4.1). Then, there exists a map u ∈ L∞((0, T );W 1,∞(Rd, U)) such that, for every 1 < p < ∞, the
following convergence holds

uε ⇀ u in L2((0, T );W 1,p
loc (Rd, U)). (4.5)

Proof. The result is a direct application of Lemma 4.2 together with Lemma 4.1. The constant
CK appearing in Lemma 4.2 is chosen as max{Lλ, R} where Lλ is the constant in (4.2) and R is
defined in (A1). In particular, the constant CK does not depend on ε. �

We now show the convergence of the optimal trajectories.

Lemma 4.4 (Convergence of the trajectories). Let u, uε be given by Lemma 4.3 and let µ, µε be
the unique solution of the deterministic (1.2) and the viscous equation (1.3) with vector field b, and
control u, uε respectively. It then holds

lim
ε→0

sup
t∈(0,T )

W2(µεt , µt) = 0. (4.6)
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Proof. We divide the proof in two steps.

Step 1 Compactness of the sequence µε. We start by proving compactness of {µε}ε>0

in C([0, T ]; P2(Rd)) as a consequence of Ascoli-Arzelà’s Theorem. First of all, we exploit a uni-
form bound on the second moment of µεt : since µεt ∈P2(Rd), one can use |x|2 as a test function in
the equation, obtaining∫

Rd
|x|2µεt ( dx) =

∫
Rd
|x|2µ0( dx) + 2

∫ t

0

∫
Rd
uε(s, x) · xµεs( dx) ds

+ 2

∫ t

0

∫
Rd
b(s, x, µεs) · xµεs( dx) ds+ 2εt.

For the term involving the control, from (A1) we easily get

2

∣∣∣∣∫ t

0

∫
Rd
uε(s, x) · xµεs( dx) ds

∣∣∣∣ ≤ 2R

∫ t

0

∫
Rd
|x|µεs( dx) ds

≤ 2RT + 2R

∫ t

0

∫
Rd
|x|2µεs( dx) ds.

On the other hand, from (B2) and Young inequality we get

2

∣∣∣∣∫ t

0

∫
Rd
b(s, x, µεs) · xµεs( dx) ds

∣∣∣∣ ≤ 2M

∫ t

0

∫
Rd
|x|µεs( dx) ds+ 2M

∫ t

0

∫
Rd
|x|2µεs( dx) ds

+

∫ t

0

(∫
Rd
|x|µεs( dx)

)2

ds

≤ 2MT + 5M

∫ t

0

∫
Rd
|x|2µεs( dx) ds.

Thus, being 0 < ε < 1, we obtain∫
Rd
|x|2µεt ( dx) ≤

∫
Rd
|x|2µ0( dx) + 2(1 +M +R)T

+ (2R+ 5M)

∫ t

0

∫
Rd
|x|2µεs( dx) ds,

and then Gronwall’s lemma gives that

sup
t∈(0,T )

∫
Rd
|x|2 µεt ( dx) ≤ [M2(µ0) + 2(1 +M +R)T ] e(2R+5M)T , (4.7)

providing a uniform bound on M2(µεt ). This means that the sequence {µε}ε>0 takes values in a
relatively compact set in P2(Rd) (endowed with W2). Next, we show that the family {µε}ε>0 is
equi-continuous in C([0, T ]; P2(Rd)). Let Xε

t be a solution of (3.1) with law µεt , then by Proposition
2.6 we have that

W2(µεt , µ
ε
s)

2 ≤ E
[
|Xε

t −Xε
s |2
]
.

By using equation (3.1) we compute

W2(µεt , µ
ε
s)

2 ≤ E
[
|Xε

t −Xε
s |2
]

≤ 4T

∫ t

s
E
[
|b(τ,Xε

τ , µ
ε
τ )|2 + |αετ |2

]
dτ + 4εE

[
|Wt −Ws|2

]
≤ 4T

(
M2

∫ t

s
[1 + |Xε

τ |2 +M2(µετ )2] dτ +R2|t− s|+ c(d)|t− s|
)

≤ C(µ0, T,M,R)|t− s|,

which implies equi-continuity of the sequence {µε}ε>0 in C([0, T ]; P2(Rd)). Since P2(Rd) is a
complete metric space [50], by Ascoli-Arzelà’s Theorem (see [2, Proposition 3.3.1]) the sequence
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{µε}ε>0 is relatively compact in C([0, T ]; P2(Rd)) for every T > 0. Then, up to a sub-sequence
that we do not relabel, there exists a probability measure ρ ∈ C([0, T ]; P2(Rd)) such that

µε → ρ in C([0, T ]; P2(Rd)), (4.8)

which means that

lim
ε→0

sup
t∈(0,T )

W2(µεt , ρt) = 0. (4.9)

Step 2 Identification of the limit. In this step we show that ρ is a solution of (1.2). This
will imply that, by uniqueness, it holds ρ = µ and the whole sequence µε converges to µ. Let
ϕ ∈ C∞c ([0, T )× Rd): by Definition 2.15 we have that∫ T

0

∫
Rd

(
∂tϕ(t, x) + (b(t, x, µεt ) + uε(t, x)) · ∇ϕ(t, x) + ε∆ϕ(t, x)

)
µεt ( dx) dt =

∫
Rd
ϕ(0, x)µ0( dx).

Notice that by Proposition 2.3 we know that (4.8) implies weak convergence, thus it holds

lim
ε→0

∫ T

0

∫
Rd

(
∂tϕ(t, x) + ε∆ϕ(t, x)

)
µεt ( dx) dt =

∫ T

0

∫
Rd
∂tϕ(t, x)ρt( dx) dt.

We now consider the term involving the control. Denote by K := supp(ϕ) and
CK := ‖uε‖L∞((0,T );L∞(K)). It then holds

Lip(ϕ(t, ·)uε(t, ·)) ≤ L‖ϕ‖L∞ + CK‖∇ϕ‖L∞ := Cϕ.

Then, by Lemma 2.4, it holds

lim sup
ε

∣∣∣∣∫ T

0

∫
Rd
ϕ(t, x)uε(t, x)

(
µεt ( dx)− ρt( dx)

)
dt

∣∣∣∣ ≤ Cϕ lim sup
ε

∫ T

0
W1(µεt , ρt) dt, (4.10)

which converges to 0 as ε→ 0, by using (4.9) and (2.4). On the other hand, it holds

lim
ε→0

∫ T

0

∫
Rd
ϕ(t, x)uε(t, x)ρt( dx) dt =

∫ T

0
ϕ(t, x)u(t, x)ρt( dx) dt,

due to convergence in (4.5) and the fact that ϕρ belongs to L∞((0, T );W−1,p′(Rd,Rd)) and has
compact support. Then, we have shown

lim
ε→0

∫ T

0

∫
Rd
uε(t, x) · ∇ϕ(t, x)µεt ( dx) dt =

∫
Rd
u(t, x) · ∇ϕ(t, x)ρt( dx) dt.

We are left to prove convergence in the non-linear term: on one hand the convergence (4.8) implies
that

lim
ε→0

∫ T

0

∫
Rd
b(t, x, ρt) · ∇ϕ(t, x)µεt ( dx) dt =

∫ T

0

∫
Rd
b(t, x, ρt) · ∇ϕ(t, x)ρt( dx) dt. (4.11)

On the other hand, the uniform Lipschitz assumption (B3) on b implies that∣∣∣∣∫ T

0

∫
Rd

(b(t, x, µεt )− b(t, x, ρt)) · ∇ϕ(t, x)µεt ( dx) dt

∣∣∣∣ ≤ L‖∇ϕ‖L∞ sup
t∈(0,T )

W2(µεt , ρt), (4.12)

which converges to 0 when ε → 0 thanks to the convergence in (4.9). Hence, ρt is a solution of
(1.2) and this concludes the proof. �

Lemma 4.5 (Convergence of the cost). Let u, uε be given by Lemma 4.3 and let µ, µε be the
corresponding unique solution of the deterministic (1.2) and the viscous equation (1.3) with vector
field b, and control u, uε respectively. Let w be an admissible control for (Pε): then we have

lim
ε→0

J(µε, w) = J(µ,w). (4.13)

Moreover, if uε is the sequence of optimal controls as in (4.3), we have that

J(µ, u) ≤ lim inf
ε→0

J(µε, uε). (4.14)
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Proof. We divide the proof in two steps.

Step 1 Convergence for a fixed control. First, convergence of the control cost immedi-
ately follows from Lemma 4.4. We now analyze the running cost, the same argument also applies
to the final cost. By (J2), we have∣∣∣∣∫ T

0

∫
Rd

(f(t, x, µεt )− f(t, x, µt))µ
ε
t ( dx) dt

∣∣∣∣ ≤ L sup
t∈(0,T )

M2(µεt ) sup
t∈(0,T )

W2(µεt , µt). (4.15)

The conclusion follows from (4.9), since M2(µεt ) is uniformly bounded in t and ε.

Step 2 Semi-continuity. It follows from [33, Theorem 2.12]: arguing as in Step 1, we can
show convergence of both running and final costs. Then, we must show that the control cost is
lower semi-continuous with respect to the weak convergence (4.5). First of all, by Theorem 2.14
we can fix r > 0 such that suppµt ⊂ Br for all t ∈ [0, T ]. Let p > d and define the functional
Sµ : L2((0, T );W 1,p(Br))→ [0,+∞] as

Sµ(g) :=


∫ T

0

∫
Rd
ψ(g(t, x))µt( dx) dt, if Lip(g(t, ·)) ∈ L∞(0, T ),

+∞ otherwise.

(4.16)

By convexity of ψ, it is immediate to check that Sµ is convex: thus, it is sufficient to show that
it is lower semi-continuous in the strong topology L2((0, T );W 1,p(Br)) to obtain weak lower semi-
continuity. Let gk be a sequence in L2((0, T );W 1,p(Br)) strongly converging to some g. By using
(J1), we have∣∣∣∣∫ T

0

∫
Rd

(ψ(gk(t, x))− ψ(g(t, x))) µt( dx) dt| ≤
∫ T

0

∫
Rd
|ψ(gk(t, x))− ψ(g(t, x))|µt( dx) dt

≤ L
∫ T

0

∫
Rd

(|gk(t, x)|+ |g(t, x)|) |gk(t, x)− g(t, x)|µt( dx) dt

≤ CL
∫ T

0

∫
Rd
|gk(t, x)− g(t, x)|2 µt( dx) dt ≤ CL

∫ T

0
‖gk(t, ·)− g(t, ·)‖2L∞

≤ CL
∫ T

0
‖gk(t, ·)− g(t, ·)‖2W 1,p ,

where the constant C depends on Sobolev embeddings and the L2W 1,p norm of gk, g. Therefore,
it holds

|Sµ(gk)− Sµ(g)| ≤ CL‖gk − g‖2L2W 1,p , (4.17)

which gives continuity with respect to the strong topology. Thus, Sµ is weakly lower semi-
continuous and by using Corollary 4.3 we obtain that∫ T

0

∫
Rd
ψ(u(t, x))µt( dx) dt ≤ lim inf

ε→0

∫ T

0

∫
Rd
ψ(uε(t, x))µt( dx) dt. (4.18)

Finally, observe that ψ is Lipschitz, since it is C1 on the compact set U . We denote by Lψ,U its
Lipschitz constant on U . Moreover, uε is Lipschitz, with a Lipschitz constant Lλ independent on
ε, as shown in (4.2). Then, it holds:∣∣∣∣∫ T

0

∫
Rd
ψ(uε(t, x)) (µεt ( dx)− µt( dx)) dt

∣∣∣∣ ≤ Lψ,ULλ ∫ T

0
W1(µεt , µt) dt

≤ Lψ,ULλ
∫ T

0
W2(µεt , µt) dt ≤ C sup

t∈(0,T )
W2(µεt , µt).

Merging it with (4.18) and recalling (4.9), we have∫ T

0

∫
Rd
ψ(u(t, x))µt( dx) dt ≤ lim inf

ε→0

∫ T

0

∫
Rd
ψ(uε(t, x))µεt ( dx) dt. (4.19)
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�

4.3. Proof of Theorem 1.1. We are now ready to prove our main result.

Proof. Let Λ(T, L) be the constant in the assumptions of Theorem 1.1. Then, by Lemma 4.1 we
know that there exists a unique (µε, uε) optimal pair for (Pε). By Lemma 4.3, we know that there
exists a function u ∈ L1((0, T ); Lip(Rd, U)) such that

uε ⇀ u in L2((0, T );W 1,p
loc (Rd, U)),

for every 1 ≤ p < ∞. This proves point (i) of the theorem. Moreover, there exists a unique
µ ∈ C([0, T ]; P2(Rd)) which solves (2.7) with control u; thus, by Lemma 4.4 we have

µε → µ in C([0, T ],P2(Rd)).

This is point (ii) of the theorem. The convergence of the cost is a consequence of Lemma 4.5. We
only need to show optimality of (µ, u) for (P). Let w ∈ A \ {u} be an admissible control for (P)
and µw the corresponding trajectory. We define µw,ε to be the unique solution of (1.3) with control
w; since (µw,ε, w) is an admissible pair for (Pε) and (µε, uε) is the unique optimal pair, we have
that

J(µε, uε) < J(µw,ε, w). (4.20)

Now, by Lemma 4.4 we know that µw,ε converges to the unique solution µw of (2.7) with control
w and the associated cost converges:

lim
ε→0

J(µw,ε, w) = J(µw, w).

Then, combining Lemma 4.5, equation (4.20), and the convergence above, it holds

J(µ, u) ≤ lim inf
ε→0

J(µε, uε) ≤ J(µw, w),

for any admissible pair (µw, w). Then, (µ, u) is an optimal pair for (P) and the proof is complete. �

It is important to remark that the lower bound on λ plays a role in the sufficient condition for
optimality in Theorem 3.6. However, if one had a priori a solution to the problem (Pε), then
the convergence theorem holds for a larger class of strictly-convex control cost, without requiring
any further assumption on the convexity constant λ. This is obtained by using the necessary
condition for optimality [20, Theorem 4.5] to prove Lemma 3.10. Then, the proof of existence (and
convergence) of a Lipschitz optimal control can be completed in an analogous way. This remark
then leads us to the following corollary.

Corollary 4.6. Assume that there exists a sequence εn → 0 such that for εn > 0 there exists an
optimal pair (uεn , µεn) for (Pεn). Assume the following:

• the set of admissible control values U ⊂ Rd is convex and compact;
• the vector field b is C1,1

loc regular, i.e. Assumption (B) in Section 2.3 above holds;

• the functions f, ψ, g in J are C1,1
loc regular, i.e. Assumption (J) in Section 3.1 above holds;

• the function ψ is λ-convex, for some λ > 0, and the functions f, g are convex, i.e. As-
sumption (C) in Section 3.1 above holds.

Then, there exists a solution (µ, u) ∈ C([0, T ]; P2(Rd))×L∞((0, T ); Lip(Rd, U)) of (P) and, up to
sub-sequences, the following convergences hold:

(i) uεn ⇀ u in L2((0, T );W 1,p
loc (Rd, U)) for every 1 ≤ p <∞;

(ii) µεn → µ in C([0, T ],P2(Rd));
(iii) J(µ, u) ≤ lim infn→∞ J(µεn , uεn).
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5. The role of convexity hypotheses

The aim of this section is to discuss the role of the convexity hypotheses (C) for the validity
of Theorem 1.1. In particular, we show that, by relaxing the strict convexity assumption on the
control cost ψ, then convergence of optimal controls uε for (Pε) to an optimal control u of (P) is
not ensured. This is the core of the counterexample that we describe in the following.

We consider the minimization problem of the functional

J(µ, u) =

∫ T

0

∫
R
ψ(u(t, x))µt( dx) dt (5.1)

where the control cost ψ is C∞, positive, convex and satisfies ψ(s) = 0 for s ∈ [−1, 1]. Note that
the function ψ is clearly not strictly convex. As an example, consider the C∞, not analytic function

φ(x) =

{
0 for x = 0,

exp(−1/|x|) for x 6= 0.

Then, one can build a function ψ(x) as above by choosing

ψ(x) :=


0 for x ∈ [0, 1],∫ x−1

0
ds

∫ s

0
φ(t) dt for x > 1,

ψ(−x) for x < 0.

We assume that the dynamics is given by the equation{
∂tµt + div[u(t, x)µt] = 0,

µ0 = δ0,
(5.2)

where δ0 is the Dirac delta centered in 0.
Set U = [−1, 1] and u ∈ Lip(R;U) be an admissible control. By the standard Cauchy-Lipschitz

Theorem, to any admissible control we can associate a unique flow Xt, i.e. the solution of{
Ẋt = u(Xt),

X0 = x.
(5.3)

It follows that µt = δXt is the unique solution of (5.2) with control u. It is clear that any Lipschitz
function u ∈ Lip(R; [−1, 1]) is also optimal, since the corresponding cost is identically zero.

We now consider the viscous optimal control, i.e. where the dynamics is governed by the equation{
∂tµ

ε
t + div[u(t, x)µεt ] = ε∆µεt ,

µε0 = δ0.
(5.4)

The same observations made for the non-viscous case apply: every Lipschitz function u ∈ Lip(R; [−1, 1])
is optimal and it is associated to a unique solution µε of (5.4). For each choice of u ∈ Lip(R; [−1, 1]),
one has convergence of the controls (they are ε-independent), convergence of the trajectories (as
an easy consequence of Lemma 4.4), and convergence of the cost (as a consequence of Lemma 4.5).
However, the viscous problem has other solutions for which the convergence result does not hold.
An example is provided by the function ũ(x) = sign(x): its cost is identically zero and thus it is an
optimal control. Moreover, ũ is bounded and then it is associated to a unique solution µ̃ε of (5.4),
see [38]. Nevertheless, since ũ is independent from ε, it does not converge to a Lipschitz optimal
control of the inviscid problem. Furthermore, notice that the equation (5.2) with vector field ũ has
multiple solutions, as a consequence of the non-uniqueness for the corresponding ODE (5.3) with
initial datum x = 0. As an example, both the trajectories x(t) = t and x(t) = −t are solutions of
the ODE in the Caratheodory sense.
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Trieste 63, 35131 Padova, Italy

Email address: francesco.rossi@math.unipd.it

gciampa@bcamath.org
francesco.rossi@math.unipd.it

	1. Introduction
	2. Notations and preliminaries
	2.1. The Wasserstein distance
	2.2. The L-derivative
	2.3. Non-local continuity and diffusion equations

	3. Stochastic mean-field optimal control
	3.1. The stochastic set-up
	3.2. Well-posedness of (FB-SDE)

	4. The vanishing viscosity method
	4.1. The viscous optimal control
	4.2. Convergence lemmas
	4.3. Proof of Theorem 1.1

	5. The role of convexity hypotheses
	References

